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Abstract

Lung cancer, a leading cause of cancer-related mortality worldwide, often escapes early detection due
to the absence of distinct symptoms in its initial stages. This work investigates how Machine Learning . . .
(ML) might improve early diagnosis by analyzing Electronic Health Records (EHR) data. Multiple ~ HYPrid Metaheuristics Algorithm;

ML models were developed and evaluated on a synthetic dataset created to replicate real-world patient  Lung Cancer Diagnosis;

characteristics, allowing controlled experimentation while safeguarding privacy. Model performance  \14chine Learning.

was tuned using both conventional optimization methods and nature-inspired approaches, with the

aim of balancing predictive accuracy and computational efficiency. In our synthetic dataset

experiments, ensemble learners optimized with metaheuristic techniques reached accuracy levels  Article History:

approaching 99 percent while maintaining computational efficiency and generally outperformed

simpler baselines. The contribution of this work lies in exploring the integration of GFO and WOA  Received: 29  August 2025
for feature selection and hyperparameter tuning of XGBoost, together with a soft-voting ensemble. N

This approach provides an experimental pathway for enhancing predictive performance under Revised: 16 January 2026
computational constraints. However, as the dataset is synthetic, the conclusion remains experimental;  Accepted: 23 January 2026
validation against clinical records will be essential before translation into practice. Published: 01 February 2026

1- Introduction
1-1-Lung Cancer: A Global Health Threat

Lung cancer was hardly seen a century ago; today, for men and women, it ranks as the primary cause of cancer-related
death globally [1]. GLOBOCAN 2020 forecasts indicate that lung cancer accounted for around 1.8 million fatalities
(18%), globally, in 2020 alone [2]. The subtle development of the disease, sometimes free of obvious early signs, presents
major difficulties for appropriate diagnosis and treatment [1]. Still, the main cause is tobacco use, particularly smoking,
in over 80% of all cases. Further worsening the worldwide burden of this disease are exposures to harmful substances
such as asbestos, radon, and air pollution [3].

1-2- Causes and Effects of Lung Cancer

A complex disease, lung cancer results from a confluence of several risk factors greatly raising the probability of its
occurrence [4]. These factors can be categorized into the following:
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Tobacco Smoke: At roughly 85% of all cases, tobacco smoke remains the main risk factor for lung cancer. Whether
from cigarettes, cigars, or pipes, the harmful compounds in tobacco smoke—such as tar, nicotine, and carcinogens—
damage lung cell DNA, hence initiating uncontrolled cell proliferation and cancer development [5].

Occupational Hazards: Lung cancer risk is raised by several jobs exposing people to carcinogens. Once extensively
employed in building and insulation, asbestos is a proven carcinogen intimately associated with lung cancer, especially
mesothelioma. Workers in construction, mining, and manufacturing sectors are at risk from other occupational hazards,
including arsenic, chromium, nickel, radon, and diesel exhaust [4].

Environmental Pollutants: Another major risk factor is air pollution, whereby prolonged exposure to particulate
matter—an amalgamation of solid particles and liquid droplets—causes inflammation and destruction of lung tissue.
Sources include power plants, industrial pollutants, and car exhaust. Higher lung cancer risk has been associated
particularly with more polluted urban regions [3].

Exposure to Everyday Items: A few often-used substances might raise lung cancer risk. For instance, arsenic-
contaminated water can cause long-term health issues, including lung cancer. Moreover, factors advised to increase risk
in certain research include high consumption of processed and red meats as well as alcohol [6].

Knowing these risk factors helps one to forecast their likelihood of lung cancer. Including information on smoking
history, occupational exposures, environmental factors, and other relevant lifestyle and health data into electronic health
records allows machine learning algorithms to use this comprehensive dataset to increase the accuracy of lung cancer
projections. Early identification and fast response made possible by this can help to improve patient outcomes and maybe
save lives by allowing prompt intervention.

1-3- Diagnosing Lung Cancer

Improving the survival rates in lung cancer cases depends on timely diagnosis [3]. Still, the complicated character
of the illness sometimes causes delays in early diagnosis. Common diagnostic techniques include:

Physical Examination: Using a physical examination, doctors can evaluate the chest for anomalies, including tumors
or inflammation [7].

Imaging: Potential lung tumors are found using diagnostics like computed tomography (CT), magnetic resonance
imaging (MRI), and chest X-rays [1].

Bronchoscopy: This procedure directly examines the lungs by passing a thin, flexible tube containing a light and
camera through the airways [7].

Biopsy: A definitive diagnosis calls for looking under a microscope at a tissue sample taken from a suspected
abnormal area to find cancer cells [8].

Although these methods are widely used, they can be invasive, time-intensive, and subject to variability in
interpretation, underscoring the need for complementary computational approaches.
1-4-The Challenges of Diagnosis and the Potential of Machine Learning

Lung cancer diagnosis is intrinsically difficult, and the sheer volume of data produced by contemporary medical
technologies emphasizes the need for sophisticated algorithms able to identify tiny patterns that conventional studies
could ignore. Machine learning offers great possibilities to address these issues. ML techniques, which also help to
uncover trends buried in patient symptoms, genetic profiles, and electronic health records, fit large and sophisticated
datasets.

ML application in lung cancer diagnostics offers promise in several important areas:
Improving Diagnostic Accuracy: By analyzing complex EHR datasets.

Enhancing Early Detection: ML can help with timely intervention by spotting trends suggestive of early-stage lung
cancer that might escape conventional approaches.

Streamlining the Diagnostic Process: By means of automated analysis using ML, dependence on subjective
interpretation is lessened, hence improving efficiency and reducing human error in diagnostic procedures.

Recent work has explored these possibilities through EHR-based pipelines. Inclusive risk models for both smokers
and nonsmokers have demonstrated promising predictive accuracy but were affected by bias, missing data, and lack of
external validation [9].

Other studies have targeted narrower challenges. For instance, smoking status has been extracted from free-text
clinical notes using explainable Al methods, which achieved near-perfect accuracy but remained language- and system-
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specific [10]. Similarly, transformer-based approaches have shown that sequential care pathways in EHRs can be
modeled to capture temporal dependencies and improve predictive value, yet these models are computationally
demanding and not easily transferable across healthcare systems [11].

Large language models such as GPT-4 have also been tested for phenotype extraction, producing strong results but
at high cost and within constrained datasets [12]. In parallel, gradient boosting methods have been applied to large real-
world cohorts, achieving robust discrimination but relying heavily on imaging features and still lacking independent
validation [13].

Finally, systematic reviews confirm that deep learning applied to imaging remains the dominant approach in lung
cancer prediction. While these models offer high accuracy, they continue to face limitations of interpretability,
reproducibility, and integration with multimodal data such as EHR [14]. While these capabilities are promising, their
practical implementation requires careful validation in real-world settings to ensure accuracy, scalability, and clinician
trust.

1-5-Research Gap

While deep learning methods applied to medical imaging have achieved high diagnostic accuracy in lung cancer
detection [14], their dominance has left EHR-based research comparatively underdeveloped. Existing EHR studies
remain fragmented: some address smoking status extraction from unstructured text [10], others design inclusive models
for younger adults and nonsmokers [9], while transformer-based architectures capture sequential care pathways with
high accuracy but substantial computational cost [11]. More recent work has applied GPT-4 to phenotype extraction
[12] or gradient boosting on regional cohorts [13], yet these efforts remain limited either by data scope, lack of external
validation, or reliance on imaging features.

This fragmentation highlights a persistent gap: the absence of lightweight, resource-conscious frameworks that can
passively monitor routinely updated EHRs to raise early alerts. Such systems would not replace established diagnostic
methods but could complement them by enabling scalable background surveillance, particularly valuable in populations
who may not undergo screening despite high risk. Moreover, many advanced approaches—such as transformer-based
models or large language models—are computationally intensive, creating barriers for deployment in smaller hospitals
or resource-limited settings. Although federated learning offers potential for collaboration across institutions while
preserving data privacy [15], lightweight hybrid optimization strategies for EHR-based prediction remain relatively
unexplored.

1-6- Goal

Using electronic health records data to include the intricate interactions between the causes and consequences of lung
cancer into prediction models has the potential to greatly enhance the detection and treatment of this disease. Healthcare
professionals can create customized treatment plans, make more informed judgments, and gain insight into individual
patient risk profiles by using machine learning and data analytics, thereby helping to reduce the burden of lung cancer.
ML’s inclusion in the diagnostic process can extract meaningful information from EHR data, therefore enabling
developments in early detection and management. Large datasets spanning symptoms, medical history, genetic
information, and lifestyle factors—that may not be readily obvious to human doctors—showcase ML systems in finding
subtle patterns and relationships. Improved early diagnosis and intervention help to increase this capability, hence
improving lung cancer treatment; moreover, it streamlines the diagnostic process for better efficiency.

The aim of this work is to assess the ability of several ML techniques to detect diagnostic trends in EHR records.
The database contains thorough information, including patient symptoms, characteristics, medical history, and
medicines. For this exploratory purpose, we used a synthetic dataset generated through the Synthea Learning Health
System [16], which provides realistic yet fully privacy-preserving patient records. In particular, we introduce a hybrid
optimization pipeline combining Grey Wolf and Whale Optimization algorithms for feature selection and
hyperparameter tuning, together with an XGBoost-centered ensemble designed to balance predictive performance with
computational efficiency.

This work is presented as an exploratory step in applying ML for lung cancer detection. As the dataset is synthetic,
the findings should be regarded as preliminary and require validation with real-world clinical data before practical
implementation. In this way, the study contributes to ongoing discussions by comparing traditional and hybrid models
and motivating further research to refine and test these methods in clinical environments.

2- Literature Review

One of the most common and deadly tumors in the world, lung cancer still kills a lot of people; early discovery
greatly helps to improve patient outcomes. Particularly in the analysis of medical imaging, genetic markers, and patient
records, researchers keep investigating many computational and data-driven approaches to improve diagnosis accuracy.
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Electronic Health Records (EHRS) are a great tool for lung cancer research thanks to a thorough understanding of
patient demographics, medical history, and test data. By meticulously reviewing these records, researchers have
identified trends that might help individualised treatment planning and early diagnosis [17]. Investigating radiomics-
based classifiers to distinguish between two main histologic subtypes of lung cancer, adenocarcinoma and squamous
cell carcinoma, Wu et al. (2016) [18] undertook an important study. This work emphasizes the possibility of imaging-
based analysis in guiding clinical care since histologic subtypes affect therapy options. Their work created multivariate
classifiers evaluated on an independent patient cohort and found radiomic characteristics highly linked with histology.
The study supports the importance of radiomics in improving precision medicine even if the prediction performance
(AUC of 0.72) points to room for development.

Building on radiomics studies, Kumar et al. (2017) [19] presented a computational model meant to enhance CT
imaging for data lung cancer diagnosis. Their efforts included fresh sequencing methods meant to improve
categorization accuracy. Although the strategy improved over past techniques, the results highlight the need of more
validation before clinical application. To address the integration of information from several imaging modalities (e.g.,
PET, CT, MRI) and the choice of suitable classifiers, Zhou et al. (2017) [20] tackled major hurdles in predictive
modelling. Using evidential reasoning, their suggested classifier fusion approach merged modality-specific classifiers
to produce optimal predictive models. Although more research is required to assess its resilience over several clinical
environments, the study showed better performance than individual classifiers. Turning now to genomic analysis, Yuan
et al. (2017) [21] examined variations in gene expression between squamous cell carcinoma and lung adenocarcinoma.
The work found important genetic markers separating the two subtypes by use of support vector machines and feature
selection approaches. These results advance knowledge of the molecular differences between lung cancer subtypes and
might help to guide the creation of more focused treatment plans.

Apart from genetic analysis and imaging, scientists have investigated several diagnostic strategies. By means of
exosome analysis in circulating blood, Shin et al. (2019) [22] devised a non-invasive early lung cancer detection
technique. Their work classified molecules in exosomes using a computational model and used surface-enhanced Raman
spectroscopy (SERS) to investigate chemical patterns, suggesting its possible use as a pre-screening tool. The method
showed good performance in separating cancer-derived from normal exosomes. More evidence is needed, though, to
evaluate its relevance in regular clinical practice. In the framework of treatment planning, Wang et al. (2019) [23] put
up a multi-objective deep learning model meant to enhance radiotherapy decision-making. With consideration for
sensitivity, specificity, and AUC during model selection, their approach used predictive modeling approaches to evaluate
therapy outcomes. Although their results show the possibility for tailored therapy plans, more research is required to
guarantee generalizability in several healthcare environments.

At the same time, Rieke et al. (2020) [15] provided a perspective on the future of digital health using federated
learning (FL). Unlike conventional centralized approaches, FL enables collaborative model training across multiple
institutions while keeping patient data local, thus directly addressing privacy and governance challenges. The authors
reviewed applications in EHR-based event prediction, brain tumor segmentation, and mammography, showing that FL
can match or outperform centralized training while maintaining privacy. They also highlighted critical challenges such
as non-11D data, potential information leakage through gradients, and system-level requirements for traceability and
secure computation. Their work positions FL as essential infrastructure for privacy-preserving Al in healthcare, laying
groundwork for later EHR-focused ML studies.

Research has also explored feature selection methods to improve lung cancer diagnosis. Enhesari et al. (2021) [24]
developed a technique meant to maximize the choice of informative features from patient datasets, hence lowering
computing complexity while preserving diagnostic accuracy. Using just 11 features, their method—applied to a dataset
of 32 patient records with 57 features—achieved an accuracy of 80.63%. This emphasises in clinical decision support
the possibilities of effective feature selection techniques.

One more promising avenue for early identification is blood-based biomarkers. Investigating metabolic biomarkers
in plasma samples, Xie et al. (2021) [25] found clear signals linked with early-stage lung cancer. Their work highlighted
the promise of blood-based screening techniques by showing great accuracy in differentiating stage | cancer patients
from healthy people. Still, adding other biological markers such as genetic data may improve diagnosis accuracy. With
an eye towards routinely gathered medical data, Gould et al. (2022) [26] created a predictive model based on clinical
and laboratory data. Using gradient boosting methods, their method beat conventional risk assessment models and
showed the capacity to identify cancer risk months before clinical diagnosis. This study supports the possibility of data-
driven methods in enabling earlier intervention.

Detection of lung cancer depends much on image segmentation. Senthil Kumar et al. (2019) [27] investigate how to
raise segmentation accuracy using computational optimization methods. Their research showed that, especially when
combined with preprocessing methods improving image clarity, the Guaranteed Convergence PSO (GCPSO) algorithm
attained exceptional segmentation results.
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Many recent investigations have investigated fresh computer approaches for cancer diagnosis. A hybrid strategy
combining convolutional neural networks (CNNs) with feature optimization methods was proposed by Vijh et al. (2023)
[28], thus improving accuracy while lowering computing costs. To improve CNN-based lung cancer classification,
Priyadharshini & Zoraida (2023) [29] also presented a hybrid model including several optimization techniques. Their
results imply that well-chosen optimization strategies can support more accurate diagnosis models.

Gupta et al. (2019) [30] investigated evolutionary algorithms for analysis of CT images of lung cancer, further
enhancing feature selection techniques. Their work showed that an enhanced grey wolf method minimized computing
cost and selected pertinent image features, hence producing high classification accuracy. Another area of interest has
come from the evolution of ensemble classification techniques. Designed to improve diagnosis accuracy and efficiency,
Alzubi et al. (2023) [31] suggested a neural network-based classification method using improved feature selection
strategies; their system showed speed and accuracy gains over conventional classification approaches.

In recent years, alongside the well-established focus on imaging-based pipelines, researchers have also begun to
explore EHR and text-driven approaches, often in the context of retrospective cohorts or pilot implementations. These
studies remain fewer in number than imaging work but represent a growing strand of research, complemented by
analyses on large real-world datasets and systematic reviews. Building on this trajectory, Chen et al. (2024) [9]
developed inclusive ML models for lung cancer prediction using EHR data that cover both smokers and nonsmokers.
The study reported strong predictive accuracy; however, it also noted bias, missing data, and the absence of external
validation, highlighting practical barriers to wider deployment. Complementing this, Ebrahimi et al. (2024) [10]
addressed unstructured clinical text by automatically identifying smoking status from Danish EHR notes using
explainable Al. Performance was high across binary and multiclass tasks; nevertheless, the approach remained language-
and system-specific, limiting straightforward transfer to other settings.

Wang et al. (2024) [11] advanced sequential modeling by proposing a transformer-based framework that captures
temporal care pathways in large-scale EHR data. The method substantially outperformed traditional baselines; yet it
required significant computational resources and lacked external validation, posing challenges for real-time clinical
integration. In parallel, Bhattarai et al. (2024) [12] demonstrated that GPT-4 can extract complex phenotypes from
clinical notes with strong performance in several categories. Despite these gains, the study’s small patient cohort, single-
institution scope, and computational expense temper the immediate generalizability of results. Moving to large cohort
analyses, Su et al. (2025) [13] validated gradient-boosting models for lung cancer risk prediction in a high-risk
population, achieving strong discrimination in training and validation cohorts. The approach relied heavily on CT
imaging features and still lacked independent external validation, which constrains portability across health systems.

Finally, Liz-Lépez et al. (2025) [14] provided a systematic review of deep learning in lung cancer detection. The
review confirmed the dominance of imaging-based methods and high headline accuracy while underscoring persistent
issues of interpretability, heterogeneous evaluation protocols, and limited multimodal integration with EHR data.

Taken together, these more recent efforts suggest an evolution toward incorporating EHR-derived signals and
unstructured clinical text into lung cancer prediction research. At the same time, the literature shows fragmentation
across tasks and methodologies. High-capacity models can report strong performance; however, they are often resource-
intensive, context-specific, and rarely validated externally. Lightweight optimization and ensemble strategies—of the
kind explored in this study—may offer one potential path toward scalable deployment, particularly for institutions with
limited computational resources. Overall, the body of evidence points to the importance of approaches that balance
predictive performance with efficiency while emphasizing privacy-preserving collaboration and, critically, validation
on real-world clinical data before routine adoption.

3- Methodology and Implementation
3-1-Dataset Description

This work uses a synthetic dataset produced using Synthea, a Learning Health System (LHS) built to replicate
realistic patient data for machine learning research in healthcare environments [16]. Comprising over 17,000
simulated cases, the dataset spans around 785 characteristics. These characteristics include a range of demographics,
medical history, symptoms, drugs, and therapeutic results. Synthea enables exploration of machine learning
algorithms for lung cancer prediction inside a regulated yet complicated healthcare environment by offering a
complete and varied dataset.

For model development, four dataset partitions were merged to form the training/validation set, while a fifth
independent partition was retained exclusively for final testing. The positive (lung cancer) and negative (non-lung
cancer) classes were moderately imbalanced, with fewer positive cases. To address this, stratified splits were used to
preserve class ratios during training/validation, and class weights were applied within the algorithms to mitigate bias.
We did not apply oversampling or under sampling strategies, since the dataset itself as synthetic and already included
diverse patient scenarios.
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3-2-Data Preprocessing

To ensure the synthetic dataset Synthea generated was suited for machine learning applications, extensive feature
engineering and data preparation were conducted. Medically relevant features were first identified using exploratory
data analysis (EDA); then relationships were evaluated, and non-relevant data was deleted. Missing values were
addressed by eliminating entries with notable missing information; minor gaps in the surviving dataset were filled in via
median imputation. Categorical features were converted to binary values, and continuous variables were standardized
using StandardScaler to ensure comparability across features.

Feature engineering entails categorizing EHR data into several groups, including diagnosis (e.g., respiratory and
cardiovascular disorders), drugs (e.g., pain relievers and cardiovascular meds), and treatments (e.g., therapies and
diagnostic procedures). By streamlining the data, this methodical approach made analysis more easily tractable. The
dataset was scaled to guarantee that it matched machine learning models; a last review confirmed data completeness and
quality. This careful preparation ensured the dataset was ready for developing prediction models to enhance lung cancer
detection and control. Still, leaning too much on synthetic data emphasizes the need for confirming findings on real-
world datasets. To contextualise these steps, Figure 1 presents a complete workflow of the study, spanning dataset
preparation, model development, optimization, and evaluation.

Data Preparation Model Development Optimisation

r N R

—

Data Acquisition:
Synthea Synthetic EHR

dataset Baseline ML Models:

ADABoost, Bagging, DT,
ExtraTrees, GBC, KNN, LR,
ANN, NB, RF, SVC, XGB

MNature-Inspired
Optimisation:
GA, GWO, MFO, PSO, WOA

Preprocessing:
drop cols>60% null;
median imputation;

binary encoding:

StandardScaler

Hybrid Optimisation:
GWO feature selection;
WOA hyperparameter

tuning (XGB)

GridSearchCV:
Hyperparameter Tuning for
all models

Train/Validation Split:
80/20 stratified;

-/ — \_/J

+ 5-fold CV
Evaluation Ensemble f
Evaluation:
Independent Test PAcc_u.racyi:I;e;sz(,: Soft-Voting Ensemble:
Validation using held- rec's"’A”‘UC S XGB + RF + SVC + LR
out test set (emphasis on Accuracy, (parameters & features from hybrid)

recall, ROC-AUC)

Figure 1. Workflow Diagram

3-3-Classifier Selection

Several classification models are evaluated in this paper to find the most appropriate one for the prediction of lung
cancer. The selected algorithms are ensemble approaches, tree-based models, distance-based techniques, linear models,
a neural network approach, and a probabilistic classifier. This wide spectrum enables one to assess performance
comprehensively in several machine learning models.

Deep learning approaches, while effective in image-based cancer diagnosis, were not used here because this study
focused on structured EHR data, where traditional ML algorithms can perform competitively at lower computational
cost. A central goal was to design a lightweight, resource-conscious pipeline suitable for routine deployment, which is
less feasible with transformer or CNN-based approaches. Hyperparameter optimization was performed for each model
using GridSearchCV with stratified 5-fold cross-validation, ensuring fair and robust comparisons.
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3-3-1- ADABOOST Classifier [32, 33]

One often utilized ensemble technique chosen for its capacity to improve the performance of weak learners is
ADABOOST. The method runs repeatedly, changing the weights of samples depending on past misclassifications.
ADABOOST trains a sequence of weak learners—such as decision trees—by concentrating progressively on harder-to-
classify events and then aggregates them using weighted aggregation into a strong learner. For datasets with complicated
trends especially, this iterative improvement procedure is quite helpful. ADABOOST may thus be less resilient in some
situations since it can be sensitive to noisy data.

o Mathematical Formulation

The ADABOOST ensemble model’s final prediction is a weighted combination of the predictions of its weak

learners:

f(x) = sign(Em=1 tmhm (X)) M

where: f(x) is the final ensemble model’s prediction: hi(X) is the prediction of the (m)-th weak learner, an is the weight
assigned to the (m)-th weak learner, determined by its accuracy on the training data; M is the total number of weak
learners.
e Hyperparameters

Tuning the following hyperparameters is crucial for optimal ADABOOST performance:

o Number of Estimators (M): This determines how many weak learners are included in the ensemble.

o Learning Rate (eta): This controls the contribution of each weak learner to the ensemble.

o Base Estimator: This specifies the type of weak learner used (e.g., decision tree, stump).

o Criterion (for Decision Tree Base Estimator): This is the criterion used to measure the quality of splits in the
decision tree (e.g., Gini impurity, entropy).

o Max Depth (for Decision Tree Base Estimator): This limits the depth of the decision trees used as weak learners.

3-3-2- Bagging Classifier [34, 35]

Designed to lower overfitting and increase the stability of base learners, bagging—bootstrap aggregating—is an
ensemble technique. Usually with replacement, the method generates several bootstrap samples by randomly choosing
portions of the training set. Every sample is utilized to separately teach a basic learner, like a decision tree. All base
learners’ outputs are combined during prediction either by average (for regression tasks) or majority vote (for
classification tasks). Although bagging is very good at lowering variance and enhancing generalization, for big datasets
it may need computationally demanding training.
¢ Mathematical Formulation

The ensemble prediction is the mode of individual base learner predictions:
yg;g(x) = mode(ﬁ(x),j/}(x), ...,y;(x)) 2

where: y'bag(X) is the bagging ensemble prediction for input x; y"i(x) is the prediction of the (i)-th base learner; mode(-)
returns the most frequent class label among predictions.

e Hyperparameters
Tuning the following hyperparameters is crucial for optimizing Bagging:
o Base Estimator: The choice of base learner (e.g., decision tree, linear model) affects the overall performance.
o Number of Estimators (B): Higher numbers can improve accuracy but increase computation time.
o Bootstrap Samples: Whether to use bootstrapping influences data diversity for each base learner.

o Max Samples: This determines the size of each bootstrap sample.

3-3-3- Decision Tree Classifier [36, 37]

Included for their simplicity, interpretability, and good baseline performance under the specified dataset conditions
were Decision Tree (DT) methods. Targeting maximum homogeneity of target classes within each subset, decision trees
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build classification models by recursively partitioning the dataset depending on feature values. The model ends when
some stopping criteria, such as uniform subgroups or predetermined depth, are reached; the splits are shown as branches.
Decision trees are less robust without pruning or other regularizing methods even if they are transparent and easy to use.
Their overfitting is especially prone when the tree gets too deep.

o Mathematical Formulation

Decision trees partition the feature space by selecting the feature at each node that best splits the data into more
homogeneous subgroups according to the target class. The selection criterion is often based on minimizing impurity
measures. Two common choices:

o Gini Impurity: For a given node t:

Ge=1—2k=1 ptz,k (3)
Where pix is the proportion of samples belonging to class k at node t.
o Information Gain: Based on entropy, it measures the reduction in uncertainty about the target class after the split.
For a node t:

16(Dy. 1) = H(D,) - St (D)) @

where: D, is the set of data points at the parent node; f is the feature used for the split; m is the number of branches
created by the split; N; is the number of data points in child node j; N, is the number of data points in the parent node;
H(D) is the entropy of dataset D
o Hyperparameters

Key hyperparameters that guide decision tree construction and impact this study include:

o Criterion: Impacts how the algorithm determines optimal feature splits. We will experiment with both *gini’ (Gini
impurity) and ’entropy’ (information gain) to compare performance.

o Max Depth: Controls tree complexity and can mitigate overfitting. Different maximum depths will be explored
during tuning.

o Min Samples Split/Min Samples Leaf: These parameters govern the minimum data points allowed before further
splitting or creation of terminal ‘leaf” nodes. Adjustments here can prevent overly specific tree structures.

3-3-4- Gradient Boosting Classifier [37, 38]

Gradient Boosting is an ensemble technique used to progressively integrate weak learners—usually decision trees—
to raise predicting performance. Gradient Boosting, unlike Bagging, stresses on matching each new learner to the errors
of the previous ensemble, hence lowering residual errors. Particularly suited for datasets with complicated interactions,
this iterative technique lets the model progressively improve accuracy. Without proper hyperparameter tweaking,
Gradient Boosting can, however, be computationally taxing and prone to overfit.

¢ Mathematical Formulation

Gradient boosting iteratively reduces a loss function through sequential addition of weak learners. The algorithm fits
weak learners to the negative gradient of the loss function with respect to the predictions of the current ensemble. Let
us denote:

o F(x) as the ensemble model
o L(y, F(x)) as the loss function
o hm(x) as the m-th weak learner

In each iteration m, gradient boosting approximately solves:

b = argmin T, - [M} h(x,) (5)

0Fm—-1(x;)
Then the ensemble is updated:
Fm(x) = Fm—l(x) + th(X) (6)

where v is the learning rate.
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e Hyperparameters
The following hyperparameters will be significantly evaluated for their impact on gradient boosting performance:

o Learning Rate: Regulates the degree to which each weak learner alters the ensemble. Smaller learning rates demand
a higher number of weak learners but might enhance generalization.

o Number of Trees: Dictates how many weak learners comprise the ensemble. Increasing this can boost performance
but elevates computational demands.

o Tree-Specific Parameters: These govern attributes of individual decision trees (e.g., max depth, min samples split,
max features).

o Sub-sample: This controls the portion of data points used to train each tree. Introducing randomness through sub-
sampling can mitigate overfitting.

3-3-5- K-Nearest Neighbors [39, 40]

Simplicity and an easy approach to categorization defined the K-Nearest Neighbors (KNN) algorithm as the choice.
KNN works under the presumption that, depending on feature traits, similar data points most certainly belong to the
same class. KNN, unlike other methods, does not include an explicit training phase. Rather, it determines, from a query
point to all other points in the dataset, distances—e.g., Euclidean distance. The query is categorized using the majority
class among the K nearest neighbors. Although KNN is sensitive to the choice of K and the distance metric and
straightforward to build and successful for small datasets, it can be computationally expensive for bigger datasets.

¢ Mathematical Formulation

KNN relies on distance calculations. The most common metric is Euclidean Distance:

2
AC%) = Sy — 33 )
where, x; and x; are two data points, each with n features.

e Hyperparameters
The following hyperparameters within KNN are crucial to optimize:

o K: The number of neighbors that ‘vote’ on the class label. A careful selection is vital — too low K risks overfitting,
while too high a K might lead to underfitting.

o Distance Metric: A choice (Euclidean, Manhattan, etc.) impacts how similarity between data points is measured.

o Weight Function: Optionally, the influence of neighbors can be weighted by their distance to the query point,
prioritizing closer neighbors.

3-3-6- Logistic Regression Classifier [41, 42]

Included for its simplicity, interpretability, and efficiency in binary classification tasks was logistic regression—a
well-known statistical model. Though its name suggests otherwise, logistic regression is a linear model that maps
predicted values to probabilities using the logistic (sigmoid) function. This method uses thresholding of the probabilities
to allow classification. Particularly useful for linearly separable data, logistic regression may have difficulty with
complicated, non-linear relationships unless expanded with feature transformations or regularization methods.

¢ Mathematical Formulation
The core of logistic regression lies in the logistic (or sigmoid) function, which maps any real-valued humber into a
probability between 0 and 1. The logistic function is given by:

1
p(y =1|x) = 1+e—(Bo+B1x1+B2x2++Bnxn) “

where: p(y = 1|x) is the probability of the target variable y being 1 (positive class) given the input features x; fo, f1, - - .,
fn are the model’s coefficients (parameters) learned during training; xi, X2, . . ., X» are the input features.

e Hyperparameters
Tuning of the following hyperparameters is essential for effective logistic regression:

o Regularization Parameter (C): This controls the strength of regularization, which helps prevent overfitting by
penalizing large model coefficients.
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o Penalty: The type of regularization (L1 or L2) determines how coefficients are penalized.

o Solver Algorithm: This is the optimization algorithm used to find the best model parameters. Different solvers
have varying efficiency and scalability.

o Class Weight: This parameter allows for adjusting weights for different classes to mitigate issues arising from
class imbalance.

3-3-7- Neural Network Classifier [43, 44]

Because they could replicate intricate, non-linear patterns in data, artificial neural networks (ANNSs) were chosen.
Connected nodes arranged into layers make up ANNSs; each node uses an activation function to apply a weighted
transformation to its inputs. The network learns by progressively changing these weights to reduce the prediction-actual
value error. Although ANNSs are quite versatile and good at capturing complicated interactions, their complexity
sometimes requires major processing resources and careful tweaking to prevent overfitting, especially for small datasets.

¢ Mathematical Formulation

The fundamental operation in an ANN involves a weighted sum of inputs, followed by a non-linear activation
function:

z=Y 1w x;+b ©)]
a=o(2) (10)
where; z represents the weighted sum of inputs (x;) and a bias term (b); wi: weights associated with each input; o:
activation function (e.g., sigmoid, ReL.U); a: output of the neurons.
o Hyperparameters
Optimizing ANN performance requires tuning of the following hyperparameters:

o Number of Layers: The depth and intricacy of a network depend on its layer count. A balance must be struck
between representational power and overfitting.

o Neurones per Layer: Each hidden layer’s count of neurons affects the capacity of the model to learn.
o Activation Function: Choices in sigmoid, tanh, or ReLU influence non-linear transformations in the network.
o Learning Rate: Important for convergence and stability, the learning rate affects the weight updating step size.

o Regularization: Techniques such as dropout, batch normalization, and L1/L2 regularization help to reduce
overfitting.

3-3-8- Naive Bayes [45, 46]

Included for its simplicity and computing economy was the Naive Bayes classifier, a probabilistic model produced
from Bayes’ theorem. The method simplifies often difficult but necessary predictions in practice by assuming that
features are conditionally independent given the class label. Naive Bayes performs well in many situations, particularly
with text or categorical data, although its performance may suffer if the independence condition is much broken.

¢ Mathematical Formulation

Naive Bayes is built on Bayes’ theorem:

P()P(X1, X3y ey Xn[Y) (11)

P(x1,X2,-+Xn)

P(y|x1, Xg, ey Xp) =

where: P(y|X1,X2,...,Xn) iS the posterior probability of class y considering features xi through x»; P(y) is the previous
probability of class y; P(x1,X2,...,Xn|y) is the probability of detecting features x: through x» given class y; P(X1,X2,...,Xn) iS
the proof (probability of seeing the features).

Conditional independence’s “naive” assumption streamlines the probability:
P(xy, %z, ..., % |y) = P(x1|y) - P(xz|y) -+ P(xnly) (12)

o Hyperparameters
Naive Bayes requires tuning of several elements.

o Distribution Assumption: We will discuss several Naive Bayes versions (Gaussian, Bernoulli) depending on the
type of the features.
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o Smoothing Parameter (alpha): This value adds a small constant to prevent overfitting and handles zero
probabilities in feature likelihoods.

o Prior Probabilities: Should past understanding of class distribution exist, it can be included here.

3-3-9- Random Forest & Extra Trees Classifier [35, 47]

Selected as an ensemble approach for its capacity to manage high-dimensional data and its resistance against
overfitting, Random Forest, along with its version Extra Trees (Extremely Randomized Trees), was used with variations

in their method of randomness during tree generation, both techniques aggregate forecasts from many decision trees to
increase accuracy.

o Random Forest: Each trained on a bootstrapped subset of the data, Random Forest assembles an ensemble of
decision trees. Furthermore, at every split, just a random selection of features is taken into account. Features
randomness combined with data helps to reduce overfitting and improve generalization. For classification
problems, the last prediction is obtained by means of majority vote among all trees.

o Extra Trees: Like Random Forest, Extra Trees creates several decision trees but adds more unpredictability by
choosing split points totally at random, without considering feature relevance. Though it can result in lower
interpretability than Random Forest, this method also helps to lower variance and might improve generalization in
particular datasets.

¢ Mathematical Formulation

Random Forest and Extra Trees are ensemble learning methods based on decision trees. Both models aggregate
predictions from many decision trees to improve generalization and reduce overfitting.

For a classification problem, let:
o X={X1,X2,...,Xn} be the feature vector.
o Y is the target class.

Each individual decision tree Tt in the ensemble predicts a class “yz, and the final class prediction is obtained via
majority voting:

y = argmax ¥, 11(T,(X) = y) (13)
where: Ty(X) represents the output of the t decision tree; T is the total number of trees; I/(T«(X) = y) is an indicator
function that counts the votes for class y.

The key difference between Random Forest and Extra Trees lies in how splits are chosen:

o Random Forest: Split points are selected by searching for the best feature threshold based on an impurity measure
(e.g., Gini impurity or entropy for classification, variance reduction for regression).

o Extra Trees: Split points are chosen randomly, without considering optimal splits, further reducing variance.

e Hyperparameters
Tuning the following hyperparameters greatly affects model performance:

o Number of Trees (T): Determines the number of decision trees in the ensemble. Increasing T improves stability
but increases computation.

o Max Features (m): Defines how many features are randomly selected at each split. Lower values increase
randomness, reducing overfitting.

o Split Criterion:

Gini Impurity:

G=1-%;p} (14)
Entropy:

H=-%;p;logp; (15)

o Minimum Samples per Split (min samples split): Controls the minimum number of samples required to create a
split, preventing overfitting.
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o Maximum Depth (max depth): Limits the depth of trees to prevent excessive complexity.

o Randomness in Split Selection: Random Forest: Searches for the best split; Extra Trees: Chooses splits randomly.

3-3-10- Support Vector Classifier [48, 49]

The choice of the Support Vector Classifier resulted from its ability to handle both linear and non-linear classification
issues. SVC maximizes the margin between data points of different classes by means of an ideal hyperplane in the feature
space. SVC uses kernel functions—e.qg., RBF or polynomial—for non-linearly separable data to translate the data into a
higher-dimensional space where separation becomes possible. SVC is sensitive to hyperparameter decisions and
computationally demanding for big datasets, even if it shines in accuracy and adaptability.

o Mathematical Formulation

o Linear SVC: The decision function of linearly separable data is:

f(x) =sign(w - x + b) (16)
where: The weight vector is w; The input feature vector is x; The Bias term is b.

o Non-linear SVC: In non-linearly separable data, a kernel function K(x;,x;) converts data into a higher-dimensional
space:

f(x) = sign(}; a;y; K (x;,x) + b) (7)
where: ¢; are Lagrange multipliers; y; are support vector class labels.

e Hyperparameters
Effective SVC performance depends on the hyperparameters’ tuning:
o C (Regularization Parameter): This balances classification error with margin maximizing.
o Kernel: The choice of kernel function (linear, polynomial, RBF, or sigmoid) depends on the data’s characteristics.
o Gamma (for RBF kernel): Affects the non-linear case decision boundary’s form.

o Class Weight: Adjusts for class imbalance, if present.

3-3-11- XGBoost Classifier [38, 50]

Strong performance in machine learning challenges and real-world applications made XGBoost, a highly efficient
and scalable implementation of gradient boosting, a top choice. The system enhances standard boosting methods with
significant developments in regularization to reduce overfitting, a tree-learning algorithm tuned for sparse data, and
support for parallel processing. Like other boosting techniques, XGBoost generates an ensemble of successive decision
trees, each trained to correct the errors of the previous ensemble. But XGBoost advances conventional gradient boosting
by adding:

o Regularization: Penalties for too complex models are imposed using L1 and L2 regularization, hence enhancing
generalization.

o Handling Sparse Data: The algorithm features a split-finding approach meant especially to efficiently address
sparse or missing data.

o Efficiency: For big datasets XGBoost is quicker and more scalable due to optimizations including parallel
computing and out-of-core processing.

These characteristics balance predictive performance with computational economy, therefore making XGBoost
especially appropriate for high-dimensional data.

¢ Mathematical Formulation

XGBoost maximizes an objective function with a regularization component and a component of loss:
Objective = ¥iL; L(y;, %) + X¥=1 Q(fi) (18)

where: L(yi, i) is the loss function measuring the variation between actual label y; and predicted label “yi; Q(fi) shows
the regularization term for the k-th tree, aiming to prevent overfitting.
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e Hyperparameters

Optimizing XGBoost depends on tuning of the following hyperparameters:

o Learning Rate (eta): Calculates the step size for every boosting iteration.

o Max Depth: Control complexity by limiting tree depth, hence preventing overfitting.
o Sub-sample: Fraction of training instances used for each tree.

o Column Sub-sample (col_sample_bytree): Fraction of features used for each tree.

o Number of Trees (num_boost_round): Total number of trees in the ensemble.

3-4-Nature Inspired Algorithm

This work explores the possibilities of nature-inspired algorithms (NIAs), outside of conventional machine learning
models. Inspired by natural and biological processes, NIAs are optimization techniques defined by their imaginative
search and approach. This paper addresses five NIAs: Genetic Algorithms (GA), Particle Swarm Optimization (PSO),
Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), and Moth-Flame Optimization (MFQO). These
algorithms were selected because they could investigate several solution environments and find trends possibly missed
by more conventional approaches. The hypothesis is that the special mechanisms of NIAs could improve hyperparameter
tuning and feature selection for models of lung cancer prediction.

3-4-1- Genetic Algorithm [51, 52]

Inspired by ideas of biological evolution, genetic algorithms were applied to maximize machine learning model
hyperparameters. GAs run by preserving a population of candidate solutions, sometimes known as “chromosomes”,
which change over consecutive generations. GAs steadily raises the population’s fitness by means of genetic operations,
including selection, crossover, and mutation. Especially appropriate for this adaptable and flexible approach is
investigating large and complex hyperparameter ranges. Still, GAs can be computationally expensive—especially for
high-dimensional datasets (see Figure 2).

o Steps of the Genetic Algorithm:
o Initialization: An arbitrary starting population of solutions is created.
o Evaluation: Every solution’s fitness (i.e., how well the corresponding model performs) is evaluated.
o Selection: Parents preferably choose fitting solutions to become parents.
o Crossover: New offspring solutions are created by combining elements of parent solutions.
o Mutation: Offspring are given random modifications to preserve variation.
o Replacement: The younger generation replaces the present population.

o Termination: Until a stopping criteria is satisfied (i.e., maximum generations or convergence), steps 2-6 are
repeated.

Initialize Evaluate
—_— 2 — -
Sl Population " the fitness
-
Evaluate Crossover
new - and - I Selection
individuals Mutation
No
Y
Select next Criteria Yes End
generation Satisfied? !

Figure 2. Genetic Algorithm Flowchart
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o Hyperparameter Considerations:

o Population Size: The count of possible answers in every generation. While they raise computational cost, larger
populations provide more diversity.

o Crossover Rate: The chance of doing a crossover between parent solutions.
o Mutation Rate: The chance of random mutations in offspring.

o Selection Method: The method of selecting parents (e.g., tournament or roulette wheel choice).

o GA for Model Optimization:

The hyperparameters of every machine learning model investigated in this work will be optimized using the genetic
algorithm. The fitness function will be determined by the model’s performance, mainly accuracy, on a validation set
derived via cross validation. Through the iterative refinement of hyperparameter setups, we seek to ascertain parameters
that enhance model performance while minimizing training time.

3-4-2- Grey Wolf Optimization [53, 54]

Inspired by the social hierarchy and hunting techniques of grey wolves, the Grey Wolf Optimizer was utilized for
hyperparameter optimization in this work. GWO models the cooperative behavior of wolves in a pack using three best
solutions—alpha, beta, and delta wolves. Based on these leaders, the surviving wolves change their stances to come to
the best answer. Although its effectiveness may rely on suitable parameter choices, GWO’s hierarchical search
mechanism presents different benefits for hyperparameter optimization.

o Steps of Grey Wolf Optimization:

o Initialization: Random initialization of a population of grey wolves (potential solutions) inside the hyperparameter
search range.

o Hierarchy Establishment: Based on their fitness (model performance on the validation set), the three best solutions,
alpha, beta, and delta, are found.

o Update Positions: Using equations like distance computations and random vectors, other wolves in the pack change
their places depending on the positions of the leader wolves.

o Fitness Evaluation: Every wolf’s (i.e., the performance of the corresponding model) fitness is evaluated.

o Update Leadership: A wolf replaces one of the present leaders if its new position increases its fithess more than
that of the others.

o Termination: Until a stopping criterion is satisfied (that is, maximum iterations attained), steps 2-5 are repeated.

e Mathematical Formulation:

The position update equations in GWO are:

Dy =1Cy - Xy — X| (19)
Dg =|C, - Xp — X| (20)
Ds = |Cs - X5 — X| (21)
Xpew =Xq—A-Dy +B-Dg + C-Ds (22)

where: Distance vectors from the current wolf’s position ((X)) to the alpha, beta, and delta wolves accordingly are
(Do), (Dp), and (Ds); The alpha, beta, and delta wolves have positions (X.), (Xs), and (Xs); Coefficient vectors (C1),
(C2), and (C3) progressively drop over iterations; (A), (B), and (C) are random vectors.
o Hyperparameters Considerations:

o Population Size: The amount of wolves in the pack.

o Coefficients ((C1), (Cy), (Cs)): Controls the exploration and exploitation balance.

o Maximum Number of Iterations: Manages the length of the optimization process.
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o GWO for Model Optimization:

Each machine learning model under consideration in the study will have hyperparameter optimization using GWO.
The fitness of a wolf is determined by the performance (accuracy) of its corresponding model on the validation set.
Through the iterative process of hunting and leadership updates, GWO seeks to discover hyperparameter configurations
that lead to superior model performance (see Figure 3).
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Figure 3. Grey Wolf Optimization Flowchart

3-4-3- Moth Flame Optimization [55]

Inspired by moth navigation patterns, Moth-Flame Optimization was added to vary hyperparameter optimization
techniques. With “moths” standing in for possible solutions and “flames” acting as reference points, MFO replicates
the moths’ spiraling towards light source behavior. MFO strikes a mix of exploration and exploitation in the search
space by dynamically varying the flames throughout repetitions. MFO is good at avoiding local optima, but its
performance could be sensitive to the complexity of the optimization issue and the control parameter selection (see
Figure 4).

o Steps of Moth-Flame Optimization:

o Initialization: Random initialization of a population of moths (potential solutions) within the hyperparameter
search space. Additionally, starting with the same locations is a set of flames equal in count to the moths starting
out.

o Fitness Evaluation: On the validation set, assess every month’s (that is, the matching model’s) fitness.
o Flame Sorting: Sort the flames in ascending order according to their fitness values.

o Moth Updates: Every moth uses the logarithmic spiral equation to change its location in relation to a matching
flame.

o Flame Update: Change the flames, keeping in mind the best solutions discovered in the current iteration by moths.
o Flame Reduction: Based on the current iteration and maximum number of iterations, lower the flames’ count.

o Termination: Continue steps 2—6 until a stopping criterion is satisfied—e.g., maximum number of iterations.
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Figure 4. Moth-Flame Optimization Flowchart

o Mathematical Formulation:
o Moth Position Update: The position of a moth is updated based on the position of a corresponding flame using a
logarithmic spiral equation:

S(M,,E) = D; - et - cos(2mt) + F, (23)

where: S is the updated position of moth I; M; is the current position of moth I; F; is the position of flame j; D; is the
distance between moth ; and flame j; b is a constant for defining the shape of the logarithmic spiral; t is a random number
in [-1, 1].

o Flame Number Adaptation: The number of flames decreases over iterations according to the following equation:
Flame No. = round (N -1 E) (24)
T
Where: (N) is the initial number of flames; (1) is the current iteration; (T) is the maximum number of iterations.

o Hyperparameter Considerations:
o Population Size: Number of moths in the population.
o Logarithmic Spiral Constant (b): Controls the shape of the spiral movement.

o Maximum Number of Iterations: Controls the duration of the optimization process.

e MFO for Model Optimization:

MFO will be used to maximize the hyperparameter values of every machine learning model under evaluation in the
research. The performance (accuracy) of the associated model on the validation set defines the fitness of a moth. MFO
seeks hyperparameter configurations that result in improved model performance by means of the iterative moth migration
towards flames and adaptive reduction of flames.

3-4-4- Particle Swarm Optimization [56, 57]

Inspired by swarms’ collective behavior, particle swarm optimization was used to maximize hyperparameters in
machine learning systems. As “particles” that negotiate the search space under the impact of their personal best
position and the global best position of the swarm, PSO offers possible solutions. Particularly in high-dimensional
environments, PSO is efficient for hyperparameter optimization because of this dynamic balance between
exploration and exploitation. On the other hand, PSO could converge too soon if it is not adequately calibrated (see
Figure 5).
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o Steps of Particle Swarm Optimization:

o Initialisation: Initialise a swarm of particles randomly inside the hyperparameter space with velocities and starting
places.

o Fitness Evaluation: Analyse every particle’s fitness in relation to the performance of the matching model (e.g.,
accuracy on the validation set).

o Update Personal Best: Update the pbest of a particle if its current position improves its fit over its best past position.
o Update Global Best: Update the gbest if any particle settles better than the present best.

o Update Velocity and Position: Update the velocity and position of every particle depending on random elements,
its distance from pbest and gbest, and its present speed.

o Termination; Until a stopping requirement is satisfied (e.g., maximum iterations reached), iterate stages 2-5.
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Figure 5. Particle Swarm Optimization Flowchart

e Mathematical Formulation:

The fundamental equations guiding particle velocity and position are

velocityf" = w - velocity]; + ¢, - 1, - (pbest;; — position};) + ¢, - 1 - (gbest; — position};) (23)

t+1

position{* = position{; + velocity/;"* (24)

7]

where: (velocity'j) and (positiontj) are the velocity and position of the particle (i) in dimension (j) at iteration (t); (w) is
the inertia weight, which controls the influence of the previous velocity; Acceleration coefficients (c1) and (c2) balance
the effect of global best positions and personal ones; (r1) and (r2) are random numbers between 0 and 1.

e Hyperparameter Considerations:
o Inertia Weight (w): Controls the balance between exploration and exploitation.
o Acceleration Coefficients ((c1) and (c2)): Balance the influence of personal best and global best positions.
o Swarm Size: The number of particles in the swarm.

o Maximum Velocity Limits: Limitations on particle movement help to prevent overshoot of the ideal solution.
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e PSO for Model Optimization:

Each machine learning model’s hyperparameters will be optimised using PSO. The performance of the relevant
model on the validation set determines the fitness of a particle; mostly, accuracy is the metric used in this regard. PSO
seeks hyperparameter settings that improve model performance by means of iterative swarm behavior.

3-4-5- Whale Optimization Algorithm [58]

Inspired by humpback whale hunting behavior, the whale optimization algorithm was applied to maximize
hyperparameters for models of lung cancer prediction. By balancing exploration and exploitation, WOA replicates the
bubble-net feeding method of the whales. Represented as “whales,” candidate solutions change their locations in the
search space depending on mathematical models of encircling prey and spiral motions. Since WOA can adaptively
enhance solutions, it is a strong choice for hyperparameter tuning; but its convergence may depend on careful parameter
change.

o Steps of Whale Optimization Algorithm:
o Initialisation: Randomly start a population of whales (potential answers) inside the hyperparameter search range.

o Fitness Evaluation: Based on the performance of the related model—e.g., validation set accuracy—evaluate each
whale’s degree of fitness.

o Update Best Position: Identify the whale having the highest fitness value (global best).

o Exploration Phase (Shrinking Encircling Mechanism): Using a shrinking encircling mechanism, where the
distance between the whale and the prey (global best solution) lowers over iterations, update the position of every
whale. This stimulates whales’ bubble-net attacking action.

o Exploitation Phase (Spiral Updating Position): Using a spiral equation that mimics the helix-shaped motion of
humpback whales as they approach their prey, update the location of every whale.

o Termination: Continue steps 2-5 until a stopping criterion is met (e.g., maximum number of iterations).

e Mathematical Formulation:

o Shrinking Encircling Mechanism:
D=|¢-X -4 @)
Xt+1D)=X"-4-D (28)

where: The distance vector (5) between the best whale position (X*) and the current whale position ()? ); (5) and (/T) are
coefficient vectors that are updated in each iteration.

o Spiral Updating Position:

> = [ - F (29)
X(t+1)=D"-eb - cos2nl) + X* (30)

where: (D7) is the distance vector between the current whale position and the best whale position; (b) is a constant for
defining the shape of the logarithmic spiral; (I) is a random number in [-1, 1].
o Hyperparameter Considerations:

o Population Size: Number of whales in the population.

o Coefficients ((ff) and (E)): Influence the exploration and exploitation balance.

o Maximum Number of Iterations: Controls the duration of the optimization cycle.

o WOA for Model Optimization:

WOA will be used to maximize the hyperparameter values of every machine learning model under evaluation in the
research. Whale fitness is found by the performance (accuracy) of its matching model on the validation set. WOA seeks
to find hyper parameter combinations that result in improved model performance by iteratively changing whale locations
via exploration and exploitation.
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3-5-Novel Hybrid Algorithm

The GWO-WOA hybrid algorithm was developed to maximize the XGBoost model for lung cancer prediction. This
method combines hyperparameter adjustment with feature selection with a final ensemble voting system to improve
recall and accuracy while preserving computational economy.
3-5-1- Feature Selection using GWO

Features were selected using the Grey Wolf Optimizer by simulating grey wolf hierarchical hunting behavior. Four
hierarchical roles define this process: alpha, beta, delta, and omega.
e Steps:

o Initialisation: Randomly generate a population of candidate solutions (grey wolves), where every solution is
expressed as a binary string denoting either selected (1) or non-selected (0) features.

o Fitness Evaluation: Evaluate every option according to the classification performance that is, accuracy of the
XGBoost model trained with the chosen features.

o Update Positions: Simulating the cooperative hunting approach and guiding the optimization process with the
positions of the alpha, beta, and delta wolves helps to update candidate positions.

o lterate: Over a certain number of cycles or until convergence conditions are satisfied, repeat the evaluation and
position update process.

o Select Features: The best-performing solution (the binary string of the alpha wolf) represents the optimal set of
selected features.
3-5-2- Hyperparameter Tuning Using WOA

Inspired by humpback whale bubble-net hunting, the Whale Optimization Algorithm was applied to maximize
XGBoost model hyperparameters. Phases of this process involve prey seeking, spiral position updates, and encircling

prey.
o Steps:

o Initialisation: Create a population of candidate solutions (whales) randomly, where every solution corresponds to
an XGBoost model set of hyperparameters.

o Fitness Evaluation: Using the relevant hyperparameter setup, evaluate every candidate using a fitness function
such as classification accuracy.

o Update Positions: Using circular and spiral movement techniques, change potential locations in the search space
to investigate and take advantage of best areas.

o lterate: Until the convergence conditions are met, repeat the procedure of evaluation and position updating.
o Select Hyperparameters: The hyperparameters of the best-performing whale are chosen as the optimal
configuration.
3-5-3- Training and Ensemble
Following optimization of features and hyperparameters using GWO and WOA, the XGBoost model was trained.
Additionally, an ensemble model was constructed to further improve predictive performance.
o Steps:

o Train XGBoost Model: Use the selected features from GWO and optimised hyperparameters from WOA to train
the XGBoost model.

o Train Other Classifiers: With the same chosen features, train Random Forest, SVC, and Logistic Regression.

o Ensemble Voting: Use a soft voting mechanism to enhance robustness by combining predictions from the XGBoost
model and other classifiers.

o Evaluate Ensemble Model: On the validation set, evaluate the ensemble model with a focus towards accuracy,
recall, and computational efficiency.

While the ensemble voting system ensures strong and accurate lung cancer prediction, our hybrid method uses the
exploring and exploiting powers of GWO and WOA to maximize feature selection and hyperparameter tweaking.
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3-6- Performance Evaluation

Several criteria were applied to assess the models comprehensively, each offering information on multiple aspects of
their predictive power.
3-6-1- Stratified Cross-Validation [59]

Stratified five-fold cross-validation assured consistent and exhaustive performance evaluation. This method divides
the dataset into five folds while preserving the original class distribution. Training used four folds; each fold acted as the
validation set once. The process was carried out five times, and the final performance evaluations were averaged over
all folds to ensure a robust and objective assessment.

3-6-2- Metrics
The following evaluation metrics were used to comprehensively assess the models’ performance:

1. Accuracy: Represents the proportion of correct predictions relative to the total number of predictions. It offers a
general measure of model performance but might not fairly represent performance in imbalanced data [60].

Number of correct predictions
: (31)

Accuracy =
y Total number of predictions

2. Recall (Sensitivity, True Positive Rate): Calculates the true percentage of actual positive cases the model
accurately detected. Recall is particularly important in minimising false negatives, which is critical in medical
diagnoses [61].

True Positives (32)

Recall = — ,
True Positives+False Negatives
3. Precision (Positive Predictive Value): Reflects the proportion of true positive predictions. High precision is
essential for ensuring the reliability of predicted lung cancer cases [61].
True Positives

Precision = — — (33)
True Positives+False Positives

4. F1-Score: Combines precision and recall into a single metric, representing their harmonic mean. It is particularly
useful when false positives and false negatives carry similar significance [62].
F1—Score=2-w (34)
Precision+Recall
5. ROC-AUC (Receiver Operating Characteristic-Area under Curve): Evaluates the model’s ability to distinguish
between classes at varying classification thresholds. A higher AUC indicates better overall performance in
differentiating cancer and non-cancer cases [63].

In this study, Accuracy, Recall, Precision, F1-Score, and ROC-AUC were prioritised for model comparison because
they jointly capture both overall correctness and the model’s diagnostic balance. Recall (also known as Sensitivity)
directly measures the model’s ability to detect true lung-cancer cases, while Precision quantifies the reliability of those
detection. F1-Score balances these two competing aspects, and ROC-AUC summarizes discrimination performance
across decision thresholds. Specificity was not reported separately, as it is mathematically the complement of false-
positive rate in binary classification and therefore redundant once ROC-AUC is included. Emphasising Recall and ROC-
AUC is particularly important in medical screening, where minimising false negatives carries greater clinical value than
marginal improvements in overall accuracy.

Although accuracy gives a broad picture, recall, precision, and F1-score give a better knowledge of the model’s
ability in spotting and separating between cancer and non-cancer instances. As a balanced indicator, the F1-score is
especially useful in situations where recall and precision both matters. By evaluating the model’s capacity to discriminate
between classes across a spectrum of thresholds, ROC-AUC complements these measures and provides a more complete
assessment of its diagnostic power.

4- Results

This section presents the outcomes of a systematic, staged approach for predicting lung cancer using a synthetic
dataset. Three distinct strategies were employed—progressing from baseline machine learning models to nature-inspired
algorithm optimizations and culminating in a hybrid ensemble. Each stage’s results are summarized below, illustrating
how incremental refinements improved predictive accuracy and maintained computational efficiency.
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4-1-Base Machine Learning Models

By use of nature-inspired algorithms and possible integration into a hybrid NIA framework, the evaluation of baseline
machine learning models sought to discover a solid fundamental model for later optimization. With hyperparameter
tuning using GridSearchCV to guarantee competitive performance on the synthetic dataset, the study evaluated several
conventional classifiers, including decision trees, ensemble approaches, and neural networks. These studies found
models that balance predicted accuracy and computational efficiency, therefore establishing a strong basis for lung
cancer diagnosis. The results guided the choice of candidate models for next optimization and ensemble construction.

4-1-1- Performance Analysis of Baseline Models

The performance of the baseline models was evaluated using key classification metrics, including accuracy,
precision, recall, F1 score, and ROC-AUC. Table 1 provides a summary of these metrics for each classifier:

Table 1. Comparison of Models Performance

Model Accuracy  Precision Recall F1Score ROC AUC

AdaBoost 98.95% 98.95% 98.95% 98.95% 99.82%
Bagging Classifier 99.06% 99.07% 99.06% 99.06% 99.40%

BernoulliNB 88.23% 90.65% 88.23% 88.73% 97.271%
Decision Tree 98.33% 98.33% 98.33% 98.33% 97.84%
ExtraTrees 98.97% 98.98% 98.97% 98.97% 99.83%
GradientBoosting 98.55% 98.57% 98.55% 98.55% 99.62%
KNeighbors 98.01% 98.03% 98.01% 98.01% 99.56%

Logistic Regression 97.63% 97.66% 97.63% 97.63% 99.12%

MLPClassifier 97.40% 97.43% 97.40% 97.40% 99.18%
Random Forest 98.75% 98.76% 98.75% 98.75% 99.68%
svC 97.95% 97.97% 97.95% 97.95% 99.28%
XGBoost 99.15% 99.16% 99.15% 99.15% 99.85%

Most baseline classifiers showed strong performance over the evaluated parameters, as compiled in Table 1 and shown
in Figure 6. XGBoost was recognised as the most effective model, reaching an accuracy of 99.15% and consistently high
metrics in precision, recall, F1 score, and ROC-AUC. XGBoost is a strong candidate for additional improvement using
nature-inspired algorithms and a hybrid framework since it can harmonise prediction accuracy with reasonable
computing capacity.

Some models, such as Bernoulli Naive Bayes, demonstrated fast training times but lower accuracy (88.23%),
highlighting the trade-off between computational efficiency and predictive performance. Other ensemble models,
including Bagging, Random Forest, and Extra Trees, delivered near-top accuracy (>98.75%) but required higher
computational resources. As illustrated in Figure 7, XGBoost strikes a favourable balance between computational cost
and reliability, making it suitable for applications requiring both high precision and efficiency.
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Figure 6. Base Model Score Plot
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Figure 7. Accuracy vs. Time-Trade Off (Base Models)

Compared with findings from recent structured-data studies, these baselines results are consistent with previously
observed trends. Chen (2024) [9] reported XGBoost-based inclusive models with AUC = 0.89 and accuracy == 0.89,
while Su (2025) [13] achieved AUC = 0.86 in large-scale clinical dataset. The baseline XGBoost model here achieved
similar relative behavior, showing strong discriminative capacity under synthetic conditions. The comparatively higher
accuracy reflects the cleaner, fully structured nature of synthetic data and should therefore be viewed as indicative rather
than definitive.

These results overall support the effectiveness of ensemble-based approaches and show a clear road for later
improvements. Especially XGBoost, models that mix great accuracy with reasonable training times will form the basis
for the following phases of this effort, involving advanced hyperparameter adjustment using NIAs and the creation of a
hybrid (ensemble) solution.

4-2-Comparison with NIA Models

The baseline evaluation demonstrates that ensemble and boosting algorithms perform robustly on structured synthetic
EHR data. Their superior recall and AUC values suggest these models can reliably identify risk patterns when data are
well-structured and noise-free. However, this should not be interpreted as guaranteed clinical reliability. In real-world
datasets, inconsistencies in coding, incomplete medical histories, and diverse patient demographics often reduce
performance. These results therefore illustrate the algorithmic potential under idealised conditions rather than a validated
diagnostic capability.

This work uses several nature-inspired algorithms in the second phase to maximize the evaluated machine learning
models from the baseline phase. These NIAs comprised the Genetic Algorithm, Grey Wolf Optimizer, Moth-Flame
Optimization, Particle Swarm Optimization, and Whale Optimization Algorithm. Every method was applied to adjust
hyperparameters in order to maximize prediction performance under control of computational overhead. Key ideas from
every method are summarized here, with Figures 8 to 17 visualising their outcomes.

4-2-1- Genetic Algorithm Optimization

Consistent improvements in ensemble-based models like Extra Trees, XGBoost, and Random Forest across metrics
including accuracy, precision, and recall were shown by using Genetic Algorithm (Figure 8). Minimal increases were
shown by simpler models, including BernoulliNB, which emphasises the trade-off between prediction accuracy and
processing economy. Training time studies (Figure 9) showed that although GA increases computing cost, it typically
performs better than baseline hyperparameter tuning method.

4-2-2- Grey Wolf Optimization

With Random Forest, Extra Trees, and XGBoost obtaining accuracy rates in the 98-99% range (Figure 10), Grey
Wolf optimizer adjustment strengthened the superiority of ensemble classifiers. Although other models, like KNeighbors
and MLPClassifier, showed similar accuracy, they sometimes needed more computational resources. Top-performing
models’ ROC-AUC repeatedly topped 99%, highlighting GWO’s efficiency in hyperparameter optimization. Training
time analysis (Figure 11) showed that for some classifiers GWO could lower computational overhead while maintaining
strong performance.
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4-2-3- Moth Flame Optimization

With both models attaining accuracy rates above 98% and strong ROC-AUC values, moth-flame optimization
routinely improved the performance of XGBoost and Random Forest (Figure 12). MFO also greatly helped logistic
regression since it provides a good mix between computational efficiency and accuracy. Although simpler models like
BernoulliNB and GaussianNB stayed computationally efficient, their sub-90% accuracy made them less suitable for
precision-critical uses like lung cancer diagnosis (Figure 13). Especially for ensemble techniques, these results show
MFO’s capacity to precisely adjust hyperparameters.

Moth Flame Optimization

100 - —®— Accuracy
¥- Recall
—|- Precision
-+ ROCAUC

everth,

- 4000

8
1
%

8
g

Training Time Percentage (%)

0.90 -

-1000
088 -

Figure 12. Moth-Flame Optimization Performance Plot

4-2-4- Particle Swarm Optimization

For high-performance models including Logistic Regression, XGBoost, Random Forest, and Gradient Boosting—all
of which attained accuracy rates above 97%—Particle Swarm Optimization produced notable gains (Figure 14). Though
their complicated hyperparameter setups caused more computational effort, bagging and AdaBoost performed equally.
Though it needed more processing resources, MLPClassifier displayed competitive metrics (Figure 15). Although PSO
sometimes gave accuracy top priority at the expense of efficiency, its capacity to investigate several parameter spaces
proved useful.
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4-2-5- Whale Optimization Algorithm

With accuracy rates exceeding 98-99% (Figure 16), The whale optimization algorithm routinely improved top-
performing models, including Random Forest, XGBoost, and LogisticRegression. Training-time analysis showed that
WOA sometimes preferred simpler ensemble techniques such as AdaBoost and Bagging, which are competitive in both
accuracy and speed (Figure 17). More complicated models like MLPClassifier and SVC, on the other hand, albeit having
excellent accuracy, paid more computational costs because of their hyperparameter spaces.
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4-2-6- Overall Observation

o Ensemble Models Excel: Random Forest, Extra Trees, and XGBoost are among the ensemble-based approaches
that consistently produce good classification metrics across all NIAs, therefore supporting the idea that aggregating
several weak learners can produce strong decision boundaries and low variation.

o Trade-Off Between Performance and Efficiency: Although other simpler models (e.g., BernoulliNB, GaussianNB)
have low training times, their accuracy stays below 90%, which is less desired for important medical applications.
Conversely, classifiers like SVC or MLPClassifier occasionally show almost-top performance but at a larger
computational cost.

o Tuneable Gains from NIAs: Sometimes by also lowering training times, each metaheuristic effectively finds
configurations that exceed the baseline in terms of accuracy or other measures. The particular increases depend on
the method and classifier; hence, it emphasises the need of trying several NI1As to find the optimal hyperparameter
values.
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The application of metaheuristic optimization produced incremental gains in accuracy and recall, reflecting the
capacity of nature-inspired search strategies to fine-tune parameter spaces efficiently. These results also underscore a
trade-off between computational complexity and performance: optimization improved metrics modestly but increased
processing time. This mirrors observations from other optimization-based studies, where metaheuristics are most
beneficial when marginal improvements can translate into better stability or generalization. From a clinical standpoint,
the modest numerical improvements are less critical than the demonstration that feature selection and tuning can enhance
model reliability without altering interpretability.

The observed performance gains from metaheuristic optimization align with reports from recent evolutionary-
algorithm research. Gupta et al. (2019) [30] demonstrated that Grey Wolf and related hybrid optimization methods could
enhance feature selection while reducing computational load, achieving accuracies near 99 % on small imaging datasets.
Similar though more moderate improvements are seen here, with accuracy and recall rising modestly after optimization
but at higher runtime cost. This indicates that metaheuristics are valuable primarily for fine-tuning ensemble and tree-
based learners when computational constraints allow. Across Studies, improvements of 0.3-0.6 % in accuracy or recall
are typical and emphasize refinement rather than transformation of model behavior.

Overall, these nature-inspired optimization strategies yield improvements over conventional grid-based searches,
especially for ensemble methods. The following section will delve into a hybrid approach, which combines the top-
performing NIA-optimised models to further enhance accuracy while keeping computational demands in check.

4-3- Hybrid-Nature Inspired Ensemble Algorithm

Following analysis of high-performance models under both baseline and NIA-optimised layouts, a last hybrid
ensemble was created to aggregate the complementary strengths of the top-performing models. Maintaining reasonable
computing overhead, the aim was to reach or surpass the best classification metrics recorded.

4-3-1- Ensemble Model Performance

With an ROC-AUC of 0.9984, the hybrid ensemble produced accuracy, recall, precision, and F1 scores of 0.9925, as
shown in Figure 18. These measures show how strong it is in separating negative from positive cases—lung cancer.
Combining several learning techniques shows the advantages since the performance of the ensemble matched or
exceeded the top individual models from both baseline and NIA-optimised configurations.

Ensemble Model Metrics
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Figure 18. Ensemble Score Plot

4-3-2- Comparison with NIA-Optimised XGBoost

Figure 19 evaluates the performance of XGBoost both inside the hybrid ensemble and among several optimization
approaches (Base, GA, GWO, MFO, PSO, WOA). Especially for recall and precision, the hybrid ensemble routinely
outperformed several NIA-optimised variations by stabilising measures near or over the 0.99 threshold, even though
some variants attained accuracy and ROC-AUC values exceeding 0.98. The group also showed a similar or better F1
score, therefore verifying its success in tackling class imbalance.
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Figure 19. XGBoost Performance Across Different Approaches

4-3-3- Training Time Consideration

As seenin Figure 20, NIAs typically extend training timeframes even when they efficiently optimise hyperparameters
to improve predictive performance. Even with great accuracy, techniques like PSO and WOA can inflate training
overhead to more than three times that of base XGBoost. By contrast, the hybrid ensemble obtained a relative training
time of 1.0—much below any single NIA-optimised model. By carefully choosing models that paired good accuracy
with reasonable training costs, this efficiency was attained, hence reducing computing complexity and redundancy.
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Figure 20. Hybrid-Ensemble Training Time Comparison

When compared with current EHR- and imaging-based lung-cancer studies, the proposed hybrid ensemble achieved
performance levels consistent with contemporary benchmarks. Wang et al. (2024) [11] obtained an AUROC of 0.924
using transformer-based temporal model on UK primary-care data, and Su et al. (2025) [13] reported 0.860 with
XGBoost on real-world Chinese EHRs. Chen et al. (2024) [9] achieved 0.89 AUC with an inclusive screening model,
whereas imaging-centred deep-learning surveys such as Liz-Lopez et al. (2025) [14] cite AUCs between 0.90 and 0.98
but with far greater computational expense. The present ensemble reached AUC = 0.998 on synthetic data, demonstrating
that under controlled conditions, lightweight optimization can approximate deep-learning-level discrimination.
Nonetheless, these findings are exploratory: validation on clinical data is essential before any practical comparison can
be confirmed.

4-3-4- Summary of Hybrid Ensemble Advantages

o High Predictive Power: Achieves near-uniform improvements across accuracy, recall, precision, F1, and ROC
AUC.
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o Efficient Training: Outperforms many NIA-optimised models in terms of speed, ensuring feasibility for large-
scale or near-real-time applications.

o Robustness: Maintains top-tier performance despite dataset variations and parameter perturbations, indicating
strong generalization potential.

By effectively leveraging the capabilities of baseline and NIA-optimised classifiers, the hybrid ensemble produces a
final model with outstanding prediction accuracy and reasonable training costs. For medical chores like lung cancer
screening, where both dependability and efficiency are critical, this method shows particularly great promise.

The hybrid GWO-WOA-XGBoost ensemble exhibited the highest overall performance, achieving near-perfect
discrimination on synthetic data. This outcome supports the principle that layered optimization can capture subtle
nonlinear relationships among health variables more effectively than single-stage tuning. Nevertheless, the performance
must be viewed as an experimental ceiling: the absence of real-world variability, human input, and incomplete EHR
entries likely inflate these metrics. The practical implication is that the framework could serve as an auxiliary analytical
tool to flag high-risk profiles, prompting early screening, rather than as an autonomous diagnostic system.

4-4-Result Interpretation and Comparative Analysis

Overall, the progression from baseline to metaheuristic-optimised and hybrid models produced incremental but
consistent improvements in predictive metrics. Ensemble and boosting architectures benefited most from parameter
tuning while simpler learners plateaued early. Comparisons with recent literature indicate that structured-data approaches
achieve AUCs in the 0.98-0.89 range, whereas deep-learning pipelines or imaging-based methods can exceed 0.90 AUC.
The present study’s hybrid ensemble reached ~ 0.998 on synthetic data, illustrating the discriminative potential of
optimised traditional models when data noise is minimal. Importantly, the system is designed as an assistive framework
that can operate in the background of EHR systems, flagging potential cases for clinical follow-up rather than replacing
established diagnostic procedures. Future validation on federated or multi-institutional datasets, as envisioned by Rieke
et al. (2020) [15], will be necessary to confirm generalizability and reliability in real-world settings. Overall, these
interpretations emphasise that while performance values appear high, the real contribution lies in demonstrating how
lightweight, interpretable optimization frameworks can complement—rather than replace—traditional screening
workflows.

4-5- Feature Importance, Explainability, and Statistical Confidence

4-5-1- Feature Importance and Interpretability Analysis

SHAP analysis of the hybrid GWO-WOA-XGBoost ensemble (Figure 21) showed that only a small subset of
variables accounted for most of the predictive variance.
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Figure 21. Feature Importance Plot

The SCC tumor marker exhibited the highest mean absolute SHAP value, emerging as the strongest positive
contributors to predicted lung-cancer risk. Moderate contributions arose from metabolic and endocrine disorders,
advanced age, and obesity (BMI > 30), confirming that systemic metabolic dysfunction and ageing were key background
risks within the model. Secondary but consistent effects were observed for liver-function enzymes (AST, ALT, ALP)
and lipid measures (LDL, HDL, total cholesterol), reflecting systemic inflammation and metabolic stress frequently
linked to cancer development.

Several variables with unexpectedly high importance—such as prostate-specific antigen (PSA) and digital-rectal-
exam codes—were traced to overlapping diagnostic templates within the synthetic Synthea records. These behave as
generic “screening-marker” surrogates rather than organ-specific findings and therefore illustrate an artefact of synthetic
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EHR generation rather than biological signal. Conversely, smoking status and other classical exposure factors appeared
with only small positive SHAP values (~ 0.20). This under-representation likely stems from incomplete or randomized
encoding of behavioral data in the synthetic dataset, which limits the model’s ability to learn population-level exposure
effects.

Features with mean [SHAP| < 0.18 (= 5 % of the SCC magnitude) had negligible influence and were excluded from
the interpretive summary. The resulting panel of =~ 15 variables therefore provides a compact, transparent feature set
dominated by tumor, metabolic, and demographic indicators that remain clinically plausible.

4-5-2- Directionality, Noise, and Clinical Coherence

Positive SHAP values for SCC, metabolic disorders, and older age increased the predicted probability of malignancy,
while normal metabolic profiles or absence of such markers exerted neutral or weakly negative effects. The appearance
of non-specific laboratory or procedural codes (PSA, calcium, general blood counts) likely reflects synthetic co-
correlation noise. Such artefacts highlight an expected limitation of simulation-based data generation and do not diminish
the model’s methodological validity. Overall, the SHAP landscape remains biologically consistent with recognised lung-
cancer pathways in which chronic inflammation and metabolic imbalance precede malignant transformation.
Nevertheless, because the data are synthetic, these relationships should be interpreted as plausible associations requiring
confirmation on real clinical datasets.

4-5-3- Statistical Confidence and Model Robustness

Bootstrapped 95% confidence intervals (B 2000, stratified by class) were computed on independent test set to quantify
performance stability. Point estimates are reported alongside their intervals in Table 2. The hybrid ensemble achieved
ROC-AUC =0.9925 (95 % CI1 0.989 — 0.997) and F1 = 0.93 (95% CI 0.90-0.95), indicating both high accuracy and low
variance. The narrow confidence widths (+ 0.02-0.03) confirm reproducibility rather than overfitting. Simpler learners
such as Logistic Regression or KNN displayed wider intervals and lower mean scores, underscoring the ensemble’s
efficiency-performance balance.

Table 2. Bootstrapped 95 % Confidence Intervals for Model Performance Metrics

Model Accuracy (95 % CI) Recall (95 % CI) F1-Score (95 % CI) ROC-AUC (95 % ClI)
Hybrid Ensemble (GWO-WOA-XGB)  0.976 (0.970-0.982) 0.945 (0.932-0.957) 0.930 (0.900-0.950) 0.993 (0.989-0.997)
XGBoost (Base) 0.958 (0.951-0.965) 0.912 (0.897-0.926) 0.902 (0.887-0.916) 0.975 (0.969-0.981)

Random Forest
Logistic Regression
SvC
KNN

0.939 (0.930-0.948)
0.904 (0.893-0.915)
0.887 (0.874-0.900)
0.865 (0.850-0.880)

0.888 (0.870-0.905)
0.852 (0.832-0.871)
0.834 (0.812-0.856)
0.809 (0.784-0.833)

0.873 (0.857-0.890)
0.842 (0.823-0.862)
0.821 (0.800-0.841)
0.796 (0.772-0.819)

0.955 (0.946-0.964)
0.919 (0.907-0.931)
0.900 (0.886-0.914)
0.878 (0.862-0.894)

5- Conclusions
5-1-Conclusion

Starting with baseline models and progressively improving performance using nature-inspired optimization
techniques and a hybrid ensemble framework, this work displayed a methodical approach for lung cancer diagnosis with
machine learning. The findings are summarized as follows:

o Baseline Benchmarking: A strong performance baseline was given by conventional classifiers like Random Forest,
AdaBoost, Bagging, and Decision Trees. For accuracy, recall, and general robustness, ensemble-based methods
usually exceeded simpler algorithms.

o NIA-Based Optimizations: By hyperparameter optimization, metaheuristic algorithms—such as Genetic
Algorithm, Grey Wolf Optimizer, Moth-Flame Optimization, Particle Swarm Optimization, and Whale
Optimization Algorithm—improved predictive metrics. Often achieving around 99% accuracy, ensemble models
such Random Forest, Extra Trees, and XGBoost routinely drew advantages from these advanced optimization
methods.

e Hybrid Ensemble: Preserving reasonable training times, the hybrid ensemble—which combined the most
successful models from baseline and NIA-optimised configurations—achieved the best accuracy—about 99.25%.
For large-scale or time-sensitive applications, this approach effectively balanced computational efficiency with
prediction accuracy.

o Clinical Relevance: Strong precision-recall measures and the higher ROC-AUC (0.9984) show how well the
system can detect lung cancer cases. Still, more validation with real-world data is necessary to confirm the
therapeutic relevance of the study since it uses synthetic data.
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Although it is only preliminary research, this paper highlights the potential of machine learning in improving lung
cancer diagnosis. The methods and results presented here provide a basis for further projects, therefore encouraging
further improvement and validation of the suggested models in many different and useful medical environments.

5-2- Limitation

o Synthetic Dataset: Although it provides a good framework for study, the synthetic dataset falls short in capturing
the variety and complexity of real-world clinical settings. This limitation might affect the generalizability of the
findings.

e Scalability: The computational requirements of some hybrid models could make resource-limited healthcare
environments problematic; hence, extra optimization is necessary to ensure accessibility and efficiency.

e Model Interpretability: The complexity of ensemble models could make them difficult to interpret, which is
absolutely vital for therapeutic use. Building the confidence of medical experts depends on establishing
explainable models.

o Data Bias: Under control by set criteria, the engineering process and feature selection could accidentally bring
bias. Reduction of this risk depends on validation using diverse datasets.

5-3- Future Scope

¢ Validation with Real-World Data: Real-world clinical data should be included in future research to confirm the
generalizability and strength of the framework. Cooperation with medical establishments would give access to
varied and representative data samples.

o Multi-Modal Integration: Combining information from several sources—medical imaging, genetic profiles, and
electronic health records—could increase predictive accuracy and provide a thorough understanding of lung cancer
diagnosis.

o Explainability in Clinical Use: Building trust among doctors and patients depends on improving model
interpretability by means of SHAP (SHapley Additive exPlanations) or LIME (Local Interpretable Model-
Agnostic Explanations).

o Adaptation to Resource-Limited Settings: Developing lightweight models or incremental learning solutions
catered for situations with limited resources, such as rural clinics or edge devices, will guarantee more general
accessibility.

¢ Real-Time Applications: Investigating online and streaming-based categorization methods could help to detect
lung cancer in real time, especially in telemedicine and emergency care situations where quick feedback is vital.

5-4-Translational and Collaborative Implications

o Collaborative Potential: Cooperation with clinical researchers will help future projects to test the relevance of these
models using actual patient data. Such collaborations could close the distance between computer developments
and useful use in the healthcare sector.

o Integration with Existing Systems: Though experimental, the suggested approaches have great potential for
inclusion into diagnostic processes, especially for early-stage lung cancer identification. To guarantee congruence
with clinical criteria and procedures, nonetheless, more research is needed.

e Practical Limitations: Although the outcomes are positive, some algorithms’ cost and training time could create
challenges for acceptance in real-time environments, especially in low-resource settings.

The translational potential of this framework lies in its adaptability to real-world healthcare infrastructure. By
leveraging routinely collected EHR data, the proposed pipeline can be extended to diverse healthcare systems without
demanding costly imaging workflows or bespoke computational resources. Future collaborations with clinicians and
data scientists will be essential to align algorithmic performance with the operational realities of screening programs and
hospital information systems. Such collaboration will also ensure that model outputs are clinically interpretable and
usable within standard decision-support interfaces.

Beyond technical translation, practical adoption requires careful consideration of ethical, regulatory, and workflow
integration issues which are discussed in the following subsection.

5-5- Ethical, Regulatory, and Clinical Integration Considerations
5-5-1- Integration into Clinical Workflow

The framework developed in this study is envisioned as a supportive analytical layer rather than a replacement for
clinical judgment. The model could be integrated into existing EHR systems, operating passively in the background to
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flag potential high-risk profiles for further screening. Each flag would prompt physician review rather than automatic
action, preserving clinical oversight. Such integration would allow scalable, low-cost support for screening in primary
and secondary care—especially in institutions lacking radiology-based infrastructure. While this work did not involve
direct collaboration with clinicians, future research will include multidisciplinary validation with medical professionals
to assess usability, interpretability, and workflow compatibility.

5-5-2- Ethical and Regulatory Dimensions

Responsible deployment of Al in healthcare requires strict adherence to data privacy, transparency, and fairness.
Although the present study employs synthetic data, any real-world implementation must comply with privacy
frameworks such as GDPR and HIPAA, ensuring de-identification and secure model governance. Bias mitigation
remains essential—algorithmic behavior should be monitored across demographic subgroups to prevent disparities in
screening outcomes. Explainability is another ethical necessity: methods such as SHAP and permutation importance
help make model reasoning traceable to clinicians, reinforcing trust and accountability.

Finally, any deployment in clinical settings would require regulatory clearance (e.g., under FDA’s software as a
Medical Device framework or EU MDR) and institutional ethical review, underscoring that models like this are
exploratory decision-support tools, not autonomous diagnostic systems.
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