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Abstract 

In this paper, an analytical three-dimensional (3D) bending characteristic of an isotropic 

rectangular thick plate with all edges simply supported (SSSS) and carrying uniformly distributed 
transverse load using the energy technique is presented. The three-dimensional constitutive 

relations which involves six stress components were used in the established, refined shear 
deformation theory to obtain a total potential energy functional. This theory obviates application 

of the shear correction factors for the solution to the problem. The governing equation of a thick 

plate was obtained by minimizing the total potential energy functional with respect to the out of 
plane displacement. The deflection functions which are in form of trigonometric were obtained as 

the solution of the governing equation. These deflection functions which are the product of the 

coefficient of deflection and shape function of the plate were substituted back into the energy 
functional, thereafter a realistic formula for calculating the deflection and stresses were obtained 

through minimizations with respect to the rotations and deflection coefficients. The values of the 

deflections and stresses obtained herein were tabulated and compared with those of previous 3D 
plate theory, refined plate theories and, classical plate theory (CPT) accordingly. It was observed 

that the result obtained herein varied more with those of CPT and RPT by 25.39% and 21.09% for 

all span-to-thickness ratios respectively. Meanwhile, the recorded percentage differences are as 
close as 7.17% for all span-to-thickness ratios, when compared with three dimensional plate 

analysis. This showed that exact 3D plate theory is more reliable than the shear deformation theory 

which are quite coarse for thick plate analysis 
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1- Introduction 

The applications of thick plate in engineering are numerous due to its flexible characteristics such as light weight and 

economy [1, 2]. Classifications of plate can be based on the thickness (t) as; thin and thick plates [3]. The edges of plate 

can have different support conditions which can be fixed, simply supported, point, etc. The plates are mostly subjected 

to transverse and uniformly distributed loads acting in the middle plane of the plate. When a plate is subjected to such 

applied load at the boundary perpendicular to the mid-surface and distributed through the plate’s thickness, the state of 

loading is called uniformly distributed lateral load [4]. Lateral loading causes a plate to bend or become elastically 

deformed. The bending and deformation of the plate caused by applying load can lead to failure of structure if not 

properly managed. To avoid failure of the plate, relatively more accurate and practical studies on bending analysis of 

plate are required. 
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Rectangular plate ought to be analyzed as a three-dimensional (3-D) element, however, the intricacies involved made 

many scholars to introduce approximations. One major approximation is the classical plate theory (CPT). The CPT was 

formulated by Kirchhoff (1850) [5, 6] and was applied by Timoshenko & Woinowsky-krieger (1970) and Leissa (1973) 

[4, 7] for the analysis of plates and shells. The CPT, which does not address shear deformation transversely as seen in 

the thin plate analysis. It is based on the assumption that the deformation line remains perpendicular before and after 

deformation. Due to the non-inclusion of transverse shear strains or deformation in CPT, it has been found to be 

inadequate in the analysis of thick plates [5]. To address the shortfall in the CPT, the researchers formulated the refined 

plate theory (RPT).  

The RPT is a plate theory that considered the effect of transverse shear deformation in the analysis. They include; the 

first order shear deformation theory (FSDT) [8-10], second order shear deformation theory (SSDT). Mama et al. (2017) 

and Zenkour (2003) [11, 12] studied the effect of transverse shear deformation on the bending elastic plate using Mindlin 

plate theory (FSDT). The added a complication known as a shear correction factor to account for the shear deformation 

effect in the plate. 

To consider the effect transverse shear deformation in the plate analysis without shear correction factor, a higher order 

shear deformation theory (HSDT) was developed which achieved a realistic variation of transverse shear stress from top 

to bottom of the plate [13-15], in the analysis of plates, using different functions like: hyperbolic, exponential or 

polynomial functions. The refined plate theory, assumed that the normal strain and stress along the thickness axis of the 

plate is negligible. This assumption makes the theory inconsistent and can be regarded as a 2-D or an incomplete 3-D 

plate theory.     

Not much study has been carried out by earlier scholars on rectangular thick plate analysis using the 3-D plate theory. 

Some of them are for the numerical analysis of plate like finite element method, finite strip method, etc. [16-18]. The 

numerical analysis is limited as the only give approximate solution and its inability to determine the values of stresses 

and displacement at any point of the plate is shown. However, Uymaz and Aydogdu (2013) and Pagano (1970) [19, 20] 

performed a 3-D analysis of solid rectangular plate to determine the stress element that induces deformation in the plate 

structure by employing the Ritz approach with assumed displacement functions. It was discovered that by assuming the 

displacement function, the result of the 3-D plate analysis will yield an approximate solution.  

Ibearugbulem et al. and Onyeka & Edozie (2021) [21, 22] utilized the analytical approach to get the exact polynomial 

displacement function from the governing equation. They did not apply trigonometric function which gives closer form 

solution than polynomial whose exact function tends to infinity [23].  

The two-dimensional theories (incomplete three-dimensional theory) can be derived by making suitable assumptions 

concerning the kinematics of deformation or the state of stress through the thickness of the plate [20]. From the previous 

studies in the literature, it is found that 2-D theory or 3-D theory with an approximate solution was used for the analysis, 

but for a typical thick plate analysis, a typical 3-D plate theory which will yield an exact solution is required. A typical 

3-D plate theory involves all the six strains and stress components, unlike the FSDT and HSDT plate theory which 

assumed that the strain normal to the x-y plane (𝜎𝑧) is so small that it can be neglected. The major limitation of the 2-D 

plate analysis is the understating of stresses in the member which makes its result unreliable. Furthermore, it is recorded 

that both Mindlin’s theories (FSDT) and other higher shear deformation incomplete three-dimensional analysis are 

approximations of the elasticity three-dimensional equilibrium equations and cannot be reliable for thick plate analysis. 

More so, the 3-D theory with polynomial displacement function will not give an exact solution which makes it not 

dependable for analysis of all categories of plate (thin, moderately thick and thick plate). This gap in the literature is 

worth filling.  

The present study is trying to present an analytical improved plate theory and applied in the three-dimensional bending 

analysis of a plate under uniformly distributed load using trigonometric displacement functions. The aim of this work is 

to study the exact bending characteristics of an elastic rectangular plate subjected to a plate with simply support in all 

edges using the direct variation technique. This model can be trustworthy in the analysis of any category of rectangular 

plate to obtain the normal stresses that may occur in the direction of the x, y and z co-ordinates due to applied load on 

the plate. Hence, the shear stress along the x-y axis, x-z axis and y-z axis that are induced due to the transverse load on 

the plate will be determined. Furthermore, the deflection and the in-plane displacement along x and y axis of the plate 

will also be measured and presented. 

The limitations and constraints of this study includes the followings: 

 The mid plane of the plate is flat and not inclined. 

 The issue of oscillation of the plate due to vibration and buckling of the plate is not considered. 

 Varying load, patch load and peak load is not debated. 

 Experiment were not conducted on the properties of the materials used. 

 Effect of torsion due to warping of the plate is neglected.  
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2- Research Methodology 

The processes involved in the formulation of kinematics relations and three-dimensional constitutive relations using 

the elastic static theory of isotropic plate. The strain energy and external work done on the plate, the total potential energy 

equation of a thick rectangular plate using energy expression was developed from the 3-D constitutive relations and 

kinematic deformation. The governing equations were derived and solved in terms of trigonometric shape function to 

get the exact deflection function and its relation to rotations. Thereafter, the total potential energy equation was 

minimized using the function of rotation and deflection to obtain their coefficient and stresses in the plate. Figure 1 

shows a flowchart to the article analysis procedure as presented in the research methodology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Flowchart to the article analysis procedure as presented in the research methodology. 

2-1- Basic Assumptions 

The basic assumptions for three dimensional analyses of refined shear deformation thick continuum plate of small 

deflection theorems include the following: 

 The plate material is elastic, homogenous and isotropic. 

 The middle surface of the flat plate never stretches nor compresses before, during or after bending.  

 A flat x-z or y-z section, which is normal to middle x-y plane before bending shall no longer remain normal to the 

middle x-y surface after bending.  

2-2- Kinematics 

This is unlike dynamics, which is the branch of mechanics that deals only with the forces that cause movement of 

bodies. In kinematics, displacements and strains are considered. The displacement field includes the displacements along 

x, y and z-axes: u, v and w respectively. After bending of the plate the x-z section and y-z section, which are initially 

normal to the x-y plane before bending go off normal to the x-y plane as seen in Figure 2. 

Using kinematic and 3-D constitutive relation to 

get displacement, strain and stresses considering 

Hooke’s law 

Developing energy equation 

Transform energy equation into 

compatibility equation 

Governing equation were derived and solved to 

get an exact deflection function of the plate 

Solution of compatibility equation were obtained using 

deflection function to get the function of rotation 

Substituting rotation and deflection function into 

energy equation to get the coefficients of deflection 

and rotation 

Substituting the rotation and deflection coefficients into 

displacement and stress equations obtained to get 

expressions for bending analysis of the plate 
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Our formulation of the energy equation for the stability analysis thick rectangular plate under compressive load will 

be based on Figure 2, Figure 3 and assumptions made in the previous section. As shown in Figure 2, the spatial 

dimensions of the plate along x, y and z-axes are a, b and t respectively. 

 
Figure 2. Rotation of x-z (or y-z) section after bending. 

As shown in the Figure 3, the displacement field includes the displacements along x, y and z-axes: u, v and w 

respectively. The displacement and slope along the x axis and y axis are mathematically expressed as: 

𝑥 =
𝜕𝑢

𝜕𝑧
                         (1) 

𝑦 =
𝜕𝑣

𝜕𝑧
                         (2) 

Considering assumption iii and Figure 2, F as used is a function of z coordinate. Thus, the in-plane displacements; u 

and v as presented in the Equation 2 and 3 are further defined using trigonometric relations for small angles as: 

𝑢 = 𝑧𝑥                         (3) 

𝑣 = 𝑧𝑦                         (4) 

where: 𝑢 and 𝑣 are the in-plane displacement along x-axis and y axis respectively, 𝜃𝑥  and 𝜃𝑦 are the shear deformation 

slope along x axis and y axis, and 𝐹 represents the shear deformation profile. 

Taking the non-dimensional form of coordinates to be R = x/a, Q = y/b and S = z/t corresponding to x, y and z-axes 

respectively, the six strain components in terms of non-dimensional coordinates are written as: 

   𝑥 =
𝑆𝑡

𝑎

𝑑𝜃𝑥

𝑑𝑅
                        (5) 

𝑦 =
𝑆𝑡

𝑎𝛽

𝑑𝜃𝑦

𝑑𝑄
  (6) 

𝑧 =
1

𝑡

𝑑𝑤

𝑑𝑆
  (7) 


𝑥𝑦

=
𝑆𝑡

𝑎𝛽

𝑑𝜃𝑥

𝑑𝑄
+

𝑆𝑡

𝑎

𝑑𝜃𝑦

𝑑𝑅
  (8) 


𝑥𝑧

= 𝜃𝑥 +
1

𝑎

𝑑𝑤

𝑑𝑅
  (9) 


𝑦𝑧

= 𝜃𝑦 +
1

𝑎𝛽

𝑑𝑤

𝑑𝑄
  (10) 

where: 𝜀𝑥, 𝜀𝑦 and 𝜀𝑧 are normal strain along x axis, y axis and z axis respectively, 𝛾𝑥𝑦 , 𝛾𝑥𝑧 𝑎𝑛𝑑 𝛾𝑦𝑧 represents the shear 

strain in the plane parallel to the x-y, x-z and y-z plane. 

2-3- Constitutive Relations 

By considering the stresses causing the body movements, the generalized Hooke’s law principle was applied to get 

the three dimensional constitutive relation as given: 

[
 
 
 
 
 
𝜀𝑥

𝜀𝑦

𝜀𝑧
𝛾𝑥𝑧

𝛾𝑦𝑧

𝛾𝑥𝑦]
 
 
 
 
 

=
1

E

[
 
 
 
 
 

1 −𝜇 −𝜇 0 0 0
−𝜇 1 −𝜇 0 0 0
−𝜇 −𝜇 1 0 0 0

0 0 0 2(1 + 𝜇) 0 0

0 0 0 0 2(1 + 𝜇) 0

0 0 0 0 0 2(1 + 𝜇)]
 
 
 
 
 

[
 
 
 
 
 
𝜎𝑥

𝜎𝑦

𝜎𝑧
𝜏𝑥𝑧

𝜏𝑦𝑧

𝜏𝑥𝑦]
 
 
 
 
 

 (11) 

Middle surface 
 

Bottom fiber 

Top fiber 
 

Total Deformation 
line 

𝜃𝑥 𝑜𝑟 𝜃𝑦 

𝑡 
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Modulus of elasticity and Poisson’s ratios are denoted with E and µ respectively. Substituting Equations 5 to 10 into 

Equation 11 and writing the equations of the six stress components one by one in term of the displacements gives: 

𝑥 =
𝐸𝑡𝑠

(1+𝜇)(1−2𝜇)𝑎
[(1 − 𝜇) .

𝜕𝑥

𝜕𝑅
+



𝛽
.
𝜕𝑦

𝜕𝑄
+

𝑎

𝑠𝑡2 .
𝜕𝑤

𝜕𝑆
]  (12) 

𝑦 =
𝐸𝑡𝑠

(1+𝜇)(1−2𝜇)𝑎
[ .

𝜕𝑥

𝜕𝑅
+

(1−𝜇)

𝛽
.
𝜕𝑦

𝜕𝑄
+

𝑎

𝑠𝑡2 .
𝜕𝑤

𝜕𝑆
]  (13) 

𝑧 =
𝐸𝑡𝑠

(1+𝜇)(1−2𝜇)𝑎
[ .

𝜕𝑥

𝜕𝑅
+



𝛽
.
𝜕𝑦

𝜕𝑄
+

(1−𝜇)𝑎

𝑠𝑡2 .
𝜕𝑤

𝜕𝑆
]  (14) 

𝑥𝑦 =
𝐸(1−2)𝑡𝑠

2(1+𝜇)(1−2𝜇)𝑎
. [

1

𝛽

𝜕𝑥

𝜕𝑄
+

𝜕𝑦

𝜕𝑅
]  (15) 

𝑥𝑧 =
𝐸(1−2)𝑡𝑠

2(1+𝜇)(1−2𝜇)𝑎
. [

𝑎

𝑡𝑠
𝑥 +

1

𝑡𝑠

𝜕𝑤

𝜕𝑅
]  (16) 

𝑦𝑧 =
𝐸(1−2)𝑡𝑠

2(1+𝜇)(1−2𝜇)𝑎
. [

𝑎

𝑡𝑠
𝑦 +

1

𝛽𝑡𝑠

𝜕𝑤

𝜕𝑄
]  (17) 

2-4- Strain Energy 

Strain energy is the average of the product of stress and strain indefinitely summed up within the spatial domain of 

the body. This mathematically expressed as: 

𝑈 =
𝑎𝑏𝑡

2
∫ ∫ ∫ (𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 + 𝜏𝑥𝑦𝑥𝑦

+ 𝜏𝑥𝑧𝑥𝑧
+ 𝜏𝑦𝑧𝑦𝑧

)
0.5

−0.5

1

0

1

0
𝑑𝑅 𝑑𝑄 𝑑𝑆  (18) 

Substituting Equations 5 to 10 and Equations 12 to 17 into Equation 18, simplifying and carrying out the integration 

of the outcome with respect to S considering that S = z/t gives: 

𝑈 =
𝐷∗𝑎𝑏

2𝑎2 ∫ ∫ [(1 − 𝜇) (
𝜕𝑠𝑥

𝜕𝑅
)

2

 +
1

𝛽

𝜕𝑠𝑥

𝜕𝑅
.
𝜕𝑠𝑦

𝜕𝑄
+

(1−𝜇)

𝛽2 (
𝜕𝑠𝑦

𝜕𝑄
)

2

+
(1−2)

2𝛽2 (
𝜕𝑠𝑥

𝜕𝑄
)

2

+
(1−2)

2
(

𝜕𝑠𝑦

𝜕𝑅
)

2

+
1

0

1

0

6(1−2)

𝑡2 (𝑎2𝑠𝑥
2 + 𝑎2𝑠𝑦

2 + (
𝜕𝑤

𝜕𝑅
)

2

+
1

𝛽2 (
𝜕𝑤

𝜕𝑄
)

2

+ 2𝑎. 𝑠𝑥
𝜕𝑤

𝜕𝑅
+

2𝑎.𝑠𝑦

𝛽

𝜕𝑤

𝜕𝑄
) +

(1−𝜇)𝑎2

𝑡4 (
𝜕𝑤

𝜕𝑆
)

2

] 𝑑𝑅 𝑑𝑄  

(19) 

Where: 

𝐷∗ =
𝐸𝑡3

12(1+𝜇)(1−2𝜇)
= 𝐷

(1−𝜇)

(1−2𝜇)
  (20) 

2-5- Energy Equation Formulation 

Total Energy Expression be the algebraic summation of strain energy (U) and external work (E). That is: 

 = U − E (21) 

The potential energy for the plate with uniformly distributed load is given as: 

𝐸 = −∫ ∫ 𝑞𝑤(𝑥, 𝑦)𝜕𝑥𝜕𝑦 
𝑏

0

𝑎

0
  (22) 

where; the symbol w(x,y) denotes the deflection in x and y direction, and q denotes the uniformly distributed load; 

𝐸 = 𝑎𝑏𝑞 ∫ ∫ 𝑤
1

0

1

0
𝑑𝑅 𝑑𝑄  (23) 

where, the symbol h denotes the shape function of the plate, while; a and b is the length and breadth of the plate 

Substituting Equations 19 and 22 into Equation 21 gives: 

 =
𝐷∗𝑎𝑏

2𝑎2 ∫ ∫ [(1 − 𝜇) (
𝜕𝑠𝑥

𝜕𝑅
)
2
 +

1

𝛽

𝜕𝑠𝑥

𝜕𝑅
.
𝜕𝑠𝑦

𝜕𝑄
+

(1−𝜇)

𝛽2 (
𝜕𝑠𝑦

𝜕𝑄
)
2

+
(1−2)

2𝛽2 (
𝜕𝑠𝑥

𝜕𝑄
)
2
+

(1−2)

2
(
𝜕𝑠𝑦

𝜕𝑅
)
2

+
6(1−2)

𝑡2 (𝑎2𝑠𝑥
2 +

1

0

1

0

𝑎2𝑠𝑦
2 + (

𝜕𝑤

𝜕𝑅
)
2
+

1

𝛽2 (
𝜕𝑤

𝜕𝑄
)
2
+ 2𝑎. 𝑠𝑥

𝜕𝑤

𝜕𝑅
+

2𝑎.𝑠𝑦

𝛽

𝜕𝑤

𝜕𝑄
) +

(1−𝜇)𝑎2

𝑡4 (
𝜕𝑤

𝜕𝑆
)
2
] 𝑑𝑅 𝑑𝑄 − ∫ ∫ 𝑞𝑤 𝑎𝑏𝜕𝑅𝜕𝑄

1

0

1

0
  

(24) 

This gives: 

 =
𝐷∗𝑎𝑏

2𝑎2 ∫ ∫ [(1 − 𝜇) (
𝜕𝑠𝑥

𝜕𝑅
)
2
 +

1

𝛽

𝜕𝑠𝑥

𝜕𝑅
.
𝜕𝑠𝑦

𝜕𝑄
+

(1−𝜇)

𝛽2 (
𝜕𝑠𝑦

𝜕𝑄
)
2

+
(1−2)

2𝛽2 (
𝜕𝑠𝑥

𝜕𝑄
)
2
+

(1−2)

2
(
𝜕𝑠𝑦

𝜕𝑅
)
2

+
6(1−2)

𝑡2 (𝑎2𝑠𝑥
2 +

1

0

1

0

𝑎2𝑠𝑦
2 + (

𝜕𝑤

𝜕𝑅
)
2
+

1

𝛽2 (
𝜕𝑤

𝜕𝑄
)
2
+ 2𝑎. 𝑠𝑥

𝜕𝑤

𝜕𝑅
+

2𝑎.𝑠𝑦

𝛽

𝜕𝑤

𝜕𝑄
) +

(1−𝜇)𝑎2

𝑡4 (
𝜕𝑤

𝜕𝑆
)
2
−

2𝑞𝑎4𝑤

𝐷∗ ] 𝑑𝑅 𝑑𝑄  
(25) 
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2-6- Governing Equation 

The exact solution of the governing equation in trigonometric form is obtained according to Onyeka et al. (2021) [24] 

by minimizing the total potential energy functional with respect to deflection to give the exact equation of deflection, 

shear deformation slope in x-axis and shear deformation slope in y-axis as presented in Equations 26 to 28 respectively: 

𝑤 = [1   𝑅   𝐶𝑜𝑠 (𝑐1𝑅)  𝑆𝑖𝑛 (𝑐1𝑅)] [

𝑎0

𝑎1
𝑎2

𝑎3

] . [1   𝑄   𝐶𝑜𝑠 (𝑐1𝑄)  𝑆𝑖𝑛 (𝑐1𝑄)] [

𝑏0

𝑏1

𝑏2

𝑏3

]  (26) 

𝜃𝑥 =
𝑐

𝑎
. ∆0. [1   𝑐1𝑆𝑖𝑛 (𝑐1𝑅)  𝑐1𝐶𝑜𝑠 (𝑐1𝑅)] [

𝑎1

𝑎2

𝑎3

] . [1   𝑄   𝐶𝑜𝑠 (𝑐1𝑄)  𝑆𝑖𝑛 (𝑐1𝑄)] [

𝑏0

𝑏1

𝑏2

𝑏3

]   (27) 

𝑦 =
𝑐

𝑎β
. ∆0. [1   𝑅   𝐶𝑜𝑠 (𝑐1𝑅)  𝑆𝑖𝑛 (𝑐1𝑅)] [

𝑎0

𝑎1
𝑎2

𝑎3

] . [1     𝑐1𝑆𝑖𝑛 (𝑐1𝑄)  𝑐1𝐶𝑜𝑠 (𝑐1𝑄)] [

𝑏1

𝑏2

𝑏3

]   (28) 

Let: 

𝑤 = 𝐴1. ℎ  (29) 

𝑥 =
𝐴2

𝑎
.
𝜕ℎ

𝜕𝑅
   (30) 

𝑦 =
𝐴3

𝑎𝛽
.
𝜕ℎ

𝜕𝑄
   (31) 

Where; 𝐴1, 𝐴2 𝑎𝑛𝑑 𝐴3 denotes deflection coefficient, coefficient of slope in x axis and y axis respectively. 

Substituting Equation 29, 30 and 31 into 25, gives: 

 =
𝐷∗𝑎𝑏

2𝑎4 ∫ ∫ [(1 − 𝜇)𝐴2
2 (

𝜕2ℎ

𝜕𝑅2
)
2

 +
1

𝛽2
[𝐴2. 𝐴3 +

(1−2)𝐴2
2

2
+

(1−2)𝐴3
2

2
] (

𝜕2ℎ

𝜕𝑅𝜕𝑄
)
2

+
(1−𝜇)𝐴3

2

𝛽4
(

𝜕2ℎ

𝜕𝑄2
)
2

+
1

0

1

0

6(1 − 2) (
𝑎

𝑡
)
2
([𝐴2

2 + 𝐴1
2 + 2𝐴1𝐴2]. (

𝜕ℎ

𝜕𝑅
)
2
+

1

𝛽2 . [𝐴3
2 + 𝐴1

2 + 2𝐴1𝐴3]. (
𝜕ℎ

𝜕𝑄
)
2
) −

2𝑞𝑎4ℎ𝐴1

𝐷∗   ] 𝑑𝑅 𝑑𝑄  
(32) 

Writing Equation 32 in more symbolized form gives: 

 =
𝐷∗𝑎𝑏

2𝑎4 [(1 − 𝜇)𝐴2
2𝑘𝑥  +

1

𝛽2 [𝐴2. 𝐴3 +
(1−2)𝐴2

2

2
+

(1−2)𝐴3
2

2
] 𝑘𝑥𝑦 +

(1−𝜇)𝐴3
2

𝛽4 𝑘𝑦 + 6(1 − 2) (
𝑎

𝑡
)
2
([𝐴2

2 + 𝐴1
2 +

2𝐴1𝐴2]. 𝑘𝑧 +
1

𝛽2
. [𝐴3

2 + 𝐴1
2 + 2𝐴1𝐴3]. 𝑘2𝑧) −

2𝑞𝑎4𝑘ℎ𝐴1

𝐷∗
]  

(33) 

Where: 

𝑘𝑥 = ∫ ∫ (
𝜕2ℎ

𝜕𝑅2)
2

1

0

1

0
𝑑𝑅𝑑𝑄  (33a) 

𝑘𝑥𝑦 = ∫ ∫ (
𝜕2ℎ

𝜕𝑅𝜕𝑄
)

2
1

0

1

0
𝑑𝑅𝑑𝑄  (33b) 

𝑘𝑦 = ∫ ∫ (
𝜕2ℎ

𝜕𝑄2)
2

1

0

1

0
𝑑𝑅𝑑𝑄  (33c) 

𝑘𝑧 = ∫ ∫ (
𝜕ℎ

𝜕𝑅
)

21

0

1

0
𝑑𝑅𝑑𝑄  (33d) 

𝑘2𝑧 = ∫ ∫ (
𝜕ℎ

𝜕𝑄
)

21

0

1

0
𝑑𝑅𝑑𝑄; 𝑘ℎ = ∫ ∫ ℎ

1

0
.

1

0
𝑑𝑅𝑑𝑄  (33e) 

Minimizing Equation 33 with respect to 𝐴2 gives: 

𝜕

𝜕𝐴2
= (1 − 𝜇)𝐴2𝑘𝑥  +

 1

2𝛽2
[𝐴3 + 𝐴2(1 − 2)]𝑘𝑥𝑦 + 6(1 − 2) (

𝑎

𝑡
)

2
[𝐴2 + 𝐴1]. 𝑘𝑧 = 0  (34) 

Minimizing Equation 33 with respect to 𝐴3 gives: 

𝜕

𝜕𝐴2
=

(1−𝜇)𝐴3

𝛽4 𝑘𝑦 +
1

2𝛽2
[𝐴2 + 𝐴3(1 − 2)]𝑘𝑥𝑦 +

6

𝛽2
(1 − 2) (

𝑎

𝑡
)

2
([𝐴3 + 𝐴1]. 𝑘2𝑧) = 0  (35) 

Rewriting Equations 34 and 35 gives: 
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[(1 − 𝜇)𝑘𝑥 +
1

2𝛽2
(1 − 2)𝑘𝑥𝑦 + 6(1 − 2) (

𝑎

𝑡
)

2

𝑘𝑧] 𝐴2 + [
1

2𝛽2 𝑘𝑥𝑦] 𝐴3 = [−6(1 − 2) (
𝑎

𝑡
)

2

𝑘𝑧] 𝐴1  (36) 

[
1

2𝛽2 𝑘𝑥𝑦] 𝐴2 + [
(1−𝜇)

𝛽4 𝑘𝑦 +
1

2𝛽2
(1 − 2)𝑘𝑥𝑦 +

6

𝛽2
(1 − 2) (

𝑎

𝑡
)

2

𝑘2𝑧] 𝐴3 = [−
6

𝛽2
(1 − 2) (

𝑎

𝑡
)

2

𝑘𝑄] 𝐴1  (37) 

Solving Equations 36 and 37 simultaneously gives: 

𝐴2𝑅 = 𝑈𝐴1  (38) 

𝐴2𝑄 = 𝑉𝐴1  (39) 

Let: 

𝑈 =
(𝑟12𝑟23−𝑟13𝑟22)

(𝑟12𝑟12−𝑟11𝑟22)
  (40) 

𝑉 =
(𝑟12𝑟13−𝑟11𝑟23)

(𝑟12𝑟12−𝑟11𝑟22)
  (41) 

Where: 

𝑟11 = (1 − 𝜇)𝑘𝑥 +
1

2𝛽2
(1 − 2)𝑘𝑥𝑦 + 6(1 − 2) (

𝑎

𝑡
)

2

𝑘𝑧  (42) 

𝑟22 =
(1−𝜇)

𝛽4 𝑘𝑦 +
1

2𝛽2
(1 − 2)𝑘𝑥𝑦 +

6

𝛽2
(1 − 2) (

𝑎

𝑡
)

2

𝑘2𝑧  (43) 

𝑟12 = 𝑟21 =
1

2𝛽2 𝑘𝑥𝑦;  𝑟13 = −6(1 − 2) (
𝑎

𝑡
)

2

𝑘𝑧;  𝑟23 = 𝑟32 = −
6

𝛽2
(1 − 2) (

𝑎

𝑡
)

2

𝑘2𝑧  (44) 

Minimizing Equation 33 with respect to A1 gives: 

𝜕𝛱

𝜕𝐴1
=

𝐷∗𝑎𝑏

2𝑎4 [6(1 − 2) (
𝑎

𝑡
)

2

([2𝐴1 + 2𝐴2]. 𝑘𝑧 +
1

𝛽2 . [2𝐴1 + 2𝐴3]. 𝑘2𝑧) −
2𝑞𝑎4𝑘ℎ

𝐷∗ ] = 0  (45) 

That is: 

6(1 − 2) (
𝑎

𝑡
)

2

([𝐴1 + 𝑈𝐴1]. 𝑘𝑧 +
1

𝛽2 . [𝐴1 + 𝑉𝐴1]. 𝑘2𝑧) −
𝑞𝑎4𝑘ℎ

𝐷∗ = 0  (46) 

Factorizing Equations 46 and simplifying gives: 

6(1 − 2) (
𝑎

𝑡
)

2

𝐴1 ([1 + 𝑈]. 𝑘𝑧 +
1

𝛽2 . [1 + 𝑉]. 𝑘2𝑧) =
𝑞𝑎4𝑘ℎ

𝐷∗   (47) 

𝑇𝐴1 =
𝑞𝑎4𝑘ℎ

𝐷∗    (48) 

𝐴1 =
𝑞𝑎4

𝐷∗ ( 
𝑘ℎ

𝑇
)  (49) 

Where: 

𝑇 = 6(1 − 2) (
𝑎

𝑡
)

2

∗ ([1 + 𝐺2]. 𝑘𝑧 +
1

𝛽2 . [1 + 𝐺3]. 𝑘2𝑧)  (50) 

3- Numerical Analysis 

The analysis of a thick rectangular SSSS plate whose Poisson’s ratio is 0.3 and carrying uniformly distributed load 

(including self-weight) presented. This is done by determining the deflection, w where R = 0.5, Q = 0.5 and S = 0; normal 

in-plane stresses (𝜎𝑥 𝑎𝑛𝑑 𝜎𝑦), where R = 0.5, Q = 0.5 and S = 0.5; x-y plane shear stress τxy where R = 0, Q = 0 and S 

= 0.5; x-z plane shear stress τxz where R= 0, Q = 0.5 and S = 0. The trigonometric shape function as was obtained in the 

previous section is subjected to the rectangular SSSS plate boundary condition shown on Figure 3 for various aspect 

ratios and span-depth ratio.  
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Figure 3. SSSS Rectangular Plate. 

The deflection functions after satisfying the boundary conditions in trigonometric forms is given as: 

𝑤 = 𝐴1𝑆𝑖𝑛 𝜋𝑅. 𝐶𝑜𝑠 𝜋𝑅  (51) 

Where: 

ℎ = 𝑆𝑖𝑛 𝜋𝑅. 𝐶𝑜𝑠 𝜋𝑅  (52) 

The stiffness coefficients for the trigonometric and polynomial deflection functions are presented on Table 1. 

Table 1. Trigonometric form of stiffness coefficients of SSSS rectangular plate. 

Deflection form 𝑘𝑥 𝑘𝑥𝑦 𝑘𝑦 𝑘𝑧 𝑘2𝑧 

Trigonometry 
π4

4
 

π4

4
 

π4

4
 

π2

4
 

π2

4
 

The displacements and stress can be defined in non-dimensional form in line with the work of Sayyad and Ghugal 

(2012) as: 

𝑤̅ =
100Ew

𝑞𝑡ρ4   (53) 

𝑢̅ =
uE

𝑞𝑡ρ3  (54) 

𝑣̅ =
uE

𝑞𝑡ρ3  (55) 

That is: 

𝜎𝑥̅̅ ̅ =
𝜎𝑥

qρ2  (56) 

Similarly; 

𝜎𝑦̅̅ ̅ =
𝜎𝑦

qρ2
  (57) 

𝜏𝑥𝑦̅̅ ̅̅ =
𝜏𝑥𝑦

qρ2  (58) 

𝜏𝑥𝑧𝑝̅̅ ̅̅ ̅ =
𝜏𝑥𝑧𝑝

qρ
  (59) 

Similarly; 

𝜏𝑦𝑧 =
𝜏𝑦𝑧𝑝

qρ
  (60) 

Using Equation 53 to 60, the non-dimensional stress elements of the plate is given as:  

a 

b 

𝑸 

𝑹 
O 

S 

S 

S 

S 
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w =  1200 (1 − 𝜇2)𝑤̅  (61) 

u = 12 (1 − 𝜇2)𝑢̅  (62) 

v = 12 (1 − 𝜇2)𝑣̅  (63) 

𝜎𝑥 = 12𝜎𝑥̅̅ ̅  (64) 

𝜎𝑦 = 12𝜎𝑦̅̅ ̅  (65) 

𝜏𝑥𝑦 = 12(1 − 𝜇)𝜏𝑥𝑦̅̅ ̅̅   (66) 

𝜏𝑥𝑧 = 12(1 − 𝜇)𝜏𝑥𝑧𝑝  (67) 

4- Results and Discussions  

The result of displacements and stresses for the three dimensional isotropic plate and carrying a transverse load are 

presented in non-dimensional form in Tables 2 through 5. The non-dimensional maximum deflection and stresses at the 

given coordinate positions are presented in Tables 2, 3, 4 and 5 for the span-to-thickness ratios of 4, 10, 100 and 1000. 

Results obtained for maximum deflection and stresses compared and discussed with the corresponding results of CPT 

[5], FSDT [9], TSDT [25], HSDT [14], the exact elasticity solution for bidirectional bending of plates [20] and exact 

elasticity solution for pure bending analysis of plate [21]. The percentage error result of this particular theory with respect 

to past study is calculated using expressions presented in Table 6. 

Looking at the Tables, it shall be observed that as the span-depth ratio increases, the values of deflection and x-z 

plane shear stress far to those obtained from the past studies using CPT & RPT, and near to those exact elasticity theories. 

Hence, the closest measured as a percentage difference is 4.08% [21] while the farthest is 29.19% [5] at span-to-depth 

ratio of 10 for deflection and stresses at span-to-depth ratio of 4 respectively. The overall average percentage difference 

values of displacement and stress obtained by Present theory and those of CPT, RPT and 3D plate theory of all aspect 

ratios is 25.39%, 21.09% and 12.18% respectively. Out of 12.18% in 3D theory, 7.17% for the author in [21] and 17.18% 

for the author in [20] are discovered. This means that the analytical process [21] gives more accurate results than a 

numerical approach [20].         

The classical plate theory and other higher order theories overestimate the results of in-plane displacement as 

compared to the present theory and those of other exact solution. The CPT and FSDT underestimate the deflection and 

stress for all the aspect ratios. The least average percentage difference for CPT and FSDT is 18.24% at span-to-depth 

ratio of 100, the value which is much to be ignored. Also, the refined plate theories overestimate the deflection and x-z 

plane shear stress. For normal in-plane stresses it is observed that as span-to-depth ratio increases the recorded percentage 

difference increases. The least average percentage difference is 14.41% at span-to-depth ratio of 4. This also confirms 

the coarseness of refined plate theories in the thick plate analysis. The central deflections and stresses predicted by the 

present theory are in close agreement with those of other exact elasticity solution [20, 21] for all the aspect ratios. The 

least average percentage difference for 3D theory is 4.08% at span-to-depth ratio of 10. The implication is that classical 

plate theory and refined plate theories are quite coarse is for thick plate analysis. Hence, the need to use complete 3D 

(three-dimensional) plate analysis to ensure accuracy.  

It is also observed that the values obtained from the models used herein almost coincide with the values from the RPT 

and CPT at a span - depth ratio of 100. This confirmed CPT which state that, thin plate is that which span-depth ratio is 

100 and above. Thus far, it has been seen that results previous authors using CPT and RPT underestimate or over predict 

the stresses in the plate structure which make their result far to those of 3D analysis. But plate analysis is a three-

dimensional problem which requires 3D analysis to achieve an exact solution. Being an analytical process, the 3D 

analysis presented herein is recommended by the authors for Engineers to begin the analysis of plates using the simple 

trigonometric 3D method of analysis of plate presented in this paper to ensure effective results.  

Table 2. Non dimensional forms of displacement and stresses of SSSS plate at aspect ratio b/a = 1. 0 and a/t=4. 

Scholars Theories w 𝛔𝐱̅̅ ̅ 𝛔𝐲̅̅ ̅ 𝛕𝐱𝐲̅̅ ̅̅  𝛕𝐱𝐳̅̅ ̅̅  

Present Study 
3D exact plate theory 

(trigonometric) 
4.4928 0.3571 0.3571 -0.1524 0.1842 

Pagno (1970) [P] Elasticity plate theory 5.6940 0.3070 0.3070 - 0.2067 

Ibearugbulem et al. (2021) [I] 3-D plate theory (Polynomial) 4.8207 0.3832 0.3832 -0.1635 0.1976 

Onyeka et al. (2018) [O] HSDT 6.1553 0.3597 0.3597 -0.2066 0.3907 

Karama et al. (2003) [K] TSDT 6.1035 0.3452 0.3452 -0.1859 0.3849 

Mindlin (1951) [M] FSDT 5.6330 0.2870 0.2870 0.1951 0.3331 

Kirchhoff (1850) [Kr] CPT 4.4360 0.2870 0.2870 0.1951 0.0000 
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% Difference Average % Difference w 𝛔𝐱̅̅ ̅ 𝛔𝐲̅̅ ̅ 𝛕𝐱𝐲̅̅ ̅̅  𝛕𝐱𝐳̅̅ ̅̅  

%Diff between Present and [P] 16.10 21.096 16.319 - - 10.885 

%Diff between Present and [I] 6.80 6.8019 6.8111 6.8111 6.7890 6.7814 

%Diff between Present and [O] 22.40 27.009 0.7228 0.7228 26.234 52.854 

%Diff between Present and [K] 21.51 26.390 3.4473 3.4473 18.020 52.143 

%Diff between Present and [M] 27.14 20.241 24.425 24.425 21.886 44.701 

%Diff between Present and [Kr] 34.40 1.2804 24.425 24.425 21.886 100 

Table 3. Non dimensional forms of displacement and stresses of SSSS plate at aspect ratio b/a = 1.0 and a/t=10. 

Scholars Theories w 𝛔𝐱̅̅ ̅ 𝛔𝐲̅̅ ̅ 𝛕𝐱𝐲̅̅ ̅̅  𝛕𝐱𝐳̅̅ ̅̅  

Present Study 
3D exact plate theory 

(trigonometric) 
4.2245 0.3783 0.3783 -0.1614 0.2326 

Pagno (1970) [P] Elasticity plate theory 4.6390 0.2890 0.2890 - 0.2380 

Ibearugbulem et al. (2021) [I] 3-D plate theory (Polynomial) 4.4039 0.3944 0.3944 -0.1683 0.2425 

Onyeka et al. (2018) [O] HSDT 4.7738 0.3176 0.3176 -0.1824 0.3818 

Karama et al. (2003) [K] TSDT 4.7970 0.3243 0.3243 -0.1746 0.3909 

Mindlin (1951) [M] FSDT 4.6701 0.2870 - 0.1951 0.3331 

Kirchhoff (1850) [Kr] CPT 4.4360 0.2870 0.2870 0.1950 0.4950 

% Difference Average % Difference w 𝛔𝐱̅̅ ̅ 𝛔𝐲̅̅ ̅ 𝛕𝐱𝐲̅̅ ̅̅  𝛕𝐱𝐳̅̅ ̅̅  

%Diff between Present and [P] 18.25 8.9351 30.900 30.900 - 2.2689 

%Diff between Present and [I] 4.08 4.0737 4.0822 4.0822 4.0998 4.0825 

%Diff between Present and [O] 24.69 11.507 19.112 19.112 11.513 39.078 

%Diff between Present and [K] 18.66 11.935 16.651 16.651 7.5601 40.496 

%Diff between Present and [M] 22.20 9.5416 31.812 - 17.273 30.171 

%Diff between Present and [Kr] 27.73 4.7678 31.812 31.812 17.231 53.010 

Table 4. Non dimensional forms of displacement and stresses of SSSS plate at aspect ratio of b/a = 1.0 and a/t=100. 

Scholars Theories w 𝛔𝐱̅̅ ̅ 𝛔𝐲̅̅ ̅ 𝛕𝐱𝐲̅̅ ̅̅  𝛕𝐱𝐳̅̅ ̅̅  

Present Study 
3D exact plate theory 

(trigonometric) 
3.8314 0.3536 0.3536 -0.1503 0.2255 

Pagno (1970) [P] Elasticity plate theory - - - - - 

Ibearugbulem et al. (2021) [I] 3-D plate theory (Polynomial) 4.3032 0.3971 0.3971 -0.1694 0.2533 

Onyeka et al. (2018) [O] HSDT 4.5203 0.3099 0.3099 -0.1780 0.3802 

Karama et al. (2003) [K] TSDT 4.5460 0.3203 0.3203 -0.1725 0.3909 

Mindlin (1951) [M] FSDT - - - - - 

Kirchhoff (1850) [Kr] CPT 4.5201 0.3203 0.3203 -0.1725 0.3909 

% Difference Average % Difference w 𝛔𝐱̅̅ ̅ 𝛔𝐲̅̅ ̅ 𝛕𝐱𝐲̅̅ ̅̅  𝛕𝐱𝐳̅̅ ̅̅  

%Diff between Present and [P] - - - - - - 

%Diff between Present and [I] 11.02 10.964 10.954 10.954 11.275 10.975 

%Diff between Present and [O] 19.94 15.240 14.101 14.101 15.562 40.689 

%Diff between Present and [K] 18.34 15.719 10.397 10.397 12.870 42.313 

%Diff between Present and [M] - - - - - - 

%Diff between Present and [Kr] 18.24 15.236 10.397 10.397 12.870 42.312 

Table 5. Non dimensional forms of displacement and stresses of SSSS plate at aspect ratio of b/a = 1.0 and a/t=1000. 

Scholars Theories w 𝛔𝐱̅̅ ̅ 𝛔𝐲̅̅ ̅ 𝛕𝐱𝐲̅̅ ̅̅  𝛕𝐱𝐳̅̅ ̅̅  

Present Study 
3D exact plate theory 

(trigonometric) 
3.8314 0.3537 0.3537 -0.1504 0.2257 

Pagno (1970) [P] Elasticity plate theory - - - - - 

Ibearugbulem et al. (2021) [I] 3-D plate theory (Polynomial) 4.3021 0.3971 0.3971 -0.1694 0.2534 

Onyeka et al. (2018) [O] HSDT 4.5178 0.3099 0.3099 -0.1780 0.3802 

Karama et al. (2003) [K] TSDT 4.5435 0.3099 0.3099 -0.1780 0.3802 

Mindlin (1951) [M] FSDT - - - - - 

Kirchhoff (1850) [Kr] CPT 4.5201 0.3099 0.3099 -0.1790 0.0000 
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% Difference Average % Difference w 𝛔𝐱̅̅ ̅ 𝛔𝐲̅̅ ̅ 𝛕𝐱𝐲̅̅ ̅̅  𝛕𝐱𝐳̅̅ ̅̅  

%Diff between Present and [P] - - - - - - 

%Diff between Present and [I] 6.76 10.941 0.3537 0.3537 11.216 10.931 

%Diff between Present and [O] 14.41 15.193 0.3537 0.3537 15.506 40.637 

%Diff between Present and [K] 14.50 15.673 0.3537 0.3537 15.506 40.637 

%Diff between Present and [M] - - - - - - 

%Diff between Present and [Kr] 26.38 15.236 0.3537 0.3537 15.978 100 

Table 6. Percentage difference summary of a rectangular square plate at varying span-depth ratio (a/t) from present and past studies. 
 

 %𝑫𝒊𝒇𝒇 =  
𝑨𝒃𝒔𝒐𝒍𝒖𝒕𝒆 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒃𝒆𝒕𝒘𝒆𝒆 𝒑𝒓𝒆𝒔𝒆𝒏𝒕 𝒂𝒏𝒅 𝒑𝒂𝒔𝒓 𝒗𝒂𝒍𝒖𝒆

𝑷𝒂𝒔𝒕 𝒗𝒂𝒍𝒖𝒆
 

Span-to depth 

ratio (a/t) 

%Diff between 

Present and P 

%Diff between 

Present and I 

%Diff between 

Present and O 

%Diff between 

Present and K 

%Diff between 

Present and M 

%Diff between 

Present and Kr 

4 16.10 6.80 22.40 21.51 27.14 29.19 

10 18.25 4.08 24.69 18.66 22.20 27.73 

100 - 11.02 19.94 18.34 - 18.24 

1000 - 6.76 14.41 14.50 - 26.38 

Average % 

Difference 
17.18 7.17 20.36 18.25 24.67 25.39 

Total % 

Difference 

12.18 21.09 25.39 

19.55 

5- Conclusion  

The analytical solution of the work presents an application of a three-dimensional static plate theory on the elastic 

bending of simply supported isotropic rectangular plate carrying a uniformly distributed load by developing an exact 

trigonometric displacement function. The processes involved in the formulation of kinematics relations and three-

dimensional constitutive relations using the elastic static theory of isotropic plate. The strain energy and external work 

done on the plate, the total potential energy equation of a thick rectangular plate using energy expression was developed 

from the 3-D constitutive relations and kinematic deformation. The energy equation which is later transformed into the 

equilibrium equation in terms of compatibility equations to determine the relation between the rotation and deflection. 

The governing equations were derived and solved in terms of trigonometric and polynomial shape function to get the 

exact deflection function. Thereafter, the total potential energy equation was minimized using the function of rotation 

and deflection to obtain their coefficient and stresses in the plate. 

The numerical solution was presented and result comparison of the calculated stress and deflection values obtained 

showed that the classical theory and 2-D refined plate theories are quite coarse for thick plate analysis. CPT and RPT 

under-predict displacements, stresses and bending loads within the engineering admissible error (5%) in relatively thick 

plates with span to thickness ratios within 4 and 10. It is concluded that the typical three-dimensional bending equation 

using trigonometric displacement functions developed to produce an exact solution and are therefore recommended for 

more efficient analysis of thick plate. Also, the stress obtained by this theory accomplished a decent distribution of the 

transverse shear through the thickness of the plate and satisfies the zero surface stress condition for an isotropic 

rectangular plate. The resultant displacement and stresses obtained by present work using trigonometric shear 

deformation theory agreed well with those of refined plate theory, but varied more with value of the CPT. This validates 

the efficacy of the present theory in the thick plate analysis. Thus, the partial change in the state and form of governing 

equations SSSS boundary conditions obtained are compatible and can be used with certainty in the analysis any category 

of rectangular plates. 
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