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Abstract 

This paper proposes optimal control strategies of a standalone Hybrid Power System (HPS) to 
supply sustainable and optimal energy to an isolated site with improved quality of electrical 

energy. A topology of Isolated Hybrid Power System (IHPS) is proposed, consists of: a 
Photovoltaic System (PVS), a Wind Energy Conversion System (WECS), electronic power 

devices controlled to maximize energy production from renewable sources and to maintain the 

constant DC-link voltage, a Battery Energy Storage System (BESS), Diesel Generator (DG), and 
a Pulse Width Modulation (PWM) Voltage Source Inverter (VSI) located at the load-side end. In 

addition, a novel control strategy has been proposed, in this work, to maximize the power from 

the PVS. This presented strategy, based on the combination between Perturb and Observe (P&O) 
algorithm and the Fuzzy PI Controller (FPIC), presents a good performance, especially in the 

dynamic state compared to the classical algorithm P&O. A supervisory control algorithm has been 

elaborated to manage the energy flows between the devices of the hybrid system to make the 
decision of the optimal operating mode in order to ensure a continuous supply of the load with 

minimum usage of batteries and DG. The simulation results developed in the Matlab/Simulink 

environment are applied to show the efficiency and performance of the proposed control strategies 
in terms of power optimization and energy management. 
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1- Introduction 

In the last decade, the exhausting fossil fuels and increasing electrical energy demand are the huge issues on the 

international agenda. This has led to developing renewable energy sources (RES) from natural free resources (solar 

radiation, wind speed, tides or waves etc.), inexhaustible, available in all regions and respectful of the environment [1]. 

Many remote parts on the world are not electrified. To provide electricity in such remote places, the efficient use of RES 

is becoming very much suitable from both the technical and economic points of view. The electrification of isolated 

sites can be established either by one RES or hybrid RES. Most common combination used in the RES is the solar 

photovoltaic with the wind energy sources, due to their complementarity.  

However, other sources of energy can be implemented (storage system, diesel generator) with the hybrid renewable 

energy system (HRES), to ensure a continuous power supply in case of unavailability of power production from the 

RES. The main problem in operating standalone HRES is to be able to supply the energy requested by the consumer 

despite the large variations in the produced power by RESs, caused by the variation of weather conditions, while 

maintaining the frequency and the voltage supplied to consumers within acceptable limits [2, 3]. 
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To overcome this weakness, this presented work proposes control strategies, to make the IHPS more reliable and cost 

effective with improved power quality. This research is organized as follows: section 2 describes the structure of the 

proposed IHPS. Section 3 presents the modelling of IHPS sources. The different controls applied to power electronics 

interfaces are introduced in section 4. Section 5 is dedicated to the supervisory control strategy IHPS components. 

Section 6 represents the necessary simulation results. Finally, a conclusion of the study is stated in section 7. 

2- Description of the Studied IHPS 

The proposed topology of the IHPS studied consists: two RESs (PVS integrated with WECS), storage system, diesel 

generator and power electronic devices as shown in Figure 1. This configuration is known by its technical-economic 

advantages in supplying energy for isolated areas [4]. 

 

Figure 1. Configuration of the IHPS. 

The PVS includes a PV array and a novel MPPT controller. This is implemented to maximize the generated power 

of the PV system, by adjusting the duty cycle of the boost converter. The WECS is configured by a variable speed wind 

turbine (WT), a permanent magnet synchronous generator (PMSG), AC-DC diode bridge uncontrolled rectifier and a 

stage of DC-DC conversion for MPPT composed by a boost converter controlled by a maximum power point tracking 

(MPPT) technique, to generate the optimal power from the WT, by modulating the duty cycle. 

 Energy storage system (ESS) is used to store excess power from RESs and cover the energy deficiency in case of 

power failure. The ESS consists of a battery bank and a bidirectional DC-DC buck-boost converter associated at the 

DC-link of the IHPS and controlled through a PI control cascade strategy, to keep the DC bus voltage constant at the 

desired level, despite the power changes between the RESs and loads. The constant DC voltage obtained from the two 

RESs systems and ESS is inverted by a PWM VSI and supplied to AC load via an LC filter to get sinusoidal current. 

A diesel generator is connected to the AC bus system to supply directly the principal loads when the energy 

requirement exceeds the total energy produced by the RESs and Battery ESS. A supervisor is developed in this work to 

supervise the power flows between the devices of the IHPS and ensure electrical supply continuity for the loads. 
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3- Modelling of the IHPS 

3-1-  Modelling of PVS 

3-1-1- Modelling of PV Cell and PV Generator 

Solar cells are composed of a p-n junction fabricated by differently doped semiconductor materials [5]. Thereby the 

solar cell can be presented by a simple circuit consisting of a current source IPH represents the cell photocurrent, in 

parallel with a diode D which used to represent the nonlinear impedance of the p-n junction, RS and RSH is the series 

and shunt resistance respectively. The model of the solar cell used in this research work is shown in Figure 2 [6, 7]. 

 

Figure 2. Equivalent circuit model of PV cell. 

The output current I of the cell can be modelled mathematically by the following equations: 

I = IPH − IS. (exp (
q.(V+RS.I)

α.k.T
) − 1) −

V+RS.I

RSH
                                                                                                                   (1) 

Where; I: Solar cell current (A), V: Solar cell output voltage (V), IPH: Solar generated current (A), IS: Diode saturation 

current (A), RS: Solar cell series resistance (Ω), RSH: Solar cell shunts resistance (Ω), α: Ideality factor (between 1 and 

2), k: Boltzmann constant (1.38×10−23 J/K), T: Cell temperature in Kelvin (K). 

The PV cell presents a voltage current and power-current nonlinear characteristic which depend on mainly of 

insolation and temperature. To obtain the desired high power, PV cells are associated in series and parallel circuits on 

PV modules. These modules can be also regrouped in series and/or parallel to form the PV generator (PVG). Based on 

the PV cell model, the model of a PVG with NS×NP cells is represented as follows: 

IPVG = NP. IPH − NP. IS. (exp (
q.(UPVG+RSG.IPVG)

NS.α.k.T
) − 1) −

UPVG+RSG.IPVG

RSHG
                                                                        (2) 

Where NS and NP are the numbers of PV cellules connected in serial and parallel, respectively. 

3-1-2- MPPT for PV System 

To ensure the optimization of the efficiency of the PVS, MPPT technique in designed to control a static converter 

between the load and the PVG to extract the maximum power points (MPP) during the variation of the load, irradiation 

and temperature, by operating the PVG at optimum voltage and current. There are many MPPT methods existing in the 

literature. The most used in the photovoltaic sector is the P&O algorithm. Its principle consists essentially in perturbing 

the output voltage of the PVG by acting on the duty cycle. Indeed, as a consequence of this perturbation, the algorithm 

calculate the power supplied by the PVG at instant k to the previous one at instant (k − 1). If the power increases, the 

algorithm approach the MPP and the variation of the duty cycle is maintained in the same direction. 

On the contrary, if the power decreases, the algorithm move away from the MPP. Then, it must reverse the direction 

of the variation of the duty cycle. The research theoretically stops when the system achieves the MPP. A major 

shortcoming of the algorithm P&O is the bad behavior resulting from a sudden change in irradiation (clouds). For this 

reason, a novel control strategy is developed in this work, which allows a good tracking of the MPP, despite the 

variations of climatic conditions with a fast response (in section 4). 

3-2- WECS Modelling 

3-2-1- Wind Turbine Model 

The output mechanical power extracted by the wind turbine is expressed as given by [8-10]: 

Pm =
1

2
. CP. ρ. S. Vw

3                                                                                                                                                         (3) 

Where: Pm Mechanical Power (W), S is the wind turbine rotor swept area (m2), Vw is the wind speed (m/s),  is air 

density (kg/m3), Cp is the power coefficient. 
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In case of power regulation, the coefficient CP is considered as an important parameter. It’s the ratio of the mechanical 

power to the power offered by the wind. Each turbine type has a unique non-linear function of CP. The power coefficient 

used in this work is defined as a function of λ and 𝛽, which are respectively the tip speed ratio and the blade pitch angle: 

CP(λ, β) = C1 (
C2

λi
− C3. β − C4) e

− 
C5
λi + C6. λ                                                                                                                 (4) 

With:   

1

λi
=

1

λ+0,08.β
−

0,035

β3+1
                                                                                                                                                          (5) 

The coefficients C1 to C6 are: C1 = 0.5176, C2 = 116, C3 = 0.4, C4 = 5, C5 = 21 and C6 = 0.0068. 

The tip speed ration λ is defined as the ratio between the speed of the tips of the blades of a wind turbine and the 

speed of the wind. 

λ =
𝑊m.R

V𝑊
                                                                                                                                                             (6) 

Where: R is radius of the rotor (m) and 𝑊𝑚 is the mechanical angular velocity of the generator (rad/sec). 

Figure 3 presents the Cp characteristics of the wind turbine used in this work, for different values of β. 

 

Figure 3. Cp-λ characteristics, for different values of the pitch angle β. 

The maximum value of Cp (Cpmax = 0,48) is attained for β=0° and for λopt = 8,1. This nominal value of λ allows 

obtaining maximum power for a given wind speed. In this work, the wind turbine has a fixed pitch angle β set to zero, 

in order that it operates in optimal conditions. 

3-2-2- Permanent Magnet Synchronous Generator (PMSG) Model 

The dynamic model of PMSG can be represented in the Park's (d, q) system using the following equations: 

[
vd

vq
] = − [

Rs 0
0 Rs

] [
Id

Iq
] − [

Ld 0
0 Lq

]
d

dt
[
Id

Iq
] −  We [

0 −Lq

Ld 0
] [

Id

Iq
] + We [

0
Ψm

]                                                                (7)          

Where 𝑅𝑠 is the stator resistance (Ω), 𝐿𝑑 and 𝐿𝑞 are the inductances (𝐻) of the generator on the d and q axis respectively, 

ψm is the permanent magnetic flux (𝑊𝑏) and 𝑊𝑒 is the electrical rotating speed (rad/s) of the generator, defined by: 

We = P × Wm                                                                                                                                                                  (8) 

Where P is the number of generator pole pairs. 

The electromagnetic torque equation is given by: 

Cem =
3

2
 p[(Ld − Lq)IdIq−ΨmIq]                                                                                                                                   (9) 
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3-2-3- Maximum Power Transfer Control Technique 

In case of the WECS, the MPPT controller permit to pursuing the maximum wind generation power under variation 

of wind speed, by adjusting the rotor speed. According to the Equations 3 and 4, it can be seen that if the rotor speed is 

kept constant, then any change in wind speed will change the tip-speed ratio, leading to change of 𝐶𝑝 as well as the 

output wind turbine power. So the maximum output wind turbine power is produced when the turbine operates at 𝐶𝑝𝑚𝑎𝑥. 

For that, the rotor speed should be kept at the optimum value of the tip speed ratio λopt. The expression of the optimum 

power from a wind turbine is given as: 

Pmopt
=

1

2
. ρ. CPmax. S. (

R.Ωmopt

 λopt
)

3

                                                                                                                                  (10)             

Where:  

Ωmopt
=

λopt.VV

R
                                                                                                                                                              (11)                                              

Therefore, the optimum torque can be given by: 

Cmopt
= Kopt. Ωmopt

2                                                                                                                                             (12) 

Where: 

Kopt =
1

2
. ρ. CPmax. S. (

R

 λopt
)

3

                                                                                                                                         (13)                                    

Figure 4 shows the characteristics of mechanical rotor power as a function of the rotor speed for different values of 

wind speed. From this figure, we can conclude that for any wind speed, there is a corresponding rotor speed which 

allows to achieve the optimal power 𝑃𝑚𝑜𝑝𝑡 . 

 

Figure 4. Turbine Power Characteristics (Pitch angle beta = 0°). 

If we ignore the friction of the rotor, turbine mechanical properties can be expressed by the following equation: 

 
dWm

dt
  =

1

(Jt+Jg)
. (Cm − Cem)                                                                                                                                               (14) 

Where Cem is electromagnetic torque of the PMSG and J is combined inertia of rotor and turbine. Therefore, in order to 

produce maximum power for any wind speed, the Cem of the PMSG is controlled to match with the wind optimum 

turbine Cmopt according to rotor speed.  

3-3- Energy Storage System Modelling  

A storage battery is an electrical generator formed by a combination of several cells constituted of positive and 

negative electrodes joined by an electrolyte, these cells use the electrochemical properties of an oxidant-reluctant pair 

and convert chemical energy into electrical energy [4]. The storage modelling is based on equivalent circuit presented 

in Figure 5. It is composed by a voltage generator, an internal resistor and a capacity [11]. 
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 Figure 5. Electrical model of the battery. 

Therefore, the mathematical battery model can be written as: 

Ubat = E0 − (K.
∫ Ib𝑑𝑡

Q0
) − Rb. Ib                                                                                                                                       (15)   

Where: E0: Empty voltage of the charged battery (V), K: Constant depends on the battery, Rb: Internal resistance of the 

battery (Ω), Ib: Battery current positive while discharging and negative while charging (A), 
∫ Ib𝑑𝑡

Q0
: Indicates the discharge 

status of the battery, Q0: Capacity of the battery (Ah), Ubat: Battery output voltage (V). 

The state of charge (SOC) is an essential parameter for managing the energy flow between the IHPS and the load 

demand. It is calculated by the following expressions [12]: 

SOC = 100. (1 +
∫ Ib𝑑𝑡

Q0
)                                                                                                                                                  (16)   

The energy constraints of the battery are limited between two values SOCmin (minimal state of charge) and SOCmax 

(maximal state of charge), to ensure the performance of the energy management [13]. 

3-4- Diesel Generator 

A diesel generator (DG) consists of an internal combustion (IC) engine coupled to a synchronous generator. The 

schematic diagram of DG is shown in following figure:  

 

Figure 6. Schematic diagram of the diesel generator. 

The IC engine is integrated with a governor to control the output speed of the engine shaft in order to control the 

generator frequency. The governor adjusts the fuel to the engine as required to keep the engine operating at the desired 

speed. The synchronous generator uses a combination exciter-Voltage Regulation system. The voltage regulator control 

is designed to regulate generator output terminal voltage [14]. 

4- Power Electronics Interfaces Control 

4-1- Boost Converter and Fuzzy MPPT Controller 

In this work, a boost converter is implemented to be controlled by MPPT technique, in both PVS and WECS [5]. In 

Case of PVS, a novel control strategy has been designed for a boost converter, to achieve maximum efficiency. The 

structure of the proposed MPPT control strategy is shown in the following figures:  
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Figure 7. (a) Novel MPPT control for PVS; (b) P&O algorithm flowchart. 

The proposed control structure is based on measuring the output current and voltage of the PVG, then a perturbation 

and observation (P&O) algorithm with current step is executed to calculate the reference current IPVref. The error between 

the reference current and the measured current is the input of a FPIC, which generates the duty cycle that allows to reach 

the maximum power points of the PVS. This proposed MPPT controller is tested and compared with the classical P&O 

algorithm to verify its capacity to track the maximal power points PMref and its robustness, under disturbed irradiance 

variation, as shown in following simulation results: 

(a) 

(b) 
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Figure 8. Simulation results of the proposed MPPT control strategy for the PVS. 

According to the previous curves, we notice that the proposed MPPT control strategy track instantly the maximum 

power points during fast variations of irradiance with more stability and accuracy, compared to the classical P&O 

algorithm, which has a bad tracking of PMref in the transient state. In case of WECS, the structure of the proposed MPPT 

control strategy is shown in the following figures: 

 

 

Figure 9. (a) Block diagram of the WECS; (b) Structure of MPPT controller for WECS. 

(a) 

(b) 
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Where: 

Tgref
= Kopt . Wm

2                                                                                                                                                                               (17) 

And: 

IWref
=

Tgref
.Wm

VW
                                                                                                                                                                  (18) 

Through the FPIC, the error between the reference current IWref and measured current IW is used to vary the duty cycle 

D for the Boost converter, in order to extract the maximum power point. The Block diagram of FPIC applied in MPPT 

control loop for both PVS and WECS, is presented in Figure 10. 

 

Figure 10. Block diagram of FPIC. 

The inputs to a FPIC are usually an error E(n) and a change of error ∆E(n) as expressed in Equations 19 and 20 

respectively. 

E(n) = Iref − I                                                                                                                                                                 (19) 

ΔE(n) = E(n) − E(n − 1)                                                                                                                                               (20) 

During fuzzification E and ∆E are calculated and converted to the linguistic variables. Then an inference is executed 

based on a set of rules. Finally, the fuzzy output is converted into a numeric value via defuzzification step. The obtained 

result is the change of duty cycle of the switch S for the DC-DC boost converter. The simulation results of this MPPT 

strategy have been presented and described in Tahiri et al. (2019) study [15]. 

4-2- Bidirectional Buck-boost Converter 

A DC-DC Bidirectional buck-boost converter is connected between the storage battery and the DC-link of the IHPS, 

in order to keep the DC-link voltage constant despite the power changes in the sources and the loads [16, 17]. A PI 

control cascade strategy is used to regulate the DC bus voltage as shown in Figure 11 [18]. 

 

Figure 11. Control structure of bi-directional DC/DC converter. 
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The error between the measured output voltage and the reference voltage is the input of the first PI controller. The 

output of this voltage controlled loop is set as the charging/discharging current reference. In the inner current loop, the 

reference current signal is compared to the measured current to generate a duty cycle, which can drive the IGBTs through 

the PWM signal, to regulate the DC bus voltage. 

4-3- VSI and Filter Model 

In this work, a sinusoidal PWM inverter is used to convert the DC Voltage into three-phase AC voltage [4]. The 

power part of the inverter is composed of three arms consisting each one two switches. Each switch is composed of 

transistor and of a diode coupled in parallel. The LC filter is connected to the inverter output, it’s designed to reduce 

high order harmonics of the voltage and current, produced by the sinusoidal PWM inverters. 

6- Energy Management System for IHPS 

The essential role of the supervisory controller is to satisfy the loads demand without interruption under variable 

weather conditions, by managing the power flow of the IHPS [19-23]. The proposed energy management algorithm uses 

primarily the power provided by the PVS and WECS to supply the load, and minimizes the use of the batteries and DG 

for optimizing of fuel consumption and saving the environment.  

 

Figure 12. Flowchart of the IHPS management algorithm. 
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The management controller generates seven contactors control signals: CPV of the PVS, CW of the WECS, CBD of 

battery discharging, CBCH of battery charging, CPL of principal loads, CAL of additional loads, CDL of dump loads and CDG 

of diesel generator, starting from four inputs: the measured power PPV and PW respectively from PVS and WECS, power 

demanded by loads and the battery bank SOC. The supervision algorithm for power management is shown in Figure 12. 

It can be summarized as follows scenarios: 

 Scenario 1: The total power generation from PVS and WECS reaches 25kW. In this case, the principal and 

additional loads will be supplied only by RESs. 

 Scenario 2: If the RESs energy is greater than the load demand and the SOC is less than 95%, the excess is used 

to charge the batteries. 

 Scenario 3: If the RESs energy is greater than the load demand and the SOC is not less than 95%, then the 

supervisory controller connects the dump load. 

 Scenario 4: PV and wind energy sources are insufficient to supply loads. In this case the principal and additional 

loads will be supplied by the RESs and batteries, if SOC is greater than 35% and total generation power from the 

sources reaches 25KW. 

 Scenario 5: if the total power produced by RESs and batteries reaches just 15KW, supervisory controller 

disconnects the additional load and supply only the principal loads. 

 Scenario 6: In case of PV and wind energy sources is insufficient to supply loads and the SOC is less than 35%, 

then diesel generator starts to supply only the principal loads. 

7- Simulation Results 

The model of the IHPS is designed and simulated with Matlab/Simulink platform, to verify the performance of the 

proposed power management strategy in different scenarios and under variable weather conditions. In this proposed 

IHPS, the PVS and the WECS are considered as the main power sources for supplying the energy demand of 30 KW 

maximum to the load: 15 KW principal load, 10 KW additional load and 5KW dump load. The batteries and the DG are 

used as backup systems. 

The PVG is composed of 5 strings connected in parallel, each string consists 7 modules connected in series. The 

output power of the PVG is 15KW at nominal operating conditions. The rated power of the WT is 25 KW. The ESS 

consists of 34 batteries of 150 AH connected in series, which can provide 61.2 KWH and can supply the principal load 

during 4 hours. The DG is the last backup systems. Its rated power is 15 KW. Table 1 summarizes the parameters of 

each system.  

Table 1. Parameters of IHPS. 

Parameters Values 

PVS 

Power rating 

 

15 KW 

WECS 

Power rating 

 

25 KW 

ESS 

Number of batteries in series 

Single battery capacity 

 

34 

150 AH 

DG 

Rated power 

 

15 KW 

Loads 

Power of principal load 

Power of additional load 

Power of dump load 

 

15 KW 

10 KW 

5 KW 

Figures 13.a to 13.e show, respectively the load power, the power generated from PVS, the power generated from 

WECS and the power of DG. These results verify the availability of the energy for load demand in spite of the insufficient 

energy produced by RESs. The SOC of batteries increase or decrease depending on the excess power or deficient power 

generated by the RESs as presented in figure 13.e. The load voltage is maintained within the limit as shown in figure 

13.f. The plotted simulation results of the power flow supervisory are shown in follows figures: 
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Figure 13. Simulation results of the IHPS. a) Load power (W); b) Power from PVS (W); c) Power from WECS (W); d) Power 

from DG (W); e) Batteries state of charge (%);f. Load Voltage (V); g) Load current (A). 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 
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This simulation results show clearly all the possible scenarios described previously in the supervision algorithm. 

Therefore, the objective of the proposed IHPS's energy management is achieved. 

8- Conclusions 

In this work, optimal control strategies of an isolated hybrid Solar-Wind-Battery-Diesel power system has been 

presented.  

 Firstly, and in order to improve the efficiency of RESs, we adopted MPPT controls for both PVS and WECS to 

generate the optimal power to the load under variable climatic conditions. A novel MPPT strategy, combine 

between the simplicity of the classical P&O algorithm and the flexibility of the FPIC, has been developed for the 

PVS. The simulation results show the robustness of this novel MPPT controller, during rapid change in weather 

conditions, compared to the classical P&O algorithm; 

 The second part concerns the control of the DC bus voltage to a reference value with the ESS and the control 

applied to the inverter; 

 Finally, an energy management has been established using the switching method and simulated for loads of 30 

KW peak. The simulation results showed the electrical production continuity for loads whatever the meteorological 

conditions, by the optimal interaction of the renewable energy sources with less usage of backup power systems 

(Batteries + DG). 
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