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Abstract 

Coronavirus disease 2019 (COVID-19) has spread rapidly throughout the world and has caused 

millions of deaths. However, the number of daily COVID-19 deaths in Thailand has been low with 
most daily records showing zero deaths, thereby making them fit a Zero-Inflated Poisson (ZIP) 

distribution. Herein, confidence intervals for the Coefficient Of Variation (CV) of a ZIP 

distribution are derived using four methods: the standard bootstrap (SB), percentile bootstrap (PB), 
Markov Chain Monte Carlo (MCMC), and the Bayesian-based highest posterior density (HPD), 

for which using the variance of the CV is unnecessary. We applied the methods to both simulated 

data and data on the number of daily COVID-19 deaths in Thailand. Both sets of results show that 
the SB, MCMC, and HPD methods performed better than PB for most cases in terms of coverage 

probability and average length. Overall, the HPD method is recommended for constructing the 

confidence interval for the CV of a ZIP distribution. 
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1- Introduction 

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) was first reported in Wuhan (Hubei, China) in December 2019 [1]. The disease has been prevalent in 

Thailand from 31 December 2019 until now, albeit at a low level of infection. COVID-19 can affect people in different 

ways; most people develop mild to moderate symptoms and recover without hospitalization whereas death occurs in 

acute cases. Even though the number of deaths around the world has crept into the millions, the number of daily COVID-

19 deaths in Thailand has remained low throughout this period, with most daily records showing zero deaths.   

Data on the number of daily COVID-19 deaths in Thailand from 3/12/2019 to 30/06/2020 comprising 176 days of 

daily observations in total were used in this study; there were 0 deaths on 147 days, 1 death on 13 days, 2 deaths on 6 

days, 3 deaths on 7 days, and 4 deaths on 3 days. The frequency distribution of these presented in Figure 1 shows that 

they are clearly overdispersed with the variance exceeding the mean.  

Since one of the properties of a Poisson distribution is equidispersion [2] (i.e., the mean is equal to the variance), it is 

not suitable for analyzing them. Some models that depart from standard count models, such as zero-inflated (ZI) and 

hurdle models, have been proposed to solve the overdispersion problem as both of them provide an alternative way to 
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analyze count data with excess zeros. Lambert [3] proposed the ZI Poisson (ZIP) model where the probability of zeros 

is logit and the base count density is Poisson. The probability mass function (pmf) for this is given by: 

𝑓(x; λ, ω) = {

ω + (1 − ω)e−λ ;  x = 0

(1 − ω)e−λλx

x!
;  x = 1,2,3, …

 (1) 

 

Figure 1. The frequency of the number of daily COVID-19 deaths in Thailand. 

With the mean equal to (1 − ω)𝜆  and the variance equal to (1 − ω)λ + (ω 1 − ω⁄ )((1 − ω)λ)
2

 ; λ >  0 , where 

ω indicates the proportion of zeros. There has been an abundance of research involving ZIP distributions. For instance, 

in a biomedical application, Bohning et al. [4] showed that the ZIP model can be used to analyze the decayed, missing 

and filled teeth index. When analyzing natural resources, Lee and Kim [5] recommended a ZIP model from a practical 

viewpoint for the number of torrential rainfall occurrences at the Daegu and Busan rain gauges in South Korea and 

compared it with the Poisson distribution, the generalized Poisson distribution (GPD), and the ZI generalized Poisson 

(ZIGP), and the Bayesian ZIGP model. In the field of insurance, Boucher et al. [6] adopted a ZIP distribution model for 

analyzing insurance data, while Kusuma and Purwono [7] showed that a ZIP regression model is more suitable than an 

ordinary Poisson regression model for modeling the frequency data of claims from the health insurance company 

PT.XYZ.  

Previously, the Bayesian method has been extensively used to study the parameters of the ZIP distribution. For 

example, Rodrigues [8] studied the ZIP distribution by using the Bayesian method with noninformative priors to estimate 

the number of roots produced by 270 shoots of an apple cultivar Trajan; the ZIP distribution provided excellent fitting 

of the zero points. Xu et al. [9] investigated non-informative priors for a ZIP distribution with two ZIP model parameters 

and presented point estimations and 95% confidence intervals for the two parameters. Unhapipat et al. [10] applied 

Bayesian predictive inference with three types of prior distribution; the generalized noninformative prior, Jeffrey’s 

noninformative prior, and beta-gamma prior for the ZIP distribution and illustrated their efficacies with real-life data on 

public health, natural catastrophes, and vehicle accidents. Furthermore, parameters of the ZIP distribution have been 

studied by applying other methods. For instance, Wagh and Kamalja [11] proposed a new probability estimator for the 

inflation parameter of ZIP distribution based on a moment estimator of the mean parameter. Srisuradetchai and 

Junnumtuam [12] studied a Wald-based confidence interval for the parameters in the Bernoulli component of ZIP and 

zero-altered Poisson (ZAP) models. Waguespack [13] used the likelihood and bootstrap approaches to construct 

confidence intervals for the mean of a ZIP distribution. Junnumtuam et al. [14] proposed confidence intervals for the 

mean of a ZIP distribution using the Markov chain Monte Carlo (MCMC) and highest posterior density (HPD) methods 

and applied them to analyze the number of new daily COVID-19 cases in Laos. Zou et al. [15] used the generalized 

fiducial inference to construct confidence intervals for the mean of ZIP and Poisson hurdle models.  

Since the coefficient of variation (CV) is a relative measure of dispersion calculated as the standard deviation divided 

by the mean, it is unit invariant, and so is a useful statistic for comparing datasets with different units. Confidence 

intervals for the CV have been applied to various distributions. For example, Vangel [16] developed confidence intervals 

for the CVs of normal and modified McKay (Vangel) distributions. Panichkitkosolkul [17] introduced confidence 

intervals for the CV of a Poisson distribution using four different methods: Wald, Score, Wald Interval with Continuity 

Correction, and Variance Stabilizing. Meanwhile, [18] proposed a new asymptotic confidence interval constructed by 
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using a confidence interval for the Poisson mean for the CV of a Poisson distribution. Niwitpong [19] proposed a new 

confidence interval for the CV of a lognormal distribution. Yosboonruang et al. [20] studied confidence intervals for the 

CV of a delta-lognormal distribution constructed by using the generalized fiducial interval (GFI) and the method of 

variance estimates recovery (MOVER). The CV (θ) for a ZIP distribution can be expressed as: 

𝜃 =
𝜎

𝜇
=

√(1 − 𝜔)𝜆 +
𝜔

1 − 𝜔
((1 − 𝜔)𝜆)

2

(1 − 𝜔)𝜆
 

(2) 

With the sample estimate of θ being given by: 

θ̂ =
σ̂

μ̂
=

√(1 − ω̂)λ̂ +
ω̂

1 − ω̂
((1 − ω̂)λ̂)

2

(1 − ω̂)λ̂
= √

1 + �̂��̂�

(1 − �̂�)�̂�
 (3) 

Where ω̂ and λ̂ are the estimators for 𝜔 and λ, respectively. We can see that the CV of a ZIP distribution is complex 

when formed with two parameters, thereby making it difficult to find its variance. To overcome this, we present four 

methods: the standard bootstrap (SB), percentile bootstrap (PB), MCMC, and HPD, for which finding the variance of 

the CV to construct the confidence interval is unnecessary. The efficiencies of the confidence intervals were compared 

via their coverage probabilities (CPs) and average lengths (ALs). 

2- The Bootstrap-based Confidence Intervals  

Let xi = (x1, x2, … , xn) be a random sample from ZIP distribution, and let θ̂ represent the estimator of CV. The 

bootstrap procedure requires the following steps. 

Algorithm 1 

 Sample xi
∗with replacement from {x1, … , xn} for i ∈ {1, … , n}. 

 Calculate �̂�∗. 

 Repeat 1 and 2 a total of B times to obtain the bootstrapped distribution of θ̂. 

Efron and Tibshirani [21] indicated that a minimum of 1000 bootstrap samples are usually sufficient to compute 

reasonably accurate confidence interval estimates. 

2-1- The SB Confidence Interval 

From B = 1000 bootstrap estimates of �̂�
∗
, the sample average and standard deviation are calculated as: 

θ∗̅ =
1

1000
∑ �̂�𝑏

∗1000
i=1 , (4) 

S�̂�∗
∗ = √(

1

999
)∑ (�̂�(𝑖)

∗ − θ∗̅)
21000

i=1 . (5) 

Algorithm 2 

 Sample xi
∗ with replacement from {x1, … , xn} for i ∈ {1, … , n}. 

 Calculate �̂�
∗
 using Equation 3. 

 Repeat 1 and 2 a total of B times to obtain the bootstrap distribution of θ̂. 

 Calculate the sample average and standard deviation using Equations 4 and 5, respectively.        

Afterward, the 100(1 − α)% SB confidence interval for θ is calculated as follows: 

𝐶𝐼𝑆𝐵 = 𝜃∗̅̅ ̅ ± 𝑍
1−

𝛼
2
𝑆�̂�∗

∗  (6) 

Where Z
1−

α

2
 is obtained by using the (1 −

α

2
)
th

 quantile of the standard normal distribution. 

2-2- The PB Confidence Interval 

Algorithm 3 

 Sample xi
∗ with replacement from {x1, … , xn} for i ∈ {1, … , n}. 
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 Calculate �̂�∗ using Equation 3. 

 Repeat 1 and 2 a total of B times to obtain the bootstrap distribution of θ̂. 

 Order �̂�∗(i) and take the 100(α 2⁄ )% and the 100(1 − α 2⁄ )% points as the end points.       

Afterward, the 100(1 − α)% PB confidence interval of θ is calculated as: 

𝐶𝐼𝑃𝐵 = (θ̂
B(

α
2
)

∗ , θ̂
B(1−

α
2
)

∗ ) (7) 

3- Bayesian Analysis of the ZIP Distribution  

Suppose that X = (X1, … , Xn) is a vector of independent random variables generated from a ZIP distribution.  

Let A = xi: xi = 0, i = 1,… , n and 𝑚 be the number of 𝐴, then the likelihood function [8] is given by: 

L[λ, ω] = [ω + (1 − ω)p(0|λ)]m(1 − ω)n−m∏ p(xi|λ)xi∉A  (8) 

Since the elements of set 𝐴 can be generated from two different parts: (1) the real zeros part and (2) the Poisson 

distribution, then the unobserved latent allocation variable can be defined as: 

Ii = {
1   ;   p(λ, ω)
0   ;   1 − p(λ, ω)

, 
 

(9) 

Where i =  1, … ,m and 

p(λ, ω) =
ω

ω + (1 − ω)p(0|λ)
.  

(10) 

Thus, the likelihood function based on augmented data D =  {X, I}, where I = (I1, … , Im) [22], is in the form 

𝐿[𝜆, 𝜔|𝐷] = 𝐿[𝜔, 𝜆]∏ 𝑝(𝜆, 𝜔)𝐼𝑖(1 − 𝑝(𝜆, 𝜔))
1−𝐼𝑖𝑚

𝑖=1 = ωS(1 − ω)n−Sp(0|λ)m−S ∏ p(xi|λ)xi∉A , 

 
(11) 

Where S = ∑ Ii
m
i=1 ∼ Bin[m, p(λ, ω)]. Thus, the likelihood function based on the augmented data [8] is given by: 

L[λ, ω] ∝ ωS(1 − ω)n−Sλ∑ xixi∉A e−(n−S)λ 
 

(12) 

and 

p(λ, ω) =
ω

ω + (1 − ω)e−λ
. 

 

(13) 

The likelihood function suggests the following independent priors: 

π(λ) ∼ Gamma[a, b]  (14) 

π(ω) ∼ Beta[c, d].  (15) 

Hence, the joint posterior distribution for (λ, ω) given D becomes  

π(λ, ω|D) ∝ ωS+c−1(1 − ω)n−S+d−1λ∑ xixi∉A +a−1e−(n−S+b)λ. 
 

(16) 

Since 𝜔 and 𝜆 are independent given D, thus the marginal posterior distribution of 𝜔 is a Beta distribution; i.e., 

π(ω|D) = Beta(S + c, n − S + d), 
 

(17) 

And the marginal posterior distribution of 𝜆 is: 

π(λ|D) ∝ λ∑ xixi∉A +a−1e−(n−S+b)λ.  (18) 

3-1- Posterior Simulation using the MCMC Algorithm: Gibbs Sampling 

Algorithm 4 

Given a, c, and d = 0.5 and b = 0 for the non-informative prior when 𝑋 ∼ 𝑍𝐼𝑃(𝜆(0), 𝜔(0)) and 𝑡 =  1, … , 10, then; 
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 Calculate p(λ(0), ω(0)) =
ω(0)

ω(0)+(1−ω(0))e−λ(0). 

 Generate S(t) from Bin (m, p(λ(t−1), ω(t−1))). 

 Generate ω(t) from Beta(S(t) + c, n − S(t) + d). 

 Generate λ(t) from Gamma(∑ xi
n
i=1 + a, n − S(t) + b). 

 Repeat steps 2–4 t times to update the sample. 

 Collect ω(t) and λ(t) for 5,000 samples. 

 Burn in 1,000 samples and calculate the estimator of 𝜃 using Equation 3.   

Subsequently, the 100(1 − α)% approximately Bayesian confidence interval for 𝜃 is calculated as 

𝐶𝐼𝑀𝐶𝑀𝐶 = (𝐿. 𝐶𝐼, 𝑈. 𝐶𝐼),  (19) 

Where 𝐿. 𝐶𝐼 = quantile(θ̂, α 2⁄ ) and 𝑈. 𝐶𝐼 = quantile(θ̂, 1 − α 2⁄ ). 

3-2- The Bayesian-based HPD Interval 

Chen and Shao [23] explained that credible intervals are easy to obtain either analytically or by using the MCMC 

method. The Bayesian credible interval or the HPD is the shortest interval containing 100(1 − α)% of the posterior 

probability such that the density within the interval has a higher probability than outside of it. This means that the HPD 

is more desirable when the marginal distribution is not symmetric. The two main properties of the HPD interval are as 

follows [24]: 

(a) The density for each point inside the interval is greater than that for each point outside the interval. 

(b) The HPD interval has the shortest length for a given probability (say 1-𝛼). 

In this study, we used the MCMC method to estimate HPD intervals for the CV of a ZIP distribution. This approach 

only requires an MCMC sample generated from the marginal posterior distributions of the two parameters: 𝜆 and 𝜔. In 

the simulation and computation, the HPD intervals were computed by using the HDInterval package version 0.2.0 from 

RStudio (https://rstudio.com). 

Algorithm 5 

Given that a, c, and d = 0.5 and b = 0 for the non-informative prior when X ∼ ZIP(λ(0), ω(0)) and t =  1, … , 10, then; 

 Calculate p(λ(0), ω(0)) =
ω(0)

ω(0)+(1−ω(0))e−λ(0). 

 Generate S(t) from Bin (m, p(λ(t−1), ω(t−1))). 

 Generate ω(t) from Beta(S(t) + c, n − S(t) + d). 

 Generate λ(t) from Gamma(∑ xi
n
i=1 + a, n − S(t) + b). 

 Repeat steps 2–4 t times to update the sample. 

 Collect ω(t) and λ(t) for 5,000 samples. 

 Burn in 1,000 samples. 

 Compute the HPD intervals 100(1 − α)% for θ.  

4- Simulation Results  

The simulation data were generated using the gamlss.dist package version 5.1-6 from RStudio. In the simulation 

study, sample size n was set as 30, 50, 100, or 200; 𝜆 = 1, 5, 10, 15, 20, or 25; and 𝜔 = 0.1(0.1)0.9. The number of 

replications was set as 5,000 for SB and PB, and 1,000 for MCMC and HPD. The nominal confidence level was 0.95. 

In this study, the criterions to compare the efficiencies of the confidence intervals (CIs) are coverage probabilities (CPs) 

and average lengths (ALs). First, the confidence intervals were considered by the CPs. Since the nominal confidence 

level was 0.95, then the CIs which provided the CPs 0.95 or better are selected. After that, the ALs of these CIs are 

considered to find the shortest length to be the best CI. The simulation results in Table 1 are reported as the CPs and ALs 

of the confidence intervals for n = 30 and 100 (the results for 50 and 200 are not listed here). 
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For n = 30 and 𝜆 = 1, the SB, PB, and MCMC methods performed well for most cases and the HPD method performed 

well for all cases. When 𝜆 was increased to 5, 10, 15, 20, or 25, the performances of all of the methods dropped; this is 

especially true for PB, which obtained CPs lower than 0.95 in most cases. This is clearly evident in Figure 3, which 

presents the CPs for the CV of a ZIP distribution by using all four methods separated into 6 graphs according to the level 

of 𝜆. Meanwhile, the ALs of the methods are shown in Figure 4. 

SB provided CPs of approximately 0.95 for n = 100 and 𝜆 = 1, while the PB confidence interval produced CPs higher 

than 0.95 for only a few cases. However, MCMC and HPD performed well for most cases, with HPD attaining the 

shortest ALs. When 𝜆 = 5, the performances of PB, MCMC, and HPD dramatically plunged, especially that of the PB 

method with no cases providing CPs of more than 0.95. However, when 𝜆  was increased to 10, 15, 20, or 25, the 

performances of SB, MCMC, and HPD were better, with the HPD method still providing the shortest ALs. Comparisons 

of the CPs and ALs obtained by the four methods can be seen in Figures 5 and 6, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A flowchart of the simulation study. 
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Table 1. Performance metrics of the four methods for the 95% confidence intervals of the CV of a ZIP distribution. 

n 𝝀 𝝎 k 
Coverage probabilities (Average lengths) 

SB PB MCMC HPD 

30 1 

0.1 1.1055 
0.9454 0.9466 0.9600 0.9730 

0.7195 0.7151 0.5856 0.5661 

0.2 1.2247 
0.9518 0.9430 0.9540 0.9580 

0.8378 0.8314 0.7159 0.6910 

0.3 1.3628 
0.9548 0.9514 0.9570 0.9620 

0.9975 0.9856 0.8627 0.8314 

0.4 1.5275 
0.9562 0.9518 0.9570 0.9700 

1.2216 1.2025 1.0724 1.0296 

0.5 1.7321 
0.9584 0.9524 0.9610 0.9710 

1.5621 1.5312 1.3592 1.2959 

0.6 2.0000 
0.9550 0.9442 0.9420 0.9550 

2.0527 2.0143 1.8475 1.7377 

0.7 2.3805 
0.9508 0.9492 0.9550 0.9610 

2.7070 2.6138 2.7211 2.4906 

0.8 3.0000 
0.9670 0.9520 0.9710 0.9670 

3.4482 3.0945 4.9293 4.2834 

0.9 4.3589 
0.9606 0.9758 0.9560 0.9530 

3.9419 3.0752 10.1019 8.2707 

30 5 

0.1 0.5774 
0.9210 0.9244 0.9370 0.9380 

0.3518 0.3503 0.2870 0.2746 

0.2 0.7071 
0.9374 0.9360 0.9310 0.9380 

0.4472 0.4457 0.3941 0.3827 

0.3 0.8452 
0.9490 0.9440 0.9490 0.9460 

0.5488 0.5467 0.4952 0.4829 

0.4 1.0000 
0.9546 0.9460 0.9520 0.9530 

0.6753 0.6716 0.6205 0.6050 

0.5 1.1832 
0.9646 0.9470 0.9440 0.9490 

0.8575 0.8497 0.7915 0.7699 

0.6 1.4142 
0.9660 0.9508 0.9520 0.9470 

1.1543 1.1366 1.0334 1.0008 

0.7 1.7321 
0.9676 0.9472 0.9570 0.9610 

1.7031 1.6748 1.5024 1.4329 

0.8 2.2361 
0.9584 0.9340 0.9480 0.9630 

2.6343 2.5552 2.5707 2.3715 

0.9 3.3166 
0.9776 0.9854 0.9700 0.9530 

3.7193 3.1759 6.0620 5.1867 

30 10 

0.1 0.4714 
0.9080 0.9160 0.9180 0.9320 

0.3381 0.3365 0.2993 0.2860 

0.2 0.6124 
0.9366 0.9378 0.9380 0.9350 

0.4364 0.4352 0.4016 0.3909 

0.3 0.7559 
0.9512 0.9438 0.9360 0.9420 

0.5327 0.5308 0.4956 0.4848 

0.4 0.9129 
0.9580 0.9460 0.9590 0.9530 

0.6518 0.6474 0.6116 0.5981 

0.5 1.0954 
0.9648 0.9450 0.9500 0.9370 

0.8244 0.8155 0.7619 0.7427 

0.6 1.3229 
0.9682 0.9488 0.9520 0.9420 

1.1110 1.0921 0.9959 0.9644 

0.7 1.6330 
0.9670 0.9442 0.9450 0.9560 

1.6557 1.6214 1.4402 1.3750 

0.8 2.1213 
0.9640 0.9368 0.9330 0.9550 

2.6070 2.5219 2.4750 2.2797 

0.9 3.1623 
0.9748 0.9850 0.9720 0.9640 

3.7544 3.1944 5.8542 5.0215 
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30 15 

0.1 0.4303 
0.9060 0.9194 0.9300 0.9380 

0.3443 0.3423 0.3144 0.3004 

0.2 0.5774 
0.9426 0.9362 0.9410 0.9390 

0.4410 0.4402 0.4153 0.4052 

0.3 0.7237 
0.9538 0.9448 0.9420 0.9550 

0.5334 0.5311 0.5014 0.4914 

0.4 0.8819 
0.9570 0.9466 0.9570 0.9420 

0.6490 0.6433 0.6084 0.5954 

0.5 1.0646 
0.9660 0.9472 0.9490 0.9440 

0.8183 0.8067 0.7664 0.7474 

0.6 1.2910 
0.9704 0.9494 0.9530 0.9480 

1.1020 1.0815 0.9838 0.9541 

0.7 1.5986 
0.9680 0.9444 0.9500 0.9530 

1.6464 1.6093 1.3800 1.3217 

0.8 2.0817 
0.9658 0.9398 0.9380 0.9600 

2.6058 2.5152 2.4471 2.2607 

0.9 3.1091 
0.9754 0.9872 0.9770 0.9690 

3.7698 3.2049 5.6525 4.8553 

30 20 

0.1 0.4082 
0.9098 0.9228 0.9300 0.9340 

0.3515 0.3491 0.3262 0.3124 

0.2 0.5590 
0.9448 0.9358 0.9370 0.9360 

0.4459 0.4453 0.4191 0.4095 

0.3 0.7071 
0.9584 0.9454 0.9420 0.9500 

0.5354 0.5326 0.5073 0.4975 

0.4 0.8660 
0.9556 0.9472 0.9530 0.9350 

0.6489 0.6418 0.6119 0.5994 

0.5 1.0488 
0.9660 0.9456 0.9540 0.9440 

0.8163 0.8026 0.7628 0.7442 

0.6 1.2748 
0.9716 0.9486 0.9540 0.9520 

1.0985 1.0763 0.9979 0.9682 

0.7 1.5811 
0.9690 0.9422 0.9480 0.9550 

1.6430 1.6040 1.4081 1.3463 

0.8 2.0616 
0.9660 0.9404 0.9360 0.9600 

2.6066 2.5125 2.4042 2.2215 

0.9 3.0822 
0.9754 0.9896 0.9750 0.9700 

3.7784 3.2102 5.6780 4.8721 

30 25 

0.1 0.3944 
0.9178 0.9234 0.9320 0.9400 

0.3580 0.3552 0.3327 0.3190 

0.2 0.5477 
0.9454 0.9340 0.9430 0.9460 

0.4500 0.4496 0.4288 0.4193 

0.3 0.6969 
0.9610 0.9448 0.9510 0.9540 

0.5372 0.5341 0.5123 0.5026 

0.4 0.8563 
0.9550 0.9466 0.9530 0.9320 

0.6492 0.6410 0.6196 0.6072 

0.5 1.0392 
0.9658 0.9448 0.9510 0.9380 

0.8155 0.8001 0.7562 0.7381 

0.6 1.2649 
0.9722 0.9466 0.9410 0.9390 

1.0968 1.0731 0.9952 0.9649 

0.7 1.5706 
0.9698 0.9382 0.9470 0.9530 

1.6413 1.6008 1.3961 1.3350 

0.8 2.0494 
0.9658 0.9402 0.9300 0.9670 

2.6075 2.5110 2.4566 2.2672 

0.9 3.0659 
0.9758 0.9916 0.9690 0.9540 

3.7836 3.2135 5.7897 4.9572 
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100 1 

0.1 1.1055 
0.9424 0.9430 0.9770 0.9790 

0.3806 0.3790 0.3124 0.3071 

0.2 1.2247 
0.9458 0.9456 0.9680 0.9660 

0.4362 0.4343 0.3835 0.3778 

0.3 1.3628 
0.9460 0.9444 0.9580 0.9550 

0.5066 0.5042 0.4620 0.4556 

0.4 1.5275 
0.9544 0.9470 0.9580 0.9580 

0.6000 0.5970 0.5523 0.5443 

0.5 1.7321 
0.9540 0.9502 0.9530 0.9510 

0.7317 0.7272 0.6814 0.6707 

0.6 2.0000 
0.9560 0.9504 0.9540 0.9510 

0.9373 0.9302 0.8739 0.8580 

0.7 2.3805 
0.9626 0.9470 0.9550 0.9630 

1.3090 1.2937 1.2187 1.1902 

0.8 3.0000 
0.9592 0.9512 0.9470 0.9610 

2.1455 2.1001 1.9203 1.8553 

0.9 4.3589 
0.9494 0.9308 0.9310 0.9480 

4.6522 4.5566 4.7023 4.3162 

100 5 

0.1 0.5774 
0.9396 0.9406 0.9430 0.9420 

0.1911 0.1903 0.1575 0.1547 

0.2 0.7071 
0.9470 0.9426 0.9540 0.9500 

0.2392 0.2382 0.2141 0.2116 

0.3 0.8452 
0.9476 0.9436 0.9320 0.9320 

0.2894 0.2883 0.2679 0.2651 

0.4 1.0000 
0.9524 0.9480 0.9380 0.9410 

0.3498 0.3485 0.3295 0.3260 

0.5 1.1832 
0.9544 0.9488 0.9420 0.9380 

0.4327 0.4311 0.4078 0.4033 

0.6 1.4142 
0.9588 0.9454 0.9490 0.9440 

0.5555 0.5531 0.5273 0.5205 

0.7 1.7321 
0.9584 0.9476 0.9350 0.9390 

0.7656 0.7609 0.7233 0.7125 

.8 2.2361 
0.9684 0.9450 0.9410 0.9480 

1.2255 1.2119 1.1298 1.1054 

0.9 3.3166 
0.9694 0.9422 0.9510 0.9500 

2.9347 2.8818 2.4366 2.3347 

100 10 

0.1 0.4714 
0.9412 0.9420 0.9390 0.9310 

0.1839 0.1831 0.1675 0.1646 

0.2 0.6124 
0.9506 0.9450 0.9560 0.9440 

0.2321 0.2312 0.2198 0.2175 

0.3 0.7559 
0.9486 0.9462 0.9510 0.9540 

0.2793 0.2782 0.2693 0.2668 

0.4  0.9129 
0.9510 0.9446 0.9510 0.9540 

0.3355 0.3343 0.3266 0.3234 

0.5 1.0954 
0.9578 0.9482 0.9510 0.9550 

0.4132 0.4116 0.4003 0.3961 

0.6 1.3229 
0.9574 0.9434 0.9470 0.9520 

0.5289 0.5267 0.5125 0.5063 

0.7 1.6330 
0.9630 0.9478 0.9580 0.9580 

0.7267 0.7225 0.6973 0.6867 

0.8 2.1213 
0.9708 0.9448 0.9380 0.9380 

1.1637 1.1510 1.0718 1.0491 

0.9 3.1623 
0.9726 0.9358 0.9550 0.9540 

2.8396 2.7804 2.3995 2.2973 
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100 15 

0.1 0.4303 
0.9392 0.9414 0.9640 0.9610 

0.1877 0.1869 0.1783 0.1757 

0.2 0.5774 
0.9504 0.9468 0.9510 0.9490 

0.2339 0.2331 0.2266 0.2245 

0.3 0.7237  
0.9480 0.9470 0.9450 0.9420 

0.2790 0.2779 0.2722 0.2697 

0.4 0.8819 
0.9506 0.9452 0.9520 0.9520 

0.3334 0.3322 0.3266 0.3236 

0.5 1.0646 
0.9600 0.9484 0.9460 0.9540 

0.4091 0.4075 0.4005 0.3961 

0.6  1.2910  
0.9562 0.9434 0.9390 0.9430 

0.5224 0.5203 0.5090 0.5031 

0.7  1.5986  
0.9636 0.9474 0.9410 0.9410 

0.7166 0.7125 0.6919 0.6814 

0.8 2.0817 
0.9726 0.9438 0.9530 0.9540 

1.1472 1.1341 1.0847 1.0608 

0.9 3.1091  
0.9734 0.9368 0.9550 0.9550 

2.8175 2.7542 2.3798 2.2705 

100 20 

0.1 0.4082 
0.9412 0.9406 0.9490 0.9360 

0.1919 0.1911 0.1849 0.1824 

0.2 0.5590 
0.9524 0.9482 0.9520 0.9490 

0.2361 0.2352 0.2297 0.2276 

0.3 0.7071 
0.9478 0.9422 0.9490 0.9480 

0.2797 0.2787 0.2741 0.2716 

0.4 0.8660 
0.9498 0.9442 0.9520 0.9510 

0.3330 0.3318 0.3274 0.3245 

0.5 1.0488 
0.9584 0.9464 0.9470 0.9530 

0.4076 0.4060 0.3987 0.3948 

0.6 1.2748 
0.9558 0.9436 0.9540 0.9580 

0.5197 0.5174 0.5078 0.5017 

0.7 1.5811 
0.9638 0.9474 0.9510 0.9610 

0.7121 0.7081 0.6901 0.6800 

0.8 2.0616 
0.9724 0.9430 0.9450 0.9570 

1.1399 1.1264 1.0753 1.0525 

0.9 3.0822 
0.9756 0.9356 0.9450 0.9350 

2.8081 2.7419 2.3505 2.2437 

100 25 

0.1 0.3944 
0.9402 0.9394 0.9480 0.9360 

0.1955 0.1947 0.1879 0.1854 

0.  0.5477 
0.9516 0.9478 0.9520 0.9520 

0.2378 0.2370 0.2331 0.2310 

0.3 0.6969 
0.9474 0.9418 0.9430 0.9480 

0.2804 0.2794 0.2764 0.2740 

0.4 0.8563 
0.9506 0.9440 0.9600 0.9560 

0.3329 0.3318 0.3276 0.3247 

0.5  1.0392 
0.9588 0.9468 0.9400 0.9430 

0.4069 0.4053 0.3951 0.3912 

0.6 1.2649 
0.9564 0.9432 0.9480 0.9480 

0.5183 0.5160 0.5068 0.5010 

0.7  1.5706 
0.9636 0.9476 0.9510 0.9550 

0.7097 0.7056 0.6859 0.6761 

0.8 2.0494 
0.9724 0.9432 0.9440 0.9450 

1.1357 1.1220 1.0660 1.0432 

0.9 3.0659 
0.9766 0.9342 0.9590 0.9520 

2.8031 2.7350 2.3184 2.2180 
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Figure 3. CP performances of the four methods for the 95% confidence intervals of the CV of a ZIP distribution for n = 30: 

(A) 𝝀 = 1, (B) 𝝀 = 5, (C) 𝝀 = 10, (D) 𝝀 = 15, (E) 𝝀 = 20, and (F) 𝝀 = 25. 

 

Figure 4. ALs performances of the four methods for the 95% confidence intervals of the CV of a ZIP distribution for n = 30: 

(A) 𝝀 = 1, (B) 𝝀 = 5, (C) 𝝀 = 10, (D) 𝝀 = 15, (E) 𝝀 = 20, and (F) 𝝀 = 25. 
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Figure 5. CP performances of the four methods for the 95% confidence intervals of the CV of a ZIP distribution for n = 100: 

(A) 𝝀 = 1, (B) 𝝀 = 5, (C) 𝝀 = 10, (D) 𝝀 = 15, (E) 𝝀 = 20, and (F) 𝝀 = 25. 

 

Figure 6. AL performances of the four methods for the 95% confidence intervals of the CV of a ZIP distribution for n = 100: 

(A) 𝝀 = 1, (B) 𝝀 = 5, (C) 𝝀 = 10, (D) 𝝀 = 15, (E) 𝝀 = 20, and (F) 𝝀 = 25. 
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5- Application of the Four Methods to the Daily COVID-19 Deaths Data for Thailand  

Data of the daily covid-19 deaths in Thailand were retrieved using the R package 'utils' version 3.6.3 as a datasheet 

from the European Centre for Disease Prevention and Control (ECDC; https://opendata.ecdc.europa.eu/covid19/ 
casedistribution/csv). The downloadable data file is updated daily and contains the latest available public data on 

COVID-19. Each row/entry contains the number of new cases reported per day and per country. Data from 3/12/2019 

to 30/06/2020 for Thailand comprising 176 observations were used in the analysis. A histogram of the data is shown in 

Figure 1. First, whether the model for the data is appropriate was checked by comparing the Akaike information criterion 

(AIC) and the Bayesian information criterion (BIC) values for six distributions: ZIP, zero-inflated negative binomial 

(ZINB), Poisson, negative binomial (NB), geometric, and Gaussian. As reported in Table 2, the AIC and BIC values for 

ZIP are very similar (239.1898 and 245.5308) and the lowest recorded, thereby inferring that it provided the most 

efficient model. 

Table 2. AIC and BIC values for six related models. 

Models ZIP ZINB Poisson NB Geometric Gaussian 

AIC 239.1898 241.1899 299.2355 244.5589 264.0685 448.6331 

BIC 245.5308 250.7014 302.4060 250.8998 267.2390 454.9740 

The mean is 0.3295 and the variance is 0.7365, thus it can clearly be seen that the variance exceeds the mean and 

there is overdispersion. Since the data contain many days of zero deaths, this makes the variance higher than the mean 

and provides a high CV of √0.7365 0.3295⁄ = 2.6045. In this study, we used the pscl package to construct a ZIP model 

that provided count model coefficients for a Poisson distribution with log link = 0.466 (λ̂ = e0.466 = 1.5936) and ZI 

model coefficients for a binomial distribution with logit link = 1.344(�̂� =  𝑒1.344/(1 + 𝑒1.344)  =  0.7931). Hence, the 

estimator for the CV is θ̂ = √1 + (0.7931)(1.5936) (1 − 0.7931)(1.5936)⁄ = 2.6203. The 95% confidence intervals 

for the CV using the four methods cover the point estimator (Table 3). According to the simulation results for n = 200, 

𝜆 = 1, and = 0.8, the HPD method is the best for constructing the confidence interval for the CV because it provided a 

CP of more than 0.95 and the shortest AL. 

Table 3. Estimation of the number of daily COVID-19 deaths in Thailand. 

Method 
CV Estimation 

95% CI Length of CI 

SB (2.0984 3.1879) 1.0895 

PB (2.1826 3.2990) 1.1164 

MCMC (2.1749 3.1820) 1.0072 

HPD (2.1215 3.1165) 0.9950 

6- Discussion  

In this study, four methods: SB, PB, MCMC, and HPD were applied to analyze and construct confidence intervals 

for the CV of a ZIP distribution. From the simulation results, it can be seen that the HPD method did not always provide 

CPs of more than 0.95 because the zeros can be from two sources: (1) real zeros from the Bernoulli component and (2) 

zeros in the Poisson distribution. This led to the sample from the ZIP distribution with a low 𝜆 having a higher proportion 

of zeros than one with a high 𝜆, so the the sample tended to have a greater number of zero items than the actual proportion 

of zeros (𝜔) in the distribution. In other words, the proportion of zeros in the sample becomes closer to 𝜔 as 𝜆 increases. 

Thus, the estimate of 𝜔  can lead to erroneous conclusions, especially when the sample is generated from a ZIP 

distribution with low 𝜆 and high 𝜔. For example, when n = 30, 𝜆 = 1, and 𝜔 = 0.8–0.9, the CPs of all of the methods 

were close to 0.95 but the ALs were too wide, especially for MCMC and HPD (see Figures 3 and 4). However, when 

the sample size was large, the ALs of the methods were similar for all cases. Moreover, we also conducted simulations 

with sample sizes n = 50 and 200 to investigate the trends in the CPs and ALs of the four methods. The simulation 

results for n = 50 were quite similar to those for n = 30 (i.e., a small sample size) and the simulation results for n = 200 

were similar to those for n = 100 (i.e., a large sample size).  

We can see from the results in Figures 3 and 5 that the methods involving bootstrapping performed well, especially 

SB, which provided CPs higher than 0.95 in all cases. However, the bootstrap method is not suitable for the ZI count 

data since its procedure requires a replacement sample. This makes the sample become inflated with zeros, especially 

when the proportion of zeros is high, which can also lead to erroneous estimation.  

https://opendata.ecdc.europa.eu/covid19/
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7- Conclusion 

In this study, confidence intervals for the CV of a ZIP distribution were constructed by applying four methods, namely 

SB, PB, MCMC, and HPD. Since these methods do not require determining the variance of the CV of a ZIP distribution, 

which has a complex form with two parameters and is difficult to estimate, they are more convenient than the maximum 

likelihood estimation approach. When data are overdispersed with excess zeros, as is the case for the number of daily 

COVID-19 deaths in Thailand, the ZIP distribution is the best choice to estimate parameters for constructing confidence 

intervals for the CV. The results in Table 3 show that although the 95% confidence intervals for the CV using the four 

methods covered the true parameter, the HPD interval provided the shortest length. Similar to the simulation results, 

even though the CPs of four methods of the confidence intervals were close to the nominal confidence level, the HPD 

interval provided the shortest average length for almost all cases. Hence, we recommend the HPD method to construct 

the confidence interval of the CV of a ZIP distribution because it provided CPs of 0.95 or better and the shortest ALs in 

all of the scenarios investigated in this study.  
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