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Abstract 

There are many types of skewed distribution, one of which is the lognormal distribution that is 
positively skewed and may contain true zero values. The coefficient of quartile variation is a 
statistical tool used to measure the dispersion of skewed and kurtosis data. The purpose of this 
study is to establish confidence and credible intervals for the coefficient of quartile variation of a 
zero-inflated lognormal distribution. The proposed approaches are based on the concepts of the 
fiducial generalized confidence interval, and the Bayesian method. Coverage probabilities and 
expected lengths were used to evaluate the performance of the proposed approaches via Monte 
Carlo simulation. The results of the simulation studies show that the fiducial generalized 
confidence interval and the Bayesian based on uniform and normal inverse Chi-squared priors 
were appropriate in terms of the coverage probability and expected length, while the Bayesian 
approach based on Jeffreys' rule prior can be used as alternatives. In addition, real data based on 
the red cod density from a trawl survey in New Zealand is used to illustrate the performances of 
the proposed approaches. 
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1- Introduction 

Fisheries research, which encompasses many of the natural science fields, frequently provides non-negative data 
following a skewed distribution [1-3]. Especially, trawl survey data has been used in several studies to estimate the mean 
fish abundance [1, 4, 5]. The coefficient of variation (CV) is well known as a measure of the dispersion of data that have 
different units or radically different means. Many researchers have established confidence intervals for the CV of both 
normal and non-normal distributions [6-8]. However, when trawl survey data are positively skewed with kurtosis, then 
the coefficient of quartile variation (CQV) is a good alternative statistical tool for measuring the dispersion [9].   

The CQV is computed based on the first and third quartiles ( 1Q and 3Q , respectively). Bonett [9] proposed an approach 

to establish confidence intervals for the CQVs of several skewed distributions, the performances of which showed its 
appropriateness for highly skew distributions. After that, Altunkaynak and Gamgam [10] compared the bootstrap 
confidence interval with Bonett's confidence interval for the CQVs of the same distributions mentioned in Bonett [9]. 
The results show that the bootstrap confidence intervals performed better than Bonett's approach for small sample sizes. 
Among the skewed distributions, the lognormal distribution is one of the most widely used for statistical inference and 
applications. Krishnamoorthy and Mathew [11] used the concepts of the generalized p-value and generalized confidence 
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interval (GCI) to develop confidence intervals for lognormal means and compared them with the large-sample approach 
and concluded that the proposed approaches were better than the latter approach. Hannig et al. [12] established the 
fiducial GCI (FGCI) for the ratio of the means of lognormal distributions that performs well for small sample sizes. Lin 
and Wang [13] established confidence intervals using the quadratic approach for the means of lognormal distributions; 
their simulation results reveal that their proposed approach performed well in all cases. Nam and Kwon [14] presented 
Wald-type, Fieller-type, log, and the method of variance estimate recovery (MOVER) approaches for confidence interval 
estimation of the ratio of lognormal CVs, all of which performed well for medium sample sizes. Later, Hasan and 
Krishnamoorthy [15] proposed MOVER and fiducial approaches to establish the confidence intervals for the ratio of 
CVs of lognormal distributions; their approaches were effective for small sample size cases. In addition, Thangjai and 
Niwitpong [16] established confidence intervals for the signal-to-noise ratio of lognormal distributions using the GCI, 
large-sample, and MOVER approaches and recommended the GCI approach under all of the circumstances tested. 
Recently, Thangjai et al. [17] suggested the Bayesian approach for confidence interval construction for both a single 
lognormal CV and the difference between the CVs of two lognormal distributions.  

There have been many studies involving lognormal distributions that are zero-inflated, such as diagnostic test 
charging [18], the concentration of air contaminants (airborne chlorine) at an industrial site in the United States [19], 
fish spotter data in fisheries research [20], red cod densities from trawl surveys in New Zealand [4, 5], and rainfall 
measurements [21, 22]. Furthermore, many researchers have constructed confidence intervals for the parameters of zero-
inflated lognormal distributions. Zhou and Tu [23] suggested percentile-t bootstrap interval and likelihood approaches 
to establish the confidence intervals for the mean of diagnostic test charging data that included zero values. Tian [24] 
recommended constructing confidence intervals using the concept of generalized variables for the mean. Tian and Wu 
[25] established confidence intervals for the mean based on adjusted signed log-likelihood ratio statistics, the results of 
which showed that the proposed approach was suitable in all cases examined. Fletcher [4] proposed three approaches: 
Aitchison's estimator, a modification of Cox's approach, and a profile likelihood interval to establish confidence intervals 
for the mean; the profile likelihood interval was the best in terms of the coverage probability. Wu and Hsieh [5] compared 
the GCI approach to construct confidence intervals for the mean with Aitchison's, modified Land's, profile likelihood, 
maximum likelihood, and bootstrap approaches and found that GCI was appropriate in all cases. Li et al. [26] presented 
generalized pivotal quantity and fiducial approaches for interval estimation of the mean; their results demonstrate that 
the fiducial approach was suitable under all circumstances examined. Recently, Hasan and Krishnamoorthy [27] 
established confidence intervals for the mean based on the fiducial and MOVER approaches and reported that the former 
performed the best for small sample sizes. Moreover, Maneerat et al. [22, 28, 29] recommended Bayesian approaches 
for estimating the confidence intervals for the mean and its functions. Likewise, Yosboonruang et al. [21, 30] also 
recommended that Bayesian approaches are reasonable for establishing confidence intervals for the CV and the 
difference between the CVs of zero-inflated lognormal data. 

So far, there have not been any published reports focusing on the CQV for a highly skewed zero-inflated lognormal 
distribution. Herein, we propose fiducial and Bayesian approaches to construct confidence intervals for the CQV of a 
zero-inflated lognormal distribution. We also report the results of their efficacies via simulation and empirical studies 
followed by a discussion and conclusions on the research. 

2- Methods  

� = (��, ��, … , ��, … , ��) is a non-negative random sample from a zero-inflated lognormal distribution. Suppose 
that the non-zero observations follow a lognormal distribution denoted by �� = ln(��) ~	�(�, �

�) for � = 1, 2, … ,�, 
and the zero observations follow a binomial distribution with parameter �� = (� − �)/�, then the probability of non-
zero observations is � = �/�. The probability density function for a zero-inflated lognormal distribution can be 
expressed as; 
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As proposed by Aitchison [31], the mean and variance of X  can be written as: 

   2exp 2E X        

And, 

     2 2exp 2 expVar X        
 

,  

Respectively. In this study, we focus on the CQV based on the lower and upper quartiles (Q1 and Q3), which is defined 
as: 
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where Q1 and Q3 are the 25th and 75th percentiles, respectively. 

According to Hasan and Krishnamoorthy [27], the quartiles can be defined as; 

 1
1

expr

p
Q


 




   
       
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where 4 1p r     and   is the standard normal distribution function. Therefore, we can respectively represent Q1 

and Q3 in Equation (1) as: 
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And; 
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In the following sub-sections, we present the methods used to establish the confidence interval for the CQV of a zero-
inflated lognormal distribution. 

2-1- The FGCI Method 

The idea of fiducial inference was first suggested by Fisher [32], after which Hannig et al. [12] illustrated methods 
to construct the fiducial generalized pivotal quantity (FGPQ). Subsequently, Hannig [33] used Fisher's fiducial concept 
to prove and express a generalized fiducial recipe that is a generalization of the FGPQ. Recall that X  is a zero-inflated 
lognormal distribution. From Equation 1, the parameters of interest are �, �, and �, and thus their FGPQs are required. 
According to Li et al. [26] and Hasan and Krishnamoorthy [27], we can express the respective FGPQs for �, �, and � 
as; 

 ~ 0.5, 0.5R Beta n m m    , (4) 
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And; 
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where  ~ 0,1Z N  and 2
1~ mU   . By substituting Equations 4 to 6 into Equation 1, we obtain 
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Subsequently, following Equations 2, 3, and 7, the FGPQ for the CQV can be expressed as; 
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This allows us to establish the  100 1 %  FGCI for CQV as; 

   2 , 1 2fgciCI R R       ,  

where  R   is the 100 th   percentile of R . The steps to compute the FGCI for the CQV are shown in Algorithm 

1. 

Algorithm 1 

1. Generate ix , 1,2, , , ,i m n K K  from a zero-inflated lognormal distribution; 
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2. Compute ̂  and 2̂ ; 

3. Generate  ~ 0,1Z N , 2
1~ mU   , and  0.5, 0.5Beta n m m   ; 

4. Compute R , R , and R ; 

5. Compute 
1QR , 

3QR , and R ; 

6. Repeat 3-5 2,000 times; 

7. Compute the 95% FGCI for the CQV; 

8. Repeat 1-7 10,000 times. 

2-2- The Bayesian Approach 

Since � is a mixed distribution comprising lognormal and binomial distributions, the joint likelihood function can 
be written as; 
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This leads to obtaining the Fisher information matrix by using the second derivative of the log-likelihood function 
as follows: 
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Three different priors to construct credible intervals are present as follows. 

Jeffreys' Rule Prior 

According to the Fisher information matrix, Jeffreys' rule priors for unknown parameters from binomial and 
lognormal distributions are derived from the square root of the determinant of the Fisher information matrix. Therefore, 
the Jeffreys' rule prior for �′ from a binomial distribution by following Harvey and van der Merwe's method [34] is 

�(��) ∝ (��)�
�

��
�

�. For parameter �� from a lognormal distribution, the Jeffreys' rule prior becomes �(��) = 1/��, and 
so the Jeffreys' rule prior density function for a zero-inflated lognormal distribution is; 
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By combining the likelihood function in Equation 8 and the prior density function in Equation (9), we can express 
the joint posterior density function as; 
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Moreover, we can obtain the respective posterior distribution of   ,  , and 2  by using the integral of the function 

in Equation 10 with respect to the others as follows; 
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Thus, we can obtain  ~ 1 2, 3 2x Beta n m m     ,  2 2ˆ, ~ ,x N m    , and  

  2 2ˆ~ 2, 2x Inv Gamma m m  , respectively. 

The Uniform Prior 

Since the uniform prior density function for binomial and lognormal distributions is constant [35, 36], then it must 

be so for a zero-inflated lognormal distribution (i.e.,  2, , 1p     ). The joint posterior density function is composed 

in a similar fashion to Equation 10 as follows: 
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respectively. 

The Normal Inverse Chi-squared Prior 

The normal inverse Chi-squared prior was first proposed by Maneerat et al. [22] to establish the highest posterior 
density interval for the delta-lognormal mean. By following this concept, the joint posterior density function can be 
expressed as 

 
 

       
1

122 2 2
2

1

1 1
ˆ ˆ, , exp

1, 1 2

mm
n m m

i
i

p x x
Beta n m m

        


 
   
 



 
             

   

Accordingly, by using the integral in the same way as for Equations 11 to 13, the respective posterior distributions 

of   ,  , and 2  are beta, Student's t, and inverse Chi-squared distributions defined as  ~ 1, 1x Beta n m m     ,  
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respectively. 

Algorithm 2 

1. Generate ix , 1,2, , , ,i m n K K  from a zero-inflated lognormal distribution; 

2. Compute ̂  and 2̂ ; 

3. Generate the posterior distribution for x  , 2 , x  , and 2 x ; 

4. Compute Q1, Q3, and  ; 

5. Repeat 3-4 2,000 times; 

6. Compute the 95% credible interval for the CQV; 

7. Repeat 1-6 10,000 times. 

The research methodology of this study is shown in Figure 1. 

3- Results   

3-1- Simulation Studies 

The coverage probabilities and expected lengths of the confidence intervals under different scenarios were 
investigated via Monte Carlo simulation using the R statistical program. A confidence interval with a coverage 
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probability that is equal to or greater than the nominal confidence level of 0.95 together with the minimum expected 
length shows the best performing method for a particular set of criteria. The proposed FGCI and Bayesian approaches 
based on Jeffreys' rule, uniform, and normal inverse Chi-squared priors were tested. For this simulation, we defined the 

sample sizes (n) as 15, 30, 50, or 100;   as 2 2  (following [27]); and 2  as 1, 2, 3, 5, or 10. Following the 

conditional of    in Equation 2,   was varied as 0.80, 0.85, 0.90, or 0.95. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 1. Flowchart of the research methodology. 

The FGCI and Bayesian approaches were replicated 2,000 times for 10,000 simulation runs. The results in Table 1 
report that the coverage probabilities of FGCI were greater than or close to the nominal confidence level of 0.95 for all 
cases when � ≥ 0.85. Likewise, the performances of the Bayesian methods based on the uniform and normal inverse 
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Chi-squared priors were similar to that of FGCI in terms of coverage probability for � = 0.85 and 0.90, while for � =
0.95, the coverage probabilities of the Bayesian-uniform prior method were greater than the others and close to the 
target for all cases of � ≥ 30, which is the same as the results for the Bayesian-Jeffreys' rule prior method when � =
0.90. Moreover, the coverage probabilities were greater than 0.95 for the Bayesian-normal inverse Chi-squared prior 
method when � = 0.95 and � = 50 or 100, and for Bayesian-Jeffreys' rule prior method when	� = 0.85 or 0.95 and 
� = 50 or 100. For � = 0.80, the coverage probabilities were greater than 0.95 when �� = 10 for the Bayesian-Jeffreys’ 
rule prior method and �� = 5 or 10 for the Bayesian-uniform prior and Bayesian-normal inverse Chi-squared prior 
methods for all sample sizes, as was FGCI for � = 100 only. 

In terms of the expected length, the Bayesian-normal inverse Chi-squared prior method had the shortest expected 
lengths for almost all cases for � = 0.80 or 0.85 except for � = 0.85, � = 100 and �� ≤ 3, for which the Bayesian-
Jeffreys’ rule prior method had the shortest expected lengths. For � = 0.90, the expected lengths of the Bayesian-normal 
inverse Chi-squared prior method were shorter than the others when �� ≥ 2 together with 15n   or 30. Likewise, the 
Bayesian-Jeffreys’ rule prior method had the shortest expected lengths for � = 50 or 100 and �� ≤ 5 whereas the 

Bayesian-normal inverse Chi-squared prior method had the shortest expected lengths for the other cases. For 0.95  , 
the expected lengths of FGCI were shorter than the others when � = 15 or 30 for almost all cases while the Bayesian-
normal inverse Chi-squared prior method had the shortest expected lengths for 50n   and �� ≥ 3. Moreover, the 

expected lengths of the Bayesian-Jeffreys’ rule prior method were shorter than the others for 100n   and ��= 2, 3, or 
5, while the Bayesian-normal inverse Chi-squared prior method had the shortest expected lengths for � = 100 and �� =
1 or 10. However, the expected lengths of the FGCI and Bayesian methods were slightly different. Summaries of the 
coverage probabilities and expected lengths of the proposed methods are shown in Figures 2 and 3, respectively. 
However, the expected lengths of the FGCI and Bayesian methods were not different. Summaries of the coverage 
probabilities and expected lengths of the proposed methods are shown in Figures 2 and 3, respectively. 

Table 1. The coverage probabilities and expected lengths for the 95% confidence intervals and credible intervals for the 
CQV of a zero-inflated lognormal distribution. 

� � �� 
Coverage probabilities (Expected lengths) 

FGCI B-J B-U B-NIC 

0.80 

15 

1 
0.9009 0.8305 0.9093 0.8992 

(0.3895) (0.3705) (0.3968) (0.3876) 

2 
0.9038 0.8578 0.9284 0.9211 

(0.3227) (0.3081) (0.3168) (0.3108) 

3 
0.8980 0.8816 0.9442 0.9354 

(0.2616) (0.2461) (0.2473) (0.2429) 

5 
0.8969 0.9197 0.9645 0.9601 

(0.1762) (0.1600) (0.1569) (0.1539) 

10 
0.8981 0.9719 0.9931 0.9911 

(0.0801) (0.0681) (0.0653) (0.0637) 

30 

1 
0.9171 0.8635 0.9137 0.9118 

(0.3208) (0.3093) (0.3220) (0.3189) 

2 
0.9201 0.8899 0.9330 0.9286 

(0.2547) (0.2476) (0.2508) (0.2486) 

3 
0.9228 0.9084 0.9486 0.9441 

(0.1969) (0.1892) (0.1884) (0.1869) 

5 
0.9186 0.9383 0.9677 0.9648 

(0.1226) (0.1140) (0.1110) (0.1101) 

10 
0.9171 0.9736 0.9887 0.9876 

(0.0466) (0.0405) (0.0386) (0.0382) 

50 

1 
0.9357 0.8963 0.9275 0.9263 

(0.2804) (0.2713) (0.2792) (0.2778) 

2 
0.9360 0.9093 0.9385 0.9363 

(0.2151) (0.2105) (0.2124) (0.2114) 

3 
0.9325 0.9220 0.9463 0.9450 

(0.1605) (0.1559) (0.1552) (0.1544) 

5 
0.9349 0.9445 0.9671 0.9663 

(0.0940) (0.0886) (0.0866) (0.0861) 

10 
0.9325 0.9758 0.9849 0.9849 

(0.0317) (0.0281) (0.0268) (0.0267) 
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100 

1 
0.9507 0.9223 0.9414 0.9407 

(0.2320) (0.2245) (0.2293) (0.2288) 

2 
0.9461 0.9252 0.9435 0.9427 

(0.1708) (0.1678) (0.1692) (0.1688) 

3 
0.9513 0.9394 0.9547 0.9549 

(0.1231) (0.1208) (0.1205) (0.1203) 

5 
0.9507 0.9533 0.9661 0.9665 

(0.0672) (0.0646) (0.0636) (0.0635) 

10 
0.9517 0.9751 0.9833 0.9823 

(0.0197) (0.0179) (0.0173) (0.0172) 

0.85 

15 

1 
0.9564 0.9155 0.9554 0.9488 

(0.3808) (0.3616) (0.3906) (0.3812) 

2 
0.9581 0.9252 0.9614 0.9557 

(0.3212) (0.3071) (0.3183) (0.3121) 

3 
0.9580 0.9333 0.9673 0.9626 

(0.2621) (0.2476) (0.2504) (0.2457) 

5 
0.9585 0.9536 0.9771 0.9734 

(0.1786) (0.1631) (0.1604) (0.1574) 

10 
0.9582 0.9786 0.9876 0.9851 

(0.0818) (0.0700) (0.0672) (0.0655) 

30 

1 
0.9635 0.9345 0.9621 0.9595 

(0.3035) (0.2910) (0.3071) (0.3038) 

2 
0.9614 0.9404 0.9641 0.9615 

(0.2518) (0.2449) (0.2516) (0.2493) 

3 
0.9593 0.9445 0.9655 0.9639 

(0.1997) (0.1933) (0.1949) (0.1932) 

5 
0.9615 0.9592 0.9756 0.9739 

(0.1284) (0.1212) (0.1193) (0.1182) 

10 
0.9632 0.9786 0.9857 0.9845 

(0.0513) (0.0455) (0.0436) (0.0431) 

50 

1 
0.9634 0.9404 0.9601 0.9595 

(0.2528) (0.2430) (0.2536) (0.2522) 

2 
0.9655 0.9488 0.9671 0.9653 

(0.2083) (0.2034) (0.2084) (0.2073) 

3 
0.9627 0.9517 0.9679 0.9658 

(0.1631) (0.1594) (0.1613) (0.1604) 

5 
0.9657 0.9653 0.9754 0.9747 

(0.1008) (0.0971) (0.0963) (0.0957) 

10 
0.9665 0.9803 0.9864 0.9870 

(0.0368) (0.0336) (0.0325) (0.0323) 

100 

1 
0.9657 0.9511 0.9639 0.9619 

(0.1913) (0.1849) (0.1904) (0.1898) 

2 
0.9636 0.9536 0.9637 0.9644 

(0.1561) (0.1530) (0.1558) (0.1555) 

3 
0.9637 0.9565 0.9674 0.9669 

(0.1202) (0.1182) (0.1195) (0.1192) 

5 
0.9710 0.9689 0.9769 0.9762 

(0.0719) (0.0703) (0.0703) (0.0701) 

10 
0.9670 0.9749 0.9794 0.9787 

(0.0241) (0.0228) (0.0224) (0.0223) 
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0.90 

15 

1 
0.9654 0.9370 0.9599 0.9550 

(0.3655) (0.3455) (0.3794) (0.3699) 

2 
0.9678 0.9362 0.9548 0.9500 

(0.3165) (0.3029) (0.3187) (0.3118) 

3 
0.9670 0.9419 0.9607 0.9551 

(0.2639) (0.2506) (0.2566) (0.2516) 

5 
0.9665 0.9508 0.9656 0.9613 

(0.1838) (0.1697) (0.1682) (0.1650) 

10 
0.9688 0.9663 0.9694 0.9654 

(0.0866) (0.0750) (0.0721) (0.0704) 

30 

1 
0.9736 0.9551 0.9716 0.9693 

(0.2812) (0.2692) (0.2868) (0.2835) 

2 
0.9683 0.9517 0.9606 0.9597 

(0.2431) (0.2360) (0.2455) (0.2429) 

3 
0.9683 0.9496 0.9591 0.9553 

(0.1983) (0.1924) (0.1966) (0.1945) 

5 
0.9709 0.9574 0.9645 0.9599 

(0.1315) (0.1255) (0.1250) (0.1238) 

10 
0.9671 0.9673 0.9692 0.9667 

(0.0548) (0.0495) (0.0478) (0.0473) 

50 

1 
0.9645 0.9520 0.9638 0.9634 

(0.2206) (0.2132) (0.2231) (0.2215) 

2 
0.9682 0.9562 0.9669 0.9648 

(0.1932) (0.1888) (0.1949) (0.1935) 

3 
0.9690 0.9610 0.9692 0.9675 

(0.1575) (0.1540) (0.1572) (0.1562) 

5 
0.9671 0.9609 0.9651 0.9635 

(0.1036) (0.1006) (0.1010) (0.1003) 

10 
0.9680 0.9665 0.9677 0.9650 

(0.0408) (0.0382) (0.0373) (0.0371) 

100 

1 
0.9676 0.9584 0.9668 0.9663 

(0.1553) (0.1521) (0.1557) (0.1552) 

2 
0.9650 0.9554 0.9640 0.9639 

(0.1374) (0.1351) (0.1376) (0.1370) 

3 
0.9628 0.9576 0.9654 0.9657 

(0.1126) (0.1108) (0.1122) (0.1117) 

5 
0.9638 0.9605 0.9647 0.9655 

(0.0733) (0.0718) (0.0721) (0.0719) 

10 
0.9644 0.9677 0.9720 0.9718 

(0.0277) (0.0267) (0.0265) (0.0264) 

0.95 15 

1 
0.9669 0.9431 0.9652 0.9591 

(0.3399) (0.3208) (0.3589) (0.3488) 

2 
0.9672 0.9376 0.9501 0.9449 

(0.3071) (0.2937) (0.3159) (0.3081) 

3 
0.9596 0.9285 0.9433 0.9352 

(0.2615) (0.2493) (0.2608) (0.2550) 

5 
0.9619 0.9355 0.9483 0.9427 

(0.1869) (0.1747) (0.1760) (0.1724) 

10 
0.9674 0.9528 0.9546 0.9488 

(0.0905) (0.0795) (0.0770) (0.0753) 
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30 

1 
0.9646 0.9526 0.9647 0.9620 

(0.2456) (0.2368) (0.2529) (0.2493) 

2 
0.9581 0.9395 0.9526 0.9495 

(0.2252) (0.2188) (0.2296) (0.2265) 

3 
0.9586 0.9401 0.9514 0.9456 

(0.1910) (0.1857) (0.1922) (0.1897) 

5 
0.9612 0.9452 0.9513 0.9468 

(0.1347) (0.1296) (0.1314) (0.1298) 

10 
0.9602 0.9530 0.9536 0.9495 

(0.0603) (0.0557) (0.0547) (0.0540) 

50 

1 
0.9561 0.9451 0.9560 0.9545 

(0.1894) (0.1845) (0.1921) (0.1905) 

2 
0.9618 0.9515 0.9590 0.9597 

(0.1761) (0.1725) (0.1778) (0.1762) 

3 
0.9599 0.9485 0.9574 0.9558 

(0.1500) (0.1469) (0.1503) (0.1489) 

5 
0.9564 0.9467 0.9536 0.9519 

(0.1042) (0.1014) (0.1025) (0.1016) 

10 
0.9603 0.9567 0.9562 0.9544 

(0.0447) (0.0424) (0.0420) (0.0417) 

100 

1 
0.9563 0.9496 0.9551 0.9534 

(0.1352) (0.1328) (0.1355) (0.1349) 

2 
0.9588 0.9528 0.9567 0.9562 

(0.1259) (0.1241) (0.1259) (0.1254) 

3 
0.9586 0.9522 0.9568 0.9565 

(0.1069) (0.1054) (0.1066) (0.1061) 

5 
0.9589 0.9517 0.9554 0.9535 

(0.0737) (0.0724) (0.0728) (0.0725) 

10 
0.9576 0.9531 0.9535 0.9522 

(0.0306) (0.0296) (0.0295) (0.0247) 

Note: B-J, B-U, and B-NIC represented the Bayesian based on Jeffrey's rule, uniform, and normal inverse Chi-squared 
priors, respectively. 

 

Figure 2. The coverage probabilities of the 95% confidence intervals and the credible intervals for the CQV by the 
probabilities of non-zero values. 
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Figure 3. The expected lengths of the 95% confidence intervals and the credible intervals for the CQV by the probabilities 
of non-zero values. 

3-2- An Example Using Real Data 

To illustrate the performance of the proposed approaches, we used the data on red cod density (kg/km2) from a trawl 
survey implemented by the National Institute of Water & Atmospheric Research in New Zealand. This dataset contained 
data from 67 trawls of which 13 records had no red cod. The remaining 54 trawls were as follows [4]: 

10.8, 13.2, 18.2, 19.6, 34.2, 37.0, 41.5, 42.3, 46.1, 46.3, 52.7, 53.8, 55.5, 59.2, 64.5, 66.0, 70.2, 70.6, 74.7, 76.8, 77.6, 
78.8, 85.0, 88.1, 89.9, 90.8, 95.4, 100.9, 114.1, 123.2, 131.8, 132.7, 135.1, 141.4, 147.4, 183.0, 223.0, 235.3, 246.5, 
253.5, 267.1, 276.4, 293.7, 298.6, 465.2, 584.2, 639.2, 639.3, 663.3, 915.7, 1004.2, 1402.2, 1563.2, 2948.8. 

The data are positively skewed and the log-transformation creates a normal distribution, as shown in Figures 4 and 
5, respectively. The minimum Akaike information criterion (AIC) was used to test the distribution of the positive data, 
the results of which in Table 2 indicate that it is a lognormal distribution. Accordingly, the red cod densities from 67 
trawls conformed to a zero-inflated lognormal distribution. The summary statistics for this data are � = 67, � = 54, 

�� = 0.81, �̂ = 4.8636, ��� = 1.4854, and �̂ = 0.8348. The 95% confidence intervals and credible intervals for the 
CQV of the red cod densities are reported in Table 3. Similar to the findings of the simulation study, the Bayesian-
uniform prior method performed the best in term of the interval length. 

 

Figure 4. Distribution of the red cod data (a) a histogram (b) a normal Q-Q plot. 
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Figure 5. Distribution of log-transformed red cod data (a) a histogram (b) a normal Q-Q plot. 

Table 2. AIC values for fitting the distributions. 

Distributions Normal Lognormal Cauchy Exponential Gamma Weibull 

AIC 826.5334 702.8736 734.7968 722.5387 720.9743 716.9117 

Table 3. The 95% confidence intervals and credible intervals for the CQV of the red cod data from the trawls survey in New 

Zealand. 

Approaches FGCI B-J B-U B-NIC 

CIs (0.7148,0.9563) (0.7193,0.9544) (0.7270,0.9555) (0.7248,0.9580) 

Lengths 0.2415 0.2351 0.2285 0.2332 

4- Discussion 

As mentioned earlier, the CQV can be used to measure the dispersion of highly skewed distributions with kurtosis, 
such as a zero-inflated lognormal distribution. Interval estimation methods for the CQV of a zero-inflated lognormal 
distribution by using FGCI and the Bayesian approach are proposed herein. In the present study, it was found that when 
the probability of non-zero values was 0.80 for large variances, the coverage probabilities of the Bayesian priors were 
close to or greater than the target. This is due to the posterior distributions of the mean and variance being higher than 

the variance estimator together with  being nearly equal to p  in Equation 2, all of which affect obtaining the CQV 

estimator to generate the quantile functions. FGCI performed well for large sample cases only because the FGPQ values 
for the parameters depend on the sample size of non-zero values. In cases where the probability of non-zero values was 
greater than 0.80, the coverage probabilities of FGCI were stable and close to the target for all cases. This was similar 
to the performances of the Bayesian method based on uniform and normal inverse Chi-squared priors where the 
probability of non-zero values was equal to 0.85 or 0.90. In addition, the performance of the Bayesian-Jeffreys’ rule 
prior method was good for almost all cases with a large sample size or a large variance together with a small sample 
size. The results of the empirical study using red cod density data from a trawl survey in New Zealand were the same as 
those of the simulation study in that the Bayesian-uniform prior method is suitable due to the lower and upper bounds 
covering the CQV of that dataset together with the shortest widths. 

5- Conclusion 

Herein, we proposed approaches based on FGCI and the Bayesian method to establish confidence intervals for the 
CQV of a zero-inflated lognormal distribution. The Bayesian approach comprised three priors: Jeffreys' rule, uniform, 
and normal inverse Chi-squared. Since the CQV is appropriate for extremely skewed data, the red cod data from a trawl 
survey was used to evaluate the performance of the proposed approaches. The simulation studies show that the 
confidence intervals constructed with the FGCI and the Bayesian-uniform prior methods performed well for cases with 
a high proportion of non-zero values since the coverage probabilities were greater than or closed to the target. The 
performance of the Bayesian-normal inverse Chi-squared prior method was similar to the FGCI and Bayesian-uniform 
prior methods except for cases with a high proportion of non-zero values together with a small sample size. Therefore, 
the FGCI and Bayesian methods based on uniform and normal inverse Chi-squared priors are suitable for constructing 
confidence intervals for the CQV of a zero-inflated lognormal distribution. Last, the Bayesian-Jeffreys' rule prior method 
is suitable for large sample sizes and a few cases with a large variance. 
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