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Abstract 

The daily fluctuations in the released number of Covid-19 cases played a big role at the beginning 
of the pandemic, when local authorities in Italy had to decide whether imposing restrictive policies. 

When an increase/decrease was communicated, especially a large one, it was difficult to 

understand if it was due to a change in the epidemic evolution or if it was a fluctuation due to other 

reasons, such as an increase in the number of swabs or a delay in the swab processing. The aim of 

this paper is both to model the main trend of the outbreak evolution in the number of confirmed 

cases and to describe the daily fluctuations strongly dependent on the daily number of swabs. For 
our analysis, we propose a nonlinear asymmetric diffusion model, which includes information on 

the daily number of swabs, to describe daily fluctuations in the number of confirmed cases in 

addition to the main trend of the outbreak evolution. The proposed model is found to be the more 
efficient for prediction, as compared to 6 already existing models, including the SIRD and the 

logistic models. The new model combines the properties of innovation diffusion models with a 

parsimonious way to exploit information about swabs. 
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1- Introduction 

Italy was the first nation to be heavily affected by Covid-19 after China, and the epidemic has mainly been located 

in Nothern Italy. The first case was detected on February 21st, 2020, in the municipality of Vo’, a village near Padua in 

the Veneto Region of Northeast Italy. On the same day, an infected patient was detected in the small town of Codogno, 

which is located in the bordering Lombardy region. From that time on, the epidemic followed a completely different 

evolution in the two regions, and it quickly spread in northern Italy. 

In Veneto, the local authorities imposed a lockdown on the whole municipality for two weeks; both at the beginning 

and at the end of the two weeks, the population was tested for the virus through nasopharyngeal swabs, and this approach 

gave rise to the first epidemiological survey on Covid-19 for understanding its transmission dynamics [1]. Moreover, 

the hospital where the first diagnosis occurred was closed, and people who had previously accessed the facility were 

tested. 

Among the Italian regions, Lombardy is the most affected by the epidemic, with a death toll three times greater than 

that in China [2]. It is apparent that, in Italy, the regional autonomy regarding health policy has resulted in services with 

different levels of quality [2], such as the number of beds and the capacity of processing swabs. With regard to the 

number of beds in Italy, the forecasts of hospitalisations was faced by Gregori et al. [3] for the Veneto region, while 

Farcomeni et al. [4] modeled the intensive care unit occupancy. 
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The capacity of processing swabs is of particular importance for detecting the state of the epidemic, measuring the 

lockdown effects and, most importantly, reducing the outbreak. In fact, only a swab outcome enacts the procedure to 

eventually isolate the infected individual together with his/her close contacts. Consistent delays in this process will lead 

to failure in controlling the outbreak. Moreover, public attention is focused every day on the released number of 

confirmed cases as a measure of the state of the epidemic, especially at the beginning of the outbreak and during the 

lockdown to evaluate its effect. When an increase/decrease is communicated, especially a large one, it is not easy to 

understand if it is due to a change in the epidemic evolution or if it is a fluctuation due to other reasons, such as delays 

in the swab process or in the laboratory organization. The effect, however, is relevant both to public opinion, spreading 

inaccurate optimistic/pessimistic views of the situation, and to authorities who must decide whether to adopt restrictions 

and at which level. 

Our opinion is that it is necessary to include the number of swabs to describe the local fluctuations in the epidemic 

evolution in addition to detecting the main trend. To the best of our knowledge, only a few models are present in literature 

with this characteristic. In fact, at the beginning of the outbreak, the curve of confirmed cases was usually modeled 

through an exponential [5] or a logistic growth model [6, 7]. When the data collection window became long enough, the 

models were usually of two types: the compartmental and ARIMA models. The compartmental models represent the 

more blooming field of research and are based on modeling the infection, recovery and mortality rates by using the times 

series of the actually positive, recovered and dead cases [1, 8-16]. A review on the epidemic models used for the COVID-

19 epidemic is presented by Xiang et al. [17]. 

In the field of spatial statistics, Guliyev [18] contributed a spatial panel data model on confirmed, recovered and dead 

cases. Bartolucci and Farcomeni [19] proposed a space-temporal model for the weekly number of positives, where the 

number of swabs is used as an offset. Meanwhile, Benvenuto et al. [20] and Chintalapudi et al. [21] represent two 

contributions based on an ARIMA model. 

Triacca and Triacca [22] proposed a log-polynomial model for the ratio between the daily new diagnosed cases and 

the number of swabs, with a forecasting aim: in particular, the model overcame an ARIMA model in terms of forecasting 

accuracy especially for a 1-step-ahead horizon. Such an approach is thus useful for very short-term predictions, but it 

does not allow to model the global cycle of the pandemic diffusion. 

In this paper, we made an effort to describe the cumulative number of confirmed cases in the five most affected 

Italian regions, based on the combination of a nonlinear model and the number of completed swabs. In the class of 

growth models, aimed at describing a diffusion cycle, we propose a new version of the dynamic potential model [23], 

where the novelty consists of the formulation of a new intervention function with the number of daily swabs as an 

explanatory variable. The model is particularly parsimonious since the intervention function has only one additional 

parameter. The base of the dynamic potential model was chosen since a) it has an asymmetric shape and makes it possible 

to model a ‘saddle’, which is a rather common nonlinear pattern; b) it gives an estimate of the total number of confirmed 

cases at the end of the epidemic; and c) the total number of confirmed cases is not fixed throughout the outbreak, but it 

is allowed to change over time. Since the capability of processing swabs increased over time and, consequently, the 

meeting criteria for people for being tested were enlarged with the aim of detecting a larger number of asymptomatic 

positive subjects, it is sensible to suppose that the number of diagnosed cases increases with time. 

The proposed model was compared, in each region, with five alternative growth models: the logistic model was used 

as a benchmark; the Generalized Bass model [24], eventually including a parameter accounting for asymmetry [25], with 

fixed market potential; and the classic dynamic potential model [23], eventually including a seasonal component [26]. 

Moreover, a SIRD model was used as a second benchmark by summing the predictions of actually positive, recovered 

and dead cases. Three-week forecasts of the spreading dynamics were provided for each model as well. The models were 

compared in terms of 𝑅2 and BIC values, for the cumulative values. The squared linear correlation coefficient between 

observed and fitted daily values was evaluated as well. 

The rest of the paper proceeds as follows: In Section 2, we provide a description of the available data. In Section 3, 

we describe the proposed model and the 6 competing models. The results obtained in the 5 Italian regions are illustrated 

in Section 4. Some concluding remarks follow in Section 5. 

2- Data 

 The data of the five Italian regions most affected by the epidemic, namely Veneto, Lombardy, Piedmont, Tuscany 

and Emilia–Romagna, were downloaded from the Italian Civil Protection Department website [27]. The data collection 

period was from the 24th of February to the 3rd of May 2020, which is the last day before the so–called Phase 2, when 

the lockdown was partially removed. For each day, the data consist of currently infected patients, both hospitalised or 

home isolated, cumulated recovered people, cumulated deaths, the total number of confirmed cases, which is given by 

the sum of the latter three components, and the cumulative number of swabs. 
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Official data before the 24th of February are not available, but the first infected people were detected on the 21st of 

February in both Veneto and Lombardy. Since the first days are important to correctly estimate the spread of an epidemic, 

for the latter regions we integrated the official dataset with information released by the newspapers and/or the official 

websites of the Regions about cases for the 21st to 23rd of February. 

The reconstruction of the number of swabs in Lombardy for the first three days was facilitated by the Region press 

release on the 21st of February [28] and by the news article of [29] on the 23rd; the value of the 22nd was imputed 

through their mean. For the Veneto region, the imputation was subjectively fixed at 200, 700 and 1500 for days 21–23, 

respectively. Moreover, the swab time series were cleaned since the cumulative values were not nondecreasing. This 

happened on the 25th of February for Lombardy, and the imputation was made by the average of the former and latter 

values. For Emilia-Romagna, there was an analogous problem for the 28th to 30th of March, and the imputation was 

performed based on the information released in [30, 31]. 

Figure 1 shows the daily number of confirmed cases in the five regions. The diffusion process peaked around the 

second half of March in the regions where the epidemic started: Lombardy, Veneto and Emilia-Romagna. First, it is 

worth noting the peculiarity of the epidemic in Lombardy, as the spread was much greater than in the other regions. 

What is common is that the shape of the spread was asymmetric with a faster increase and a much slower decrease. 

Piedmont has a different peculiarity, with a rather flat spread in the second part of April because this region encountered 

problems with taking and processing the swabs. 

 

Figure 1. Daily number of confirmed Covid–19 cases in the five Italian regions. 

The capability of each region in processing swabs changed over time. Initially, swabs were essentially performed 

only on symptomatic patients and their strict contacts. Some regions, however, quickly increased their capability to 

process swabs, and asymptomatic cases could be detected and isolated as well. Since only people with a positive swab 

can be officially recorded as infected, and as many infected people do not show symptoms, a large number of swabs is 

a prerequisite for diagnosis: the more swabs taken, the more cases found. The relationship between confirmed cases and 

the number of swabs is shown in Figure 5, with daily values. The fluctuations in the number of confirmed cases depend, 

to a certain extent, on the number of swabs processed, and for some regions, such as Lombardy, Veneto and Tuscany, 

the data show an almost regular weekly pattern, due perhaps to the organisation of the laboratories. 

Figure 2 depicts, for each region, the number of currently infected, cumulated recovered people and cumulated deaths. 

Fitted values obtained with the SIRD model are also plotted (for details, see Section 4). 
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(a) Veneto   (b) Lombardy  

  

(c) Piedmont    (d) Tuscany 

 

(e) Emilia-Romagna 

Figure 2. Data and forecasts based on the SIRD model (12) in the five regions. Left 𝒚 −axis: daily number of confirmed 

cases. Right 𝒚 −axis: number of infected (I), recovered (R) and dead (D). Solid lines correspond to fitted values. 

3- Research Methodology 

A general diffusion of innovations model can be defined through a nonlinear regression model as follows:  

𝑦(𝑡) = 𝑧(𝑡, 𝜗) + 𝜀(𝑡),   (1) 

where 𝑦(𝑡) are the cumulative sales of a product at time 𝑡 and 𝑧(𝑡, 𝜗) = 𝑧(𝑡) is a specific structure to be used to describe 

an evolution process. Here, 𝜀𝑡 are assumed to be i.i.d. Gaussian with variance 𝜎2. The components of the parameter 

vector 𝜗 are jointly estimated using nonlinear least squares (or, equivalently, likelihood estimation). 

In this paper, we will compare the performance of alternative evolution structures. The basic model is a logistic one 

(LOG):  

𝑧(𝑡) = 𝑚
𝑒
𝑡−𝜆
𝜂

1+𝑒
𝑡−𝜆
𝜂

,  (2) 

where 𝜆 is the mode, median and average of the distribution, while 𝜂 is a shape parameter. Parameter 𝑚 is the market 

potential, which is the limiting value for 𝑧(𝑡), as 𝑡 goes to infinity. 
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The Generalized Bass Model [24] is defined starting from the differential equation; 

𝑧′(𝑡) = [𝑝 + 𝑞
𝑧(𝑡)

𝑚
] [𝑚 − 𝑧(𝑡)]𝑤(𝑡).  (3) 

Its solution, for the initial condition 𝑧(0) = 0, is; 

𝑧(𝑡) = 𝑚
1−𝑒−(𝑝+𝑞)∫

𝑡
0 𝑤(𝜏)𝑑𝜏

1+
𝑞

𝑝
𝑒−(𝑝+𝑞)∫

𝑡
0 𝑤(𝜏)𝑑𝜏

,  (4) 

 where 𝑚 is the market potential, 𝑝 is the innovation coefficient, 𝑞 is the imitation coefficient and 𝑤(𝑡) can be any 

integrable function. The effect of the intervention function 𝑤(𝑡) is to accelerate or decrease diffusion with respect to a 

symmetric unimodal path, which would arise in (4) for 𝑤(𝑡) = 1 for all 𝑡 values. For 𝑡 values such as 𝑤(𝑡) > 1 diffusion 

is accelerated, while 𝑤(𝑡) < 1 corresponds to time periods with decreased diffusion speed. Below, we examine the 

model (GBM 𝑅𝐸𝐶𝑇) arising when 𝑤(𝑡) is specified by the so-called rectangular shock:  

𝑤𝑅(𝑡) = 1 + 𝑐𝐼𝑎≤𝑡≤𝑏 .  (5) 

This allows us to describe the diffusion of a product for which we observe a constant shock with intensity 𝑐, either 

positive or negative, in the time interval [𝑎, 𝑏], [32]. 

Due to the asymmetric path observed for almost every region, we also examine a more flexible model from Bemmaor 

[25]:  

𝑧(𝑡) = 𝑚
1−𝑒−(𝑝+𝑞)𝑡

[1+
𝑞

𝑝
𝑒−(𝑝+𝑞)𝑡]𝐴

,  (6) 

where 𝐴 is a further parameter allowing for asymmetry (positive asymmetry for 𝐴 > 1, negative asymmetry for 𝐴 < 1). 

If we insert a rectangular shock into it, we obtain the following model (BeGBM 𝑅𝐸𝐶𝑇):  

𝑧(𝑡) = 𝑚
1−𝑒−(𝑝+𝑞)∫

𝑡
0 𝑤𝑅(𝜏)𝑑𝜏

[1+
𝑞

𝑝
𝑒−(𝑝+𝑞)∫

𝑡
0 𝑤𝑅(𝜏)𝑑𝜏]𝐴

,  (7) 

with function 𝑤𝑅 specified as in Equation 5. 

A different way to provide flexibility to the evolutive structure can be obtained through a dynamic market potential 

model (DMP) [23]:  

𝑧(𝑡) = 𝑚√
1−𝑒−(𝑝𝑐+𝑞𝑐)𝑡

1+
𝑞𝑐
𝑝𝑐
𝑒−(𝑝𝑐+𝑞𝑐)𝑡

1−𝑒−(𝑝+𝑞)𝑡

1+
𝑞

𝑝
𝑒−(𝑝+𝑞)𝑡

,  (8) 

where 𝑝𝑐 and 𝑞𝑐 are two parameters to describe how fast the dynamic market potential approaches its maximum value, 

𝑚. 

Additionally, the DMP can be perturbed by shocks. For a general intervention function, 𝑤(𝑡), we obtain:  

𝑧(𝑡) = 𝑚√
1−𝑒−(𝑝𝑐+𝑞𝑐)𝑡

1+
𝑞𝑐
𝑝𝑐
𝑒−(𝑝𝑐+𝑞𝑐)𝑡

1−𝑒−(𝑝+𝑞)∫
𝑡
0 𝑤(𝜏)𝑑𝜏

1+
𝑞

𝑝
𝑒−(𝑝+𝑞) ∫

𝑡
0 𝑤(𝜏)𝑑𝜏

.  (9) 

If in model Equation 9 we use, as proposed in Guidolin and Guseo [26], the intervention function: 

𝑤𝑠(𝑡) = 1 + 𝛼1cos (
2𝜋𝑡

𝑠
) + 𝛼2sin (

2𝜋𝑡

𝑠
),  (10) 

We allow the model to incorporate cyclic seasonal fluctuations of width 𝛼1 and 𝛼2 with period 𝑠 (DMPseas). 

Table 1. Summary of the models analyzed. 

No. Model Abbreviation Number of parameters List of parameters Equation 

1 Logistic LOG 3 (𝑚, 𝜆, 𝜂) (2) 

2 GBM with rectangular shock GBM 𝑅𝐸𝐶𝑇 6 (𝑚, 𝑝, 𝑞, 𝑎, 𝑏, 𝑐) (4)+(5) 

3 Bemmaor GBM with rectangular shock BeGBM 𝑅𝐸𝐶𝑇 7 (𝑚, 𝑝, 𝑞, 𝑎, 𝑏, 𝑐, 𝐴) (7)+(5) 

4 Dynamic market potential DMP 5 (𝑚, 𝑝𝑐 , 𝑞𝑐, 𝑝, 𝑞) (8) 

5 Dynamic market potential + seasonal effect DMPseas 8 (𝑚, 𝑝𝑐 , 𝑞𝑐, 𝑝, 𝑞, 𝛼1, 𝛼2, 𝑠) (9)+(10) 

6 Dynamic market potential + swabs DMPsw 6 (𝑚, 𝑝𝑐 , 𝑞𝑐, 𝑝, 𝑞, 𝜉) (9)+(11) 

7 Susceptibles, Infectives, Recovered, Deaths SIRD 5 (𝛽, 𝛾, 𝛿, 𝑁, 𝐼0) (12) 
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Here, we propose to assess the usefulness of a dynamic market potential model as in Equation 9, but with an 

intervention function depending upon the number of swabs analyzed at day 𝑡, 𝐵(𝑡) (DMPsw). In particular, we suggest 

using; 

𝑤𝐵(𝑡) = 1 + 𝜉 (
𝐵(𝑡)−𝜇𝐵

𝜎𝐵
),  (11) 

where 𝜇𝐵 and 𝜎𝐵 are the average and the standard deviation, respectively, of the 𝐵(𝑡) values recorded during the 

observation period. It is easy to appreciate that such a structure accelerates, with respect to an underlying trend described 

by a DMP, the number of cases whenever 𝐵(𝑡) exceeds its average, while cases are reduced with a below-average 

number of swabs. 

A further benchmark is proposed in this work with the SIRD model, a compartmental model used for describing and 

predicting the evolution of an infectious disease. Every individual of the population may flow between the compartments 

of ‘Susceptibles’ (𝑆 = 𝑆(𝑡)), ‘Infected’ (𝐼 = 𝐼(𝑡)), ‘Recovered’ (𝑅 = 𝑅(𝑡)) and ‘Deaths’ (𝐷 = 𝐷(𝑡)). We could apply 

this model using the data of currently infected patients (𝐼), cumulated recovered individuals (𝑅) and cumulated deaths 

(𝐷). The forecasts of the confirmed cases are then calculated by summing the forecasts of 𝐼, 𝑅 and 𝐷. 

This model uses the following system of differential equations: 

{
 
 
 
 

 
 
 
 
𝜕𝑆

𝜕𝑡
= −

𝛽𝐼

𝑁
𝑆

𝜕𝐼

𝜕𝑡
=

𝛽𝐼

𝑁
𝑆 − 𝛾𝐼 − 𝛿𝐼

𝜕𝑅

𝜕𝑡
= 𝛾𝐼

𝜕𝐷

𝜕𝑡
= 𝛿𝐼

𝑁 = 𝑆 + 𝐼 + 𝑅 + 𝐷
𝑆(0) = 𝑆0, 𝐼(0) = 𝐼0, 𝑅(0) = 𝑅0, 𝐷(0) = 𝐷0,

  (12) 

where 𝑁 is the population size, while 𝛽, 𝛾, and 𝛿 are the rates of infection, recovery and mortality, respectively. The 

initial conditions 𝑅0 and 𝐷0 correspond to the observed number of recovered and dead individuals on the first day of the 

collection period. In this work, 𝐼0 and 𝑁 are estimated to maximize the fitting, as the goal of this work is to describe and 

predict the evolution of the total number of confirmed cases. The last initial value to be defined is 𝑆0 = 𝑁 − 𝐼0 − 𝑅0 −
𝐷0. The parameter set corresponds to (𝛽, 𝛾, 𝛿, 𝑁, 𝐼0). 

Table 1 proposes a summary of all the models that will be applied in this study, while Figure 3 describes the research 

methodology steps. 

 

Figure 3. Flowchart of the research methodology. 

4- Results and Discussion 

Models of Table 1 were applied to the data of the five considered regions, and forecasts up to May 24th are provided 

(three weeks ahead for each region). The first six models were fitted to the cumulative confirmed cases using NLS 

estimation; asymptotic standard errors and 95% asymptotic marginal confidence intervals (𝑚𝐶𝐼𝑠) are provided. 

The SIRD model was fitted to I, R and D time series, assuming errors to be 𝑖𝑖𝑑 normal distributed, and therefore 

using MLE estimation. 𝑅 was used with the bbmle library [33]. To ensure that 𝛽, 𝛾, 𝛿 estimates lay in (0,1), the model 

was reparametrized using their logit transformations. Moreover, for computational aspects, the natural logarithms of 

both 𝑁 and 𝐼0 were used. Standard errors and 95% profile likelihood 𝑚𝐶𝐼𝑠 (based on inverting a spline fit to the profile 

likelihood) are given. By summing the fitted values of I, R and D, we also obtained the fitted values of the cumulative 

confirmed cases: this is used as a benchmark for evaluating the performance of the proposed models. For each region, 

Figure 2 depicts the evolution of I, R and D on the right 𝑦 −axis and of the daily confirmed cases on the left 𝑦 −axis; 

solid lines correspond to fitted values. 

Table 2 summarizes the values of the determination index 𝑅2 for all models: the huge values of 𝑅2 are unsurprising, 

given that we are working with cumulative data and any S-shaped fitting produces high determination indexes. A 

standard approach advises the use of the 𝑅2 measure for comparative purposes only [34, 35]; we, therefore, provided 

also the BIC (evaluated with cumulative values) and the squared linear correlation coefficient 𝜌2 between observed and 

fitted daily values as well. 
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Table 2. 𝑹𝟐 of the nonlinear models and corresponding BIC (cumulative data as response variable) and squared linear 

correlation coefficient, 𝝆𝟐, between observed instantaneous cases and fitted instantaneous cases. 

  LOG GBM 𝑹𝑬𝑪𝑻 BeGBM 𝑹𝑬𝑪𝑻 DMP DMPseas DMPsw SIRD 

Veneto 

𝑅2 0.996912 0.999785 0.999845 0.999822 0.999825 0.999898 0.987174 

BIC 877.3940 695.9181 675.9767 677.8449 689.2245 641.4728 989.9329 

𝜌2 0.738015 0.796939 0.822816 0.828927 0.834856 0.858459 0.707816 

Lombardy 

𝑅2 0.993010 0.999629 0.999900 0.999834 0.999860 0.999919 0.720144 

BIC 1143.348 941.8574 850.6930 878.7936 879.2002 830.5268 1421.278 

𝜌2 0.593900 0.690817 0.826706 0.803006 0.820098 0.902698 0.328468 

Piedmont 

𝑅2 0.995989 0.999791 0.999831 0.999880 0.999895 0.999905 0.993763 

BIC 908.2256 714.3012 703.6910 671.2378 674.8002 658.7328 947.6302 

𝜌2 0.697338 0.782143 0.794564 0.814390 0.834386 0.843469 0.683373 

Tuscany 

𝑅2 0.996129 0.999432 0.999725 0.999772 0.999792 0.999796 0.991991 

BIC 757.0439 637.2911 591.3882 570.1541 576.5137 566.8199 827.7638 

𝜌2 0.702671 0.728945 0.793943 0.799981 0.842169 0.778397 0.712199 

Emilia– 

Romagna 

𝑅2 0.995195 0.999822 0.999923 0.999776 0.999862 0.999925 0.993920 

BIC 919.6076 701.7807 647.0657 713.4355 692.4212 641.2345 944.5885 

𝜌2 0.741966 0.890328 0.920939 0.907700 0.921988 0.904318 0.796537 

4-1- Veneto 

 The results for Veneto are displayed in Table 2 (𝑅2, BIC and 𝜌2 between observed and fitted daily values), in Tables 

3, A.1–A.6 (for parameter estimates for all the models fitted) and in Figures 2(a) and 4, where observed and fitted daily 

values are plotted. From these results, we can infer that the logistic (Figure 4(a)) and the SIRD (Figure 2(a)) models, 

which both represent two commonly used benchmarks, are not adequate to describe the asymmetrical evolution of the 

epidemic, together with the large fluctuations; in fact, for the Veneto data, 𝑅2 and 𝜌2 values are much lower than 

obtained for the other models; while BIC is larger, confirming their reduced fitting. 

The results in Tables A.2 and A.3 show that a positive (�̂� > 0) rectangular shock is significantly diagnosed both in 

the GBM 𝑅𝐸𝐶𝑇  and the BeGBM 𝑅𝐸𝐶𝑇 . In both cases, the shock denotes an increase in cases with respect to the main trend 

starting around March 5th (𝑡 ≃ 14) and March 9th (𝑡 ≃ 18), respectively, and ending around March 24th (𝑡 ≃ 33) and 

March 25th (𝑡 ≃ 34), respectively. Within these models, the shock has the function of fitting the steep increase in cases 

in the first period of the epidemic. Since the data for Veneto start from February 21st, both shocks end almost exactly 

two weeks later than the lockdown, established on March 8th. This confirms that the lockdown policy was essential in 

reducing the spread of the epidemics, as the incubation period is up to 14 days. The BeGBM 𝑅𝐸𝐶𝑇  suggests that the 

decrease after the peak is much slower than the initial growth (�̂�=2.316> 1), and, for this reason, we expect that the 

subsequent models, which allow for asymmetry too, will also have good performance. 

The DMP model (Figure 4(d) and Table A.4) summarizes the trend of the series well, but the 𝑅2 and the BIC are 

slightly worse than the BeGBM 𝑅𝐸𝐶𝑇 . We also highlight that a good fit with the DMP could not be attained in the early 

phase of the outbreak with a smaller number of observations, while the BeGBM 𝑅𝐸𝐶𝑇 could be correctly identified. 

Among asymmetric models, however, only the DMPseas and DMPsw are able to take into account the fluctuations 

around the main trend. The performance of the DMPseas is very good (𝑅2=0.999825, 𝜌2=0.834856). However, the 

weekly cycle (�̂� = 7.003 days, see Table A.5) in the DMPseas is still partially unsatisfactory because the range of its 

fluctuations is not sufficiently large compared to the range of the observations (Figure 4(e)). Moreover, the high number 

of parameters in the DMPseas penalizes it in terms of BIC (689.2245), whose value is larger than the corresponding 

values for the BeGBM 𝑅𝐸𝐶𝑇  and DMP. 

Results of the fitting discussed up to this point highlight that the large fluctuations cannot be completely described 

only with a shock, nor with a weekly cycle. As highlighted in Section 2, the complete time series with the daily number 

of processed swabs is available. Figure 5(a) shows its values (right 𝑦 −axis) in relation to the number of daily confirmed 

cases (left 𝑦 −axis). We notice the good agreement between the paths of the two series, and the correspondence of their 

peaks suggests that this relationship could be exploited. The DMPsw (Figure 4(f) and Table 3) performs very well. In 

fact, we obtained the largest values for 𝑅2, 0.999898, and 𝜌2, 0.858459, for this model as well as the lowest BIC value, 

641.4728. The latter value, in particular, is reduced by the small number of parameters of this model. Clearly, the strict 

comparison between the BIC of this model and the values obtained for the other models should take into account that, 

in this model, the complete series of processed daily swabs, 𝐵(𝑡), is used as an input to the model. However, this 

information is available, and the performance of the model suggests it is useful for achieving an accurate description. 

These results suggest that the daily number of cases in Veneto followed an asymmetric trend, as modelled by a DMP 

model, but large fluctuations around that trend can be observed as a consequence of different numbers of swabs 
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processed each day. In particular, 𝜉 ≃ 0.469 suggests that the intervention function 𝑤𝐵(𝑡) (11) increases to 1.5 

approximately in a day with a number of swabs equal to 𝜇𝐵 + 𝜎𝐵 (while 𝑤𝐵(𝑡) is equal to 1 in days with average number 

𝜇𝐵 of processed swabs). This means that increasing the number of swabs from 𝜇𝐵 ≃ 5250 to 𝜇𝐵 + 𝜎𝐵 ≃ 8768 will 

result in one and a half more the expected diagnosed cases of that day.* It is important to underline that the forecasts 

displayed in Figure 4(f) have been obtained assuming that the number of swabs processed in the last week will be 

repeated in the subsequent three weeks. Of course, different scenarios could be easily used to simulate the effect of 

swabs of diagnosed cases. 

With the fitted models, we also obtained the estimate of the total number of infected people during the first wave of 

the epidemic, with the information up to May 3rd 2020: that is, 𝑁 for the SIRD model and 𝑚 for the other models. Both 

the LOG and the SIRD models, which are the lower performing models, provided smaller estimates (�̂� = 18270 and 

�̂� = 17586, respectively). The estimates obtained for 𝑚 in the remaining models are very similar, ranging from 19432 

(GBM 𝑅𝐸𝐶𝑇) to 20085 (BeGBM 𝑅𝐸𝐶𝑇). In particular, for the DMPsw model, �̂�=19932. Notice that this model predicts 

1162 (+6.4%) and 1846 (+10%) more cases than the LOG and the SIRD models, respectively. Were the lockdown policy 

of Phase 1 confirmed after May 3rd, the estimate of 𝑚 given by the DMPsw model suggests that Veneto experienced, 

by May 3rd, 92% of all expected cases of the first wave (the total number of cases until May 3rd was 18318). As we 

will notice in the rest of the paper, this is a very high value. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4. Veneto. Observed and fitted values with the alternative models. (a) Logistic (LOG); (b) GBM with rectangular shock 

(GBM 𝑹𝑬𝑪𝑻); (c) Bemmaor GBM with rectangular shock (BeGBM 𝑹𝑬𝑪𝑻); (d) Dynamic market potential (DMP); (e) Dynamic 

market potential+seasonal effect (DMPseas); (f) Dynamic market potential+swabs (DMPsw).  

                                                 
* We remind that 𝜇𝐵 and 𝜎𝐵 values are displayed in Figure 5 for each of the five analysed regions. 
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(a) Veneto: 𝜇𝐵 = 5250.03, 𝜎𝐵 = 3517.83 (b) Lombardy: 𝜇𝐵 = 5704.68, 𝜎𝐵 = 3948.13 

  
(c) Piedmont: 𝜇𝐵 = 2493.72, 𝜎𝐵 = 2169.88 (d) Tuscany: 𝜇𝐵 = 2214.97, 𝜎𝐵 = 1687.47 

 
(e) Emilia-Romagna: 𝜇𝐵 = 2854.01, 𝜎𝐵 = 1975.41 

Figure 5. Daily number of confirmed cases and daily number of swabs processed in the five regions. 𝝁𝑩 and 𝝈𝑩 correspond 

to the average and standard deviation, respectively, of the swab time series (see Equation 11). 

Table 3. Veneto. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the DMPsw (9)+(11). 

Parameter Estimate Standard Error Confidence Interval 

𝑚 19932.21 170.5066 (19591.88, 20272.55) 

𝑝𝑐 0.000321 0.000057 (0.000207, 0.000435) 

𝑞𝑐 0.235024 0.006705 (0.221640, 0.248408) 

𝑝 0.016718 0.004224 (0.008286, 0.025150) 

𝑞 0.033005 0.010126 (0.012794, 0.053216) 

𝜉 0.468809 0.088953 (0.291258, 0.646360) 

4-2- Lombardy 

Lombardy is the Italian region where COVID-19 spread in the most dramatic way. The total number of infected 

people on May 3rd was 77528 with more than 14000 deaths (about half of the death toll up to that date in Italy as a 

whole). The results for Lombardy are displayed in Table 2 (𝑅2, BIC and 𝜌2), in Tables 4, A.7–A.12 (for parameter 

estimates for all the models fitted) and in Figures 2(b) and 6, where observed and fitted daily values are plotted. 
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For this region, the logistic (Figure 6(a)) and SIRD (Figure 2(b)) models are less effective models in describing the 

asymmetrical evolution of the epidemic. For the SIRD model, in particular, a good convergence point could not be 

attained. The results in Tables A.8 and A.9 show that, as observed for Veneto, a positive (�̂� > 0) rectangular shock is 

significantly diagnosed at the beginning of the time series, both in the GBM 𝑅𝐸𝐶𝑇 and the BeGBM 𝑅𝐸𝐶𝑇 . The GBM 𝑅𝐸𝐶𝑇  

estimates the end of the shock on March 25th (𝑡 ≃ 34), but according to Figure 6(b), this is not perfectly matching with 

the data. This is the reason why, for this model, 𝜌2 is particularly small (0.690817).*  

Conversely, the BeGBM 𝑅𝐸𝐶𝑇 better identifies the end of the shock three days later, on March 28th (𝑡 ≃ 37), when 

we observe a relevant stable decrease. For this region, the lockdown policy had a delayed effect compared to what 

happened in Veneto, as the decrease in the number of cases was registered 20 days after March 8th, while the incubation 

period is up to 14 days. One reason for such a wider interval could be possible delays in taking and processing the swabs; 

in fact, the health system of Lombardy experienced an unexpected overload.  

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6. Lombardy. Observed and fitted values with the alternative models. (a) Logistic (LOG); (b) GBM with rectangular 

shock (GBM 𝑹𝑬𝑪𝑻); (c) Bemmaor GBM with rectangular shock (BeGBM 𝑹𝑬𝑪𝑻); (d) Dynamic market potential (DMP); (e) 

Dynamic market potential+seasonal effect (DMPseas); (f) Dynamic market potential+swabs (DMPsw). 

                                                 
* The 𝑅2 is evaluated on cumulative cases, which are the response variable. Since cumulative cases are measured on a much larger scale, discrepancies 

between fitted and observed values are less relevant on the 𝑅2 than they are on the daily values. In this case, the lack-of-fit around the peak heavily 

penalizes the 𝜌2. 
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Table 4. Lombardy. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the DMPsw (9)+(11). 

Parameter Estimate Standard Error Confidence Interval 

𝑚 95017.78 3787.978 (87456.94, 102578.6.) 

𝑝𝑐 0.000460 0.000079 (0.000302, 0.000617) 

𝑞𝑐 0.221508 0.006106 (0.209320, 0.233696) 

𝑝 0.027625 0.002594 (0.022447, 0.032804) 

𝑞 -0.007438 0.008828 (-0.025059, 0.010184) 

𝜉 0.537777 0.050836 (0.436308, 0.639245) 

 

With the DMP model (Figure 6(d) and Table A.10), it is possibile to fully appreciate the asymmetrical shape of the 

outbreak, especially the slow decrease in the number of cases in this region. However, its performance in terms of 𝑅2, 
𝜌2 and BIC is worse than that of the BeGBM 𝑅𝐸𝐶𝑇 . 

The performance of the DMPseas, with a weekly cycle (�̂� = 7.005 days) (Table A.11), is not satisfactory, as it does 

not adequately capture the fluctuations (except for the very end of the series). Here, too, the 𝑅2, 𝜌2 and BIC values are 

worse than those obtained with the BeGBM 𝑅𝐸𝐶𝑇 . 

Finally, the DMPsw (Figure 6(f) and Table 4) performs very well. With this model, we obtained the largest values 

for 𝑅2, 0.999919, and 𝜌2, 0.902698. The BIC value for this model, 830.5628, supports it with respect to the BeGBM 𝑅𝐸𝐶𝑇  

(850.6930), which was the best model up to this point. Figure 5(b) shows the number of swabs (right 𝑦 −axis) in relation 

to daily cases (left 𝑦 −axis). For this region, too, there is a great agreement between the paths of the two series, with 

almost perfect correspondence of their peaks. By comparing panels (a) and (b) of Figure 5, we can appreciate the 

differences in swab policies adopted by Veneto and Lombardy. The latter region, which has about twice the number of 

inhabitants as Veneto, processed on average 5705 swabs each day, which was not much more than the average in Veneto 

(5250), even though Lombardy experienced more than four times the number of officially diagnosed people compared 

to Veneto. We also notice that, for this region 𝜉 ≃ 0.538. The effect of swabs on diagnosed cases is thus larger than 

observed for Veneto. 

The estimates obtained for 𝑚 in BeGBM 𝑅𝐸𝐶𝑇, DMP, DMPseas and DMPsw substantially agree, ranging from 95018 

(DMPsw) to 98723 (DMPseas). As underlined at the beginning of this subsection, the total number of cases until May 

3rd was 77528. The difference between this number and �̂�=95018 of the DMPsw is quite large, confirming that this 

region, by May 3rd, started Phase 2 in a riskier context than Veneto, having experienced only 82% of all expected cases 

of the first wave of the epidemic. 

4-3- Piedmont 

 Piedmont is the Italian region where the peak in diagnosed cases occurred later (see Figure 1), as, at the beginning 

of April, one month after the lockdown, we still observed the highest number of daily cases. This could be due to the 

limited swabbing capacity in the first part of the epidemic, when swabs never exceeded 400 per day (see Figure 5(c)). 

The results for Piedmont are displayed in Table 2 (𝑅2, BIC and 𝜌2), in Tables 5, A.13–A.18 (for parameter estimates 

for all the models fitted) and in Figures 2(c) and 7, where observed and fitted daily values are plotted. 

Also for this region, the logistic (Figure 7(a)) and SIRD (Figure 2(c)) models are the poorest performing models in 

terms of describing the asymmetrical evolution of the epidemic. These models have the lowest 𝑅2 and 𝜌2 values and the 

highest BIC.  

The results in Tables A.14 and A.15 show that here also a positive (�̂� > 0) rectangular shock is significantly 

diagnosed at the beginning of the time series, both in the GBM 𝑅𝐸𝐶𝑇  and the BeGBM 𝑅𝐸𝐶𝑇. The two models provide the 

same estimate for the end of the shock on March 24th (𝑡 ≃ 30), exactly as observed for Veneto. However, after the end 

of shock, the number of daily cases continued to increase, although at a slower rate (see Figure 7(b) and (c)). 

The DMP model (Figure 7(d) and Table A.16) enables describing, without shocks, the bimodal behaviour of this 

time series: the ‘saddle’, which is the slowdown between two relative peaks, is exactly positioned immediately after the 

end of the shocks estimated with the GBM 𝑅𝐸𝐶𝑇 and the BeGBM 𝑅𝐸𝐶𝑇 . If, on the one hand, the lockdown policy had the 

effect of reducing the number of daily cases (saddle after the first peak), on the other hand, the second peak is due to the 

increase in the number of swabs after April 8th, which made it possible to detect more infected people. The DMP for 

this region performs very well (𝑅2=0.99988), with a small BIC value, also due to the parsimony of a model with only 

five parameters. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Piedmont. Observed and fitted values with the alternative models. (a) Logistic (LOG); (b) GBM with rectangular 

shock (GBM 𝑹𝑬𝑪𝑻); (c) Bemmaor GBM with rectangular shock (BeGBM 𝑹𝑬𝑪𝑻); (d) Dynamic market potential (DMP); (e) 

Dynamic market potential+seasonal effect (DMPseas); (f) Dynamic market potential+swabs (DMPsw). 

Table 5. Piedmont. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the DMPsw (9)+(11).  

Parameter Estimate Standard Error Confidence Interval 

𝑚 31620.64 323.5048 (30974.37, 32266.92) 

𝑝𝑐 0.000056 0.000014 (0.000028, 0.000084) 

𝑞𝑐 0.329662 0.013220 (0.303251, 0.356073) 

𝑝 0.003141 0.000416 (0.002310, 0.003972) 

𝑞 0.068384 0.001974 (0.064440, 0.072327) 

𝜉 0.130036 0.035910 (0.058298, 0.201774) 

The DMPseas, with a weekly cycle (�̂� = 7.01 days) (Table A.17), describes the frequency of the fluctuations up to 

the second half of April, with an insufficient amplitude throughout the entire observed period. For this region, however, 

we observe the largest 𝑅2 value among all the previous models, 𝑅2=0.999895, although the BIC value is larger than that 

observed for the simpler DMP. 



Emerging Science Journal | Vol. 5, Special Issue "COVID-19: Emerging Research", 2021 

Page | 49 

The DMPsw (Figure 7(f) and Table 5) provides the largest values for 𝑅2, 0.999905, and 𝜌2, 0.843469. The BIC value 

for this model, 658.7328, supports it with respect to all other examined models. The width of the fluctuations in the 

observed series is not, however, fully described by this model (Figure 7(f)). This is also apparent from the value of 

𝜉=0.13 (Table 5), which is lower compared to the estimates for Veneto (0.469) and Lombardy (0.538). 

The estimates obtained for 𝑚 in GBM 𝑅𝐸𝐶𝑇 , BeGBM 𝑅𝐸𝐶𝑇 , DMP, DMPseas and DMPsw range from 31621 (DMPsw) 

to 34351 (BeGBM 𝑅𝐸𝐶𝑇). Conversely, we obtained �̂� = 28968 for the LOG and �̂� = 28955 for the SIRD; also for this 

region, the LOG and SIRD models predictions are smaller than for other models. The total number of cases until May 

3rd was 27430. By comparing this value to �̂�=31621 of the DMPsw, we notice that this region, by May 3rd, experienced 

87% of all expected cases of the first wave of the epidemic. 

4-4- Tuscany 

 The results for Tuscany are displayed in Table 2 (𝑅2, BIC and 𝜌2), in Tables 6, 7, A.19–A.23 (for parameter 

estimates for all the models fitted) and in Figures 2(d) and 8, where observed and fitted daily values are plotted. 

Also for this region, the logistic (Figure 8(a)) and SIRD (Figure 2(d)) models are the worst performing models in 

describing the asymmetrical evolution of the epidemic. 

The results in Tables A.20 and A.21 show that a positive (�̂� > 0) rectangular shock is significantly diagnosed at the 

beginning of the time series, both in the GBM 𝑅𝐸𝐶𝑇  and the BeGBM 𝑅𝐸𝐶𝑇 . The two models provide the same estimate 

for the end of the shock on March 24th (𝑡 ≃ 29), exactly as observed for Veneto and Piedmont. Notice that here the data 

start on February 25th because Toscana did not report cases earlier than that. Differently from other regions, however, 

for the BeGBM 𝑅𝐸𝐶𝑇  the path is apparently less perturbed by the shock (see Figure 8(c) and �̂� = 0.183 from Table A.21). 

The DMP model (Figure 8(d) and Table A.22) enables effectively describing the asymmetric behaviour of this time 

series without shocks. The 𝑅2 is very high (0.999725), with a small BIC value equal to 570.1541, also due to the 

parsimony of a model with five parameters only. 

The DMPseas, with a weekly cycle (�̂� = 6.982 days) (Table 6), well describes the frequency of the fluctuations and, 

differently from other regions, this model is also able to describe their width (Figure 8(e)). The 𝑅2 is equal to 0.999792, 

although the BIC value is larger than that observed for the simpler DMP. 

Table 6. Tuscany. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the DMPseas (9)+(10).   

Parameter Estimate Standard Error Confidence Interval 

𝑚 10312.24 77.9095 (10156.45, 10468.03) 

𝑝𝑐 0.000360 0.000069 (0.000223, 0.000497) 

𝑞𝑐 0.255746 0.011751 (0.232249, 0.279243) 

𝑝 0.004071 0.000280 (0.003510, 0.004631) 

𝑞 0.076667 0.002802 (0.071064, 0.082269) 

𝑠 6.981769 0.001244 (6.979281, 6.984258) 

𝛼1 0.063085 0.126395 (-0.189658, 0.315828) 

𝛼2 -0.150143 0.063309 (-0.276736, -0.0235492) 

 

The DMPsw (Table 7) returns a value for 𝑅2, 0.999796, slightly larger than that observed for the DMPseas. From 

Figure 8(f), however, we can see that, after the peak, fitted values are almost unaffected by changes in the number of 

daily swabs, 𝐵(𝑡), although this time series shows important variations in time (see Figure 5(d)), and 𝜉 has a large value 

(0.78) compared to other regions. Both the confirmed cases and swab time series exhibit a weekly pattern, probably due 

to the organisation of the swab hubs and laboratories, but since April, data of the two series do not appear to be fully 

synchronized. This consideration probably explains why the 𝜌2 value for the DMPsw model (0.778397) is lower than 

observed for the DMPseas (0.842169). The latter model better recognizes the weekly fluctuations in cases, and the less 

parsimonious model performs better. 

The estimates obtained for 𝑚 in GBM 𝑅𝐸𝐶𝑇 , BeGBM 𝑅𝐸𝐶𝑇 , DMP, DMPseas and DMPsw range from 9948 

(GBM 𝑅𝐸𝐶𝑇) to 10416 (BeGBM 𝑅𝐸𝐶𝑇). The total number of cases until May 3rd was 9563. By comparing this value to 

�̂�=10312 of the DMPseas, we notice that this region, by May 3rd, experienced 92.7% of all expected cases of the first 

wave of the epidemic.  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 8. Tuscany. Observed and fitted values with the alternative models. (a) Logistic (LOG); (b) GBM with rectangular 

shock (GBM 𝑹𝑬𝑪𝑻); (c) Bemmaor GBM with rectangular shock (BeGBM 𝑹𝑬𝑪𝑻); (d) Dynamic market potential (DMP); (e) 

Dynamic market potential+seasonal effect (DMPseas); (f) Dynamic market potential+swabs (DMPsw). 

Table 7. Tuscany. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the DMPsw (9)+(11).   

Parameter Estimate Standard Error Confidence Interval 

𝑚 10078.90 73.32550 (9932.373, 10225.43) 

𝑝𝑐 0.000823 0.000094 (0.000636, 0.001010) 

𝑞𝑐 0.100709 0.003683 (0.093348, 0.108069) 

𝑝 0.218881 0.019900 (0.179115, 0.258647) 

𝑞 -0.021620 0.040863 (-0.103278, 0.060037) 

𝜉 0.780094 0.006011 (0.768081, 0.792107) 
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4-5- Emilia–Romagna 

The results for Emilia–Romagna are displayed in Table 2 (𝑅2, BIC and 𝜌2), in Tables 8, A.24–A.29 (for parameter 

estimates for all the models fitted) and in Figures 2(e) and 9, where observed and fitted daily values are plotted. Also 

for this region, the logistic (Figure 9(a)) and SIRD (Figure 2(e)) models are the worst performing models for describing 

the asymmetrical evolution of the epidemic. 

The results in Tables A.25 and A.26 show that also here a positive (�̂� > 0) rectangular shock is significantly 

diagnosed at the beginning of the time series, both in the GBM 𝑅𝐸𝐶𝑇  and the BeGBM 𝑅𝐸𝐶𝑇. The two models provide the 

same estimate for the end of the shock on March 28th (𝑡 ≃ 34), as observed for Lombardy, which is later than for 

Veneto, Piedmont and Tuscany. If we observe Figures 9(b) and (c), we notice, however, that the fit around the peak is 

not completely satisfactory, as a small decrease in the number of confirmed cases actually occurred a few days earlier 

than predicted by both models. The 𝑅2 for BeGBM 𝑅𝐸𝐶𝑇  is very high (0.999923). 

The DMP model (Figure 9(d) and Table A.27) allows for a partially satisfactory description without shocks of the 

asymmetric behaviour of this time series. The 𝑅2 is equal to 0.999776, and its BIC value and 𝜌2 are worse than for the 

BeGBM 𝑅𝐸𝐶𝑇 (713.4355 and 0.9077, respectively). 

The DMPseas, with a weekly cycle (�̂� = 7.004 days) (Table A.28), is not able to describe the fluctuations (Figure 

9(e)). The 𝑅2 is equal to 0.999862, and the BIC value is larger than observed for the BeGBM 𝑅𝐸𝐶𝑇. 

The DMPsw (Table 8) shows a value for 𝑅2, 0.999925, that is slightly larger than that observed for the BeGBM 𝑅𝐸𝐶𝑇. 

From Figure 9(f), we can see that the fitted values follow the observed data very well, except from the values around 

the peak. This behaviour, already noticed for the GBM R𝐸𝐶𝑇 , is responsible for the low 𝜌2 value, which is equal to 

0.904318, lower than that observed for the DMPseas (0.921988).* Here we obtained 𝜉 ≃ 0.409, a value very similar to 

the estimate obtained for Veneto.  

Table 8. Emilia–Romagna. Estimates, asymptotic standard errors and 𝟗𝟓% mCIs for the parameters of the DMPsw (9)+(11).   

Parameter Estimate Standard Error Confidence Interval 

𝑚 30632.96 896.4504 (28842.10, 32423.83) 

𝑝𝑐 0.000598 0.000097 (0.000404, 0.000791) 

𝑞𝑐 0.196219 0.007415 (0.181406, 0.211033) 

𝑝 0.027356 0.003847 (0.019671, 0.035041) 

𝑞 -0.000321 0.010265 (-0.020827, 0.020185) 

𝜉 0.408953 0.058755 (0.291576, 0.526330) 

The estimates obtained for 𝑚 in the LOG model (25140) and 𝑁 in the SIRD model (24982) are even lower than the 

final observation, 26016, representing the total number of cases until May 3rd. The estimates obtained for 𝑚 in 

GBM 𝑅𝐸𝐶𝑇 , BeGBM 𝑅𝐸𝐶𝑇 , DMP, DMPseas and DMPsw range from 28094 (GBM R𝐸𝐶𝑇) to 33428 (DMP). If we consider 

�̂�=30633 of the DMPsw, we notice that this region, by May 3rd, experienced 84.9% of all expected cases of the first 

wave of the epidemic. 

 

                                                 
* If we remove the observations from 𝑡=27 to 𝑡=33 (around the peak) from the evaluation of 𝜌2 for all the considered models, we obtain the following 

values: 0.715193 for the LOG, 0.879792 for the GBM R𝐸𝐶𝑇, 0.895025 for the BeGBM R𝐸𝐶𝑇, 0.883395 for the DMP, 0.895168 for the DMPseas and 

0.906916 for the DMPsw model.  
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Figure 9. Emilia–Romagna. Observed and fitted values with the alternative models. (a) Logistic (LOG); (b) GBM with 

rectangular shock (GBM 𝑹𝑬𝑪𝑻); (c) Bemmaor GBM with rectangular shock (BeGBM 𝑹𝑬𝑪𝑻); (d) Dynamic market potential 

(DMP); (e) Dynamic market potential+seasonal effect (DMPseas); (f) Dynamic market potential+swabs (DMPsw). 

5- Conclusions 

The aim of this study was to propose a new model to describe the pattern of COVID-19 cases in the five most affected 

Italian regions during the first wave of the epidemic. The new model and alternative existing nonlinear model structures 

are fitted to the available data. 

Our results suggest that the commonly used models, that is, the logistic and SIRD models, are not flexible enough. 

Not only are they incapable of describing fluctuations; they also fail to follow the asymmetric trend typical of all the 

regions: the increase in daily cases has been faster than the decrease observed in the second part of the outbreak. 

In all the analyzed regions, both the GBM 𝑅𝐸𝐶𝑇 and the BeGBM 𝑅𝐸𝐶𝑇  highlight that a positive shock increased the 

number of daily cases in a period starting about two weeks after the first cases and ending around March 24th. From 

these results, we deduce that: i) the first diagnosed cases in a few hospitals of northern Italy at the end of February gave 

rise to a relevant acceleration in the spread of COVID-19 diagnoses after two weeks; ii) the lockdown policy established 
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by the Italian government on March 8th played a fundamental role in reducing the spread of the virus and significantly 

decreasing daily cases two weeks after the start of the lockdown. 

The models that are available in the literature perform quite well in describing the main trend of daily cases. However, 

observations also show significant fluctuations. As highlighted in the introductory section, daily changes have been 

reported by the media and have been the focus throughout the most critical weeks of the outbreak. The available data 

reveal that the pattern of analyzed swabs is often concordant with the pattern of confirmed cases. This is not surprising, 

but the models available in the literature cannot exploit this information. The model proposed here, starting from a trend 

described by a dynamic market potential diffusion model, makes it possible to perturb the trend through an intervention 

function depending on the number of analyzed swabs. The larger the number of swabs with respect to the average, the 

larger the number of predicted daily cases. The proposed model, which is highly parsimonious, is able to describe the 

daily fluctuations in cases very well and proved to be the best of the models analysed here for four of the five regions 

(Veneto, Lombardy, Piedmont and Emilia–Romagna). For the fifth region, Tuscany, the pattern of daily cases exhibits 

a weekly pattern, but it does not correspond to the pattern of the processed swabs. For this region, DMPseas performs 

better in terms of describing the observed data. 

Ahead forecasts have also been evaluated for a period of three weeks. Forecasting is not the aim of this study since 

the final observation corresponds to the last day of complete lockdown. We can, however, use our forecasts as a 

benchmark corresponding to the evaluation of the trend under lockdown for comparison with actual observations 

pertaining to the so-called Phase 2, where many restrictions have been removed. Note that the Italian government 

decided to start Phase 2 simultaneously for all the regions, even though there still were differences among them. By 

comparing the final cumulative value of number of cases with the estimated final number of infected patients in each 

region at the end of the first wave, we observed that, while Veneto and Tuscany reached about 92% of the total number 

number of the expected cases by May 3rd, Piedmont, Emilia–Romagna and Lombardy, in particular, were still facing a 

more critical situation, having experienced, respectively, only 87%, 85% and 82% of all expected cases. 

The proposed structure for the intervention function is quite intuitive, and we highlight that the proposed model could 

also be used to examine the effect on confirmed cases of different swabbing strategies by modifying the number of 

swabs in the intervention function. This is a useful feature to assess the effect of alternative scenarios for swabbing 

strategies. Alternative formulations, with a changepoint to allow for a different effect of standardised swabs before and 

after the changepoint, have also been estimated, but the improvement with respect to the proposed DMPsw model was 

negligible. 
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Appendix I   

This Appendix lists all the parameter estimates for models not included in the main text.  

Table A1. Veneto. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the LOG model (2).  

Parameter Estimate Standard Error Confidence Interval 

𝑚 18270.81 157.9788 (17955.73, 18585.89) 

𝜆 40.55856 0.268768 (40.02252, 41.09460) 

𝜂 8.908960 0.198532 (8.513001, 9.304919) 

Table A2. Veneto. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the GBM 𝑹𝑬𝑪𝑻 (4)+(5).    

Parameter Estimate Standard Error Confidence Interval 

𝑚 19432.00 84.0108 (19264.31, 19599.69) 

𝑝 0.000786 0.00010 (0.000586, 0.000985) 

𝑞 0.086643 0.00111 (0.084428, 0.088858) 

𝑐 0.678511 0.03783 (0.603001, 0.754020) 

𝑎 14.37807 1.89135 (10.60292, 18.15322) 

𝑏 32.88902 0.32947 (32.23139, 33.54665) 

Table A3. Veneto. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the BeGBM 𝑹𝑬𝑪𝑻 (7)+(5).  

Parameter Estimate Standard Error Confidence Interval 

𝑚 20084.50 169.5056 (19746.07, 20422.93) 

𝑝 0.007073 0.003246 (0.000592, 0.013555) 

𝑞 0.063168 0.006442 (0.050305, 0.076030) 

𝑐 0.321913 0.066829 (0.188485, 0.455342) 

𝑎 18.00000 2.144826 (13.71772, 22.28228) 

𝑏 33.65430 0.503203 (32.64960, 34.65896) 

𝐴 2.315594 0.617207 (1.083300, 3.547888) 

Table A4. Veneto. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the DMP (8).  

Parameter Estimate Standard Error Confidence Interval 

𝑚 20031.83 153.4688 (19725.59, 20338.07) 

𝑝𝑐 0.000506 0.000079 (0.000349, 0.000663) 

𝑞𝑐 0.219903 0.009433 (0.201080, 0.238726) 

𝑝 0.003534 0.000236 (0.003062, 0.004005) 

𝑞 0.071518 0.002504 (0.066522, 0.076514) 

Table A5. Veneto. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the DMPseas (9)+(10). 

Parameter Estimate Standard Error Confidence Interval 

𝑚 20035.56 155.7882 (19724.43, 20346.69) 

𝑝𝑐 0.000503 0.000079 (0.000345, 0.000661) 

𝑞𝑐 0.220037 0.009527 (0.201010, 0.239064) 

𝑝 0.003513 0.000239 (0.003035, 0.003991) 

𝑞 0.071512 0.002534 (0.066451, 0.076574) 

𝑠 7.003457 0.002538 (6.998389, 7.008525) 

𝛼1 0.010361 0.116495 (-0.222295, 0.243017) 

𝛼2 0.067384 0.058376 (-0.049201, 0.183969) 
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Table A6. Veneto. Estimates, asymptotic standard errors, and 95% profile likelihood mCIs for the parameters of the SIRD 

model (12).  

Parameter Estimate Standard Error Confidence Interval 

𝑙𝑜𝑔𝑖𝑡(𝛽) -1.627417 0.006810 (-1.665249, -1.592545) 

𝑙𝑜𝑔𝑖𝑡(𝛾) -3.972993 0.013783 (-4.033721, -3.913078) 

𝑙𝑜𝑔𝑖𝑡(𝛿) -5.547785 0.009624 (-5.566849, -5.528453) 

ln(𝑁) 9.774865 0.007822 (9.748010, 9.802344) 

ln(𝐼0) 4.536530 0.030909 (4.365557, 4.719183) 

Table A7. Lombardy. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the LOG model (2).   

Parameter Estimate Standard Error Confidence Interval 

𝑚 75187.57 910.6877 (73371.26, 77003.88) 

𝜆 37.93709 0.400709 (37.13791, 38.73628) 

𝜂 9.313397 0.301700 (8.711676, 9.915118) 

Table A8. Lombardy. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the GBM 𝑹𝑬𝑪𝑻 (4)+(5).  

Parameter Estimate Standard Error Confidence Interval 

𝑚 87337.71 897.5725 (85546.15, 89129.27) 

𝑝 0.001095 0.000195 (0.000706, 0.001485) 

𝑞 0.061445 0.001594 (0.058263, 0.064627) 

𝑐 1.080260 0.059873 (0.960753, 1.199768) 

𝑎 11.30640 1.993151 (7.328054, 15.28474) 

𝑏 33.89623 0.292434 (33.31253, 34.47994) 

Table A9. Lombardy. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the BeGBM 𝑹𝑬𝑪𝑻 (7)+(5).  

Parameter Estimate Standard Error Confidence Interval 

𝑚 97365.72 1037.772 (95293.75, 99437.70) 

𝑝 0.038627 0.000925 (0.036781, 0.040473) 

𝑞 2.5 × 10−6 1.2 × 10−7 (2.2× 10−6, 2.7× 10−6) 

𝑐 0.554140 0.027383 (0.499468, 0.608813) 

𝑎 13.87466 1.035562 (11.80710, 15.94221) 

𝑏 36.77908 0.245369 (36.28918, 37.26897) 

𝐴 79263.48 0.001628 (79263.48, 79263.48) 

Table A10. Lombardy. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the DMP (8).  

Parameter Estimate Standard Error Confidence Interval 

𝑚 95623.52 2549.990 (90535.09, 100711.9) 

𝑝𝑐 0.002288 0.000110 (0.002069, 0.002508) 

𝑞𝑐 0.050407 0.003498 (0.043427, 0.057388) 

𝑝 0.002026 0.000116 (0.001795, 0.002258) 

𝑞 0.172654 0.004251 (0.164171, 0.181138) 

Table A11. Lombardy. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the DMPseas (9)+(10).   

Parameter Estimate Standard Error Confidence Interval 

𝑚 98722.82 2341.256 (94047.01, 103398.6) 

𝑝𝑐 0.000322 0.000029 (0.000264, 0.000380) 

𝑞𝑐 0.231578 0.004859 (0.221874, 0.241282) 

𝑝 0.008156 0.000262 (0.007632, 0.008681) 

𝑞 0.032693 0.002793 (0.027116, 0.038270) 

𝑠 7.004860 0.001356 (7.002152, 7.007570) 

𝛼1 0.017993 0.121406 (-0.224471, 0.260458) 

𝛼2 0.125291 0.060556 (0.004353, 0.246230) 
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Table A12. Lombardy. Estimates, asymptotic standard errors, and 95% profile likelihood mCIs for the parameters of the 

SIRD model (12).  

Parameter Estimate Standard Error Confidence Interval 

𝑙𝑜𝑔𝑖𝑡(𝛽) -0.847112 0.004575 (-0.902256, -0.783506) 

𝑙𝑜𝑔𝑖𝑡(𝛾) -3.566582 0.019616 (-3.641281, -3.495745) 

𝑙𝑜𝑔𝑖𝑡(𝛿) -4.107745 0.013836 (-4.182120, -4.037120) 

ln(𝑁) 10.705627 0.015777 (10.68429, 10.72949) 

ln(𝐼0) 4.221095 0.019883 (3.941377, 4.461812) 

Table A13. Piedmont. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the LOG model (2). 

Parameter Estimate Standard Error Confidence Interval 

𝑚 28967.83 459.1435 (28051.38, 29884.29) 

𝜆 45.67634 0.450381 (44.77738, 46.57531) 

𝜂 9.883935 0.267825 (9.349354, 10.41852) 

Table A14. Piedmont. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the GBM 𝑹𝑬𝑪𝑻 (4)+(5).  

Parameter Estimate Standard Error Confidence Interval 

𝑚 31941.45 217.2889 (31507.37, 32375.54) 

𝑝 0.000272 0.000110 (0.000052, 0.000493) 

𝑞 0.081491 0.000917 (0.079659, 0.083323) 

𝑐 1.223254 0.081881 (1.059678, 1.386829) 

𝑎 12.00000 3.486412 (5.035091, 18.96491) 

𝑏 29.76552 0.275815 (29.21451, 30.31652) 

Table A15. Piedmont. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the BeGBM 𝑹𝑬𝑪𝑻 (7)+(5).  

Parameter Estimate Standard Error Confidence Interval 

𝑚 34351.47 773.2607 (32806.23, 35896.71) 

𝑝 0.002377 0.001419 (-0.000460, 0.005213) 

𝑞 0.060533 0.005707 (0.049129, 0.071937) 

𝑐 0.830728 0.112215 (0.606484, 1.054971) 

𝑎 11.24809 5.389364 (0.478300, 22.01787) 

𝑏 29.53243 0.317684 (28.89759, 30.16727) 

𝐴 1.910752 0.404683 (1.102058, 2.719447) 

Table A16. Piedmont. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the DMP (8). 

Parameter Estimate Standard Error Confidence Interval 

𝑚 32979.56 244.2301 (32491.80, 33467.32) 

𝑝𝑐 0.000042 0.000014 (0.000013, 0.000070) 

𝑞𝑐 0.356498 0.016712 (0.323121, 0.389875) 

𝑝 0.001946 0.000043 (0.001861, 0.002031) 

𝑞 0.073422 0.001021 (0.071384, 0.075461) 

Table A17. Piedmont. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the DMPseas (9)+(10). 

Parameter Estimate Standard Error Confidence Interval 

𝑚 33005.60 236.0270 (32533.80, 33477.40) 

𝑝𝑐 0.000042 0.000014 (0.000014, 0.000069) 

𝑞𝑐 0.356128 0.015956 (0.324233, 0.388024) 

𝑝 0.001925 0.000042 (0.001842, 0.002008) 

𝑞 0.073395 0.000981 (0.071433, 0.075356) 

𝑠 7.009690 0.000894 (7.007900, 7.011470) 

𝛼1 0.035228 0.074368 (-0.113432, 0.183887) 

𝛼2 0.108353 0.037278 (0.033835, 0.182870) 
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Table A18. Piedmont. Estimates, asymptotic standard errors, and 95% profile likelihood mCIs for the parameters of the 

SIRD model (12).  

Parameter Estimate Standard Error Confidence Interval 

𝑙𝑜𝑔𝑖𝑡(𝛽) -1.945829 0.007838 (-1.997635, -1.893736) 

𝑙𝑜𝑔𝑖𝑡(𝛾) -4.228805 0.019824 (-4.279535, -4.181564) 

𝑙𝑜𝑔𝑖𝑡(𝛿) -4.958486 0.015567 (-4.991483, -4.924573) 

ln(𝑁) 10.273504 0.010933 (10.23877, 10.30958) 

ln(𝐼0) 5.647353 0.032546 (5.444469, 5.839862) 

Table A19. Tuscany. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the LOG model (2).  

Parameter Estimate Standard Error Confidence Interval 

𝑚 9438.855 87.63859 (9263.879, 9613.831) 

𝜆 37.18838 0.275616 (36.63810, 37.73867) 

𝜂 8.152733 0.209458 (7.734544, 8.570929) 

Table A20. Tuscany. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the GBM 𝑹𝑬𝑪𝑻 (4)+(5).  

Parameter Estimate Standard Error Confidence Interval 

𝑚 9947.536 60.19960 (9827.236, 10067.84) 

𝑝 0.000540 0.000325 (-0.000109, 0.001190) 

𝑞 0.096809 0.001909 (0.092995, 0.100624) 

𝑐 0.824558 0.087759 (0.649185, 0.999930) 

𝑎 10.00000 6.341729 (-2.672935, 22.67294) 

𝑏 28.88851 0.475589 (27.93812, 29.83890) 

Table A21. Tuscany. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the BeGBM 𝑹𝑬𝑪𝑻 (7)+(5).  

Parameter Estimate Standard Error Confidence Interval 

𝑚 10415.94 103.1553 (10209.74, 10622.14) 

𝑝 0.032542 0.024590 (-0.016614, 0.081697) 

𝑞 0.037256 0.028109 (-0.018933, 0.093446) 

𝑐 0.183372 0.079073 (0.025308, 0.341437) 

𝑎 17.00000 3.601708 (9.800288, 24.19971) 

𝑏 28.62989 1.187345 (26.25642, 31.00336) 

𝐴 9.756513 12.00014 (-14.23142, 33.74445) 

Table A22. Tuscany. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the DMP (8).  

Parameter Estimate Standard Error Confidence Interval 

𝑚 10314.79 79.90432 (10155.17, 10474.42) 

𝑝𝑐 0.000357 0.000069 (0.000218, 0.000495) 

𝑞𝑐 0.256022 0.011975 (0.232100, 0.279944) 

𝑝 0.004027 0.000281 (0.003466, 0.004588) 

𝑞 0.076682 0.002860 (0.070968, 0.082397) 

Table A23. Tuscany. Estimates, asymptotic standard errors, and 𝟗𝟓% profile likelihood mCIs for the parameters of the 

SIRD model (12).  

Parameter Estimate Standard Error Confidence Interval 

𝑙𝑜𝑔𝑖𝑡(𝛽) -1.665359 0.007469 (-1.706638, -1.625033) 

𝑙𝑜𝑔𝑖𝑡(𝛾) -4.537731 0.020362 (-4.615783, -4.464222) 

𝑙𝑜𝑔𝑖𝑡(𝛿) -5.494510 0.012242 (-5.518653, -5.470009) 

ln(𝑁) 9.121444 0.007859 (9.098362, 9.144408) 

ln(𝐼0) 4.003009 0.032816 (3.821543, 4.185668) 
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Table A24. Emilia–Romagna. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the LOG model (2). 

Parameter Estimate Standard Error Confidence Interval 

𝑚 25140.07 239.2999 (24662.43, 25617.72) 

𝜆 35.70744 0.299284 (35.11007, 36.30482) 

𝜂 8.407013 0.231781 (7.944376, 8.869650) 

Table A25. Emilia–Romagna. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the GBM 𝑹𝑬𝑪𝑻 

(4)+(5).    

Parameter Estimate Standard Error Confidence Interval 

𝑚 28094.29 167.1121 (27760.44, 28428.13) 

𝑝 0.000649 0.000170 (0.000310, 0.000988) 

𝑞 0.072118 0.001362 (0.069398, 0.074839) 

𝑐 0.953871 0.043847 (0.866278, 1.041465) 

𝑎 3.846772 3.004815 (-2.156035, 9.849580) 

𝑏 33.56896 0.208713 (33.15201, 33.98591) 

Table A26. Emilia–Romagna. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the BeGBM 𝑹𝑬𝑪𝑻 

(7)+(5).   

Parameter Estimate Standard Error Confidence Interval 

𝑚 29493.66 202.3006 (29089.39, 29897.92) 

𝑝 0.030181 0.006000 (0.018191, 0.042172) 

𝑞 0.022991 0.007126 (0.008750, 0.037233) 

𝑐 0.498745 0.024778 (0.449231, 0.548259) 

𝑎 21.73994 0.428230 (20.88419, 22.59569) 

𝑏 34.45871 0.245910 (33.96729, 34.95012) 

𝐴 8.480216 3.603653 (1.278889, 15.68154) 

Table A27. Emilia–Romagna. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the DMP (8).  

Parameter Estimate Standard Error Confidence Interval 

𝑚 33428.13 2289.969 (28854.75, 38001.51) 

𝑝𝑐 0.003860 0.000198 (0.003465, 0.004256) 

𝑞𝑐 0.037270 0.007561 (0.022170, 0.052370) 

𝑝 0.002106 0.000113 (0.001881, 0.002331) 

𝑞 0.161587 0.003967 (0.153665, 0.169510) 

Table A28. Emilia–Romagna. Estimates, asymptotic standard errors and 95% mCIs for the parameters of the DMPseas 

(9)+(10). 

Parameter Estimate Standard Error Confidence Interval 

𝑚 32126.98 880.8021 (30366.29, 33887.68) 

𝑝𝑐 0.000338 0.000029 (0.000281, 0.000395) 

𝑞𝑐 0.221433 0.003769 (0.213899, 0.228967) 

𝑝 0.010660 0.000521 (0.009619, 0.011700) 

𝑞 0.030346 0.004154 (0.022043, 0.038650) 

𝑠 7.004196 0.001743 (7.000712, 7.007680) 

𝛼1 0.111676 0.132367 (-0.152921, 0.376274) 

𝛼2 -0.010882 0.066052 (-0.142918, 0.121154) 
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Table A29. Emilia–Romagna. Estimates, asymptotic standard errors, and 95% profile likelihood mCIs for the parameters 

of the SIRD model (12).  

Parameter Estimate Standard Error Confidence Interval 

𝑙𝑜𝑔𝑖𝑡(𝛽) -1.622630 0.008520 (-1.66412, -1.582144) 

𝑙𝑜𝑔𝑖𝑡(𝛾) -3.994620 0.016080 (-4.05168, -3.939858) 

𝑙𝑜𝑔𝑖𝑡(𝛿) -4.846019 0.020229 (-4.88889, -4.804116) 

ln(𝑁) 10.12591 0.009268 (10.09949, 10.15281) 

ln(𝐼0) 5.388645 0.035762 (5.21357, 5.562004) 

 

  

 

 


