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Abstract 

In recent years, the number of cyberattacks targeting healthcare resources has rapidly increased. 
Conventional IDSs rely heavily on predefined rules and attack signatures. However, modern zero-

day attacks with unpredictable behavior and multi-vector attack patterns can still breach healthcare 

networks. When a new type of cyberattack targets a specific server, an existing IDS may fail to 

detect it because it depends on static, predefined rules. To address these issues, we propose DML-

IDS: Distributed Multi-Layer Intrusion Detection System, designed to operate across multiple nodes 

in a network to collaboratively detect suspicious activities. The proposed approach employs a multi-
layer ensemble strategy to improve detection accuracy while reducing computational overhead on a 

single machine. All incoming network packets are first analyzed by the Distributed Threat Analysis 

Module (DTAM), which runs a Random Forest-based model as the base classifier to distinguish 
between benign and malicious traffic. Based on the nature and severity of the threat, malicious 

packets are flagged as highAlert (HA) in the Threat Prioritization Layer (TPL) and then forwarded 

to the respective Confirmatory Ensemble Model (CEM) for further, attack-specific analysis. These 
CEM models are designed to scale efficiently and detect zero-day as well as multi-vector attacks. 

The proposed model was trained on the CICIDS-2017 dataset. DTAM achieved an accuracy of 

98.5%, while the CEM models for DDoS, Patator, and Web Attack achieved 99.01%, 98.87%, and 
98.91% accuracy, respectively. Furthermore, the computational overhead of the DML-IDS 

architecture was evaluated and compared with an existing ensemble learning-based IDS. 
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1- Introduction 

With the rapid increase in the use of communication technologies and the advancement of Artificial Intelligence-

based botnets, there has been a significant rise in cyber-attacks. Healthcare platforms have become prime targets for 

attackers, as they contain sensitive health information about individuals and often lack robust security measures. 

According to the Healthcare Data Breach Statistics 2023 from the HIPAA Journal, around 725 healthcare data breaches 

were reported, exposing the health records of approximately 133 million individuals [1]. Similarly, the Veriti Research 

Report 2025 states that around 400 healthcare organizations in the United States have experienced cyber-attacks, 

including ransomware attacks [2]. Meanwhile, the use of AI-based botnets has also grown rapidly. By leveraging 

advanced monitoring techniques, botmasters can initiate, deploy, and monitor Distributed Denial of Service (DDoS) 

attacks on healthcare platforms. GorillaBot 2024 cyber-attack has emerged as one of the most powerful DDoS threats. 

GorillaBot launched 300,000 DDoS attacks across 100 countries within just 24 days in 2024 [3]. 

Given these incidents and their consequences, implementing robust cybersecurity measures for healthcare 

infrastructure is essential. Traditional approaches—such as firewalls, rule-based Intrusion Detection Systems (IDS), 
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Intrusion Prevention Systems (IPS), Virtual Private Networks (VPNs), and antivirus software—are often inadequate in 

defending against modern, sophisticated cyber threats. 

Conventional Intrusion Detection Systems use machine learning algorithms to train models for classifying network 

traffic as normal or malicious. Conventional IDS are pre-trained models that are learned from historical attack patterns. 

Bhati et al. [4] presented an analytical study on Support Vector Machine and its variants for detecting network attacks 

and intrusions. The SVM-based IDS was trained using different SVM models such as Linear SVM, Quadratic SVM, 

Fine Gaussian SVM, and Medium Gaussian SVM. The dataset used to train these models is the NSL-KDD dataset. The 

SVM model achieved a maximum accuracy of 98.7%. However, the trained SVM models were incapable of detecting 

advanced and adversarial network attacks, resulting in high false negative errors. Similarly, Azam et al. [5] presented a 

comprehensive review on the challenges faced by the traditional Intrusion Detection Systems (IDS), such as signature-

based (SIDS) and anomaly-based (AIDS) approaches, in proactively identifying the cyber-attacks. SIDS mostly rely on 

predefined attack signatures and struggle to identify zero-day attacks. On the other hand, AIDS can detect unknown 

threats; however, it suffers from a high false-positive rate. 

The primary issue with respect to the conventional intrusion detection system is mostly relying on the preexisting 

rule sets and attack signatures, which makes it infeasible to detect multi-vector and zero-day attacks. This often results 

in an increased false positive rate. To overcome these challenges, ensemble learning was introduced in the Intrusion 

Detection System. It combines multiple algorithms to create a robust and accurate detection system. Ahmed et al. [6] 

proposed a HAEnID architecture that integrates three ensembled models, such as Stacking Ensemble, Bayesian Model 

Averaging, and the Conditional Ensemble Method, to enhance the detection accuracy. In the training process, the base 

classifiers are trained with Decision Trees, Random Forests, Multi-Layer Perceptron, Logistic Regression, LightGBM, 

and AdaBoost on the CIC-IDS2017 dataset. The hybrid model achieves a higher accuracy of 98.79%. The entire HAEnID 

architecture and multi-layer computation are executed on a centralized processing system, which greatly increases the 

computational overhead and poses a challenge in scalability. 

Alsolami et al. [7] proposed an ensemble-based IDS architecture specifically designed for medical IoT devices, 

integrating stacking, bagging, and boosting techniques. It uses Random Forest and Support Vector Machine as base 

classifiers. The model is trained on the WUSTL-EHMS 2020 dataset, where stacking achieves the highest accuracy 

of 98.88%, followed by bagging at 97.83% and boosting at 88.68%. The main drawback of this technique is its high 

susceptibility to overfitting, as the continuous error-correction process in ensemble learning methods may produce 

highly specialized models that closely fit the training data. Furthermore, it does not address zero-day attack 

detection. 

Doost et al. [8] proposed a hybrid IDS architecture integrating Convolutional Neural Networks for automated feature 

extraction with a Random Forest classifier. The model is trained on KDD99 and UNSW-NB15 datasets, achieving an 

accuracy of 97.36% and a precision of 98.46%, outperforming baseline methods such as NBTree and SVM. However, 

the approach incurs high computational overhead. Fares et al. [9] proposed an anomaly-based IDS for IoT environments 

by integrating a TabNet Transformer and Google Vizier for hyperparameter optimization. The model also incorporates 

SHAP (Shapley Additive Explanations) to enhance interpretability, achieving 98.29% accuracy with the NSL-KDD 

dataset. However, the evaluation mainly focused on traditional cyber-attacks and did not address zero-day threats. While 

SHAP improves transparency, it may introduce computational bottlenecks on IoT devices. 

Similarly, Torre et al. [10] proposed a Federated Learning Intrusion Detection System (FL-IDS) using a one-

dimensional Convolutional Neural Network (CNN) for IoT environments. The system also integrates privacy-preserving 

techniques such as Differential Privacy (DP), the Diffie-Hellman Key Exchange (DHE) algorithm, and Homomorphic 

Encryption (HE) to perform computations on encrypted data. The FL-IDS achieved 97.31% accuracy using the TON-

IoT dataset. Although the results are promising, the computational load may affect overall network latency, and the 

scalability of the IDS on resource-constrained IoT devices is not explored. 

Nassreddine et al. [11] presented a Network Intrusion Detection System (NIDS) that employs ensemble machine 

learning techniques combined with a hybrid feature selection mechanism to accurately detect malicious packets. The 

system integrates Correlation-based Feature Selection (CFS) with embedded feature selection methods to identify the 

most relevant features. While the model achieved 99.99% accuracy with the NSL-KDD dataset, it does not address the 

risk of overfitting. Moreover, its accuracy may degrade in real-time scenarios where data is more volatile and less 

structured. 

From the above studies, it is evident that modern-day cybersecurity practices use conventional, ensemble, and hybrid 

machine learning techniques in Intrusion Detection Systems to improve detection accuracy. However, several challenges 

remain unaddressed, such as limited adaptability, computational overhead, and inability to detect multi-vector and zero-

day attacks. 



Emerging Science Journal | Vol. 9, No. 6 

Page | 3159 

1-1- Limitations 

The limitations of existing conventional, ensemble, and hybrid machine learning techniques are as follows: 

 Conventional Intrusion Detection Systems rely heavily on pre-existing rule sets, patterns, and signature-based 

detection, which make them incapable of identifying zero-day and multi-vector bot-based attacks. 

 Most existing IDS architectures are not designed to adapt to evolving cyber threats, which limits their 

effectiveness in high-traffic and dynamic network environments. 

 Many existing IDS models are deployed either on the firewall or at the network gateway (within the internal 

network), making them insufficient for distributed practices. 

 Several IDS models use hybrid or ensemble machine learning techniques to improve threat detection accuracy. 

However, these heavy-weight models significantly increase the computational overhead on the machines running 

the IDS. 

 Ensemble learning-based IDS that are implemented on a centralized multi-layer computation make it difficult to 

scale across distributed or high-traffic network environments.  

To overcome the limitation of existing intrusion detection systems, a DML-IDS, or Distributed Multi-Layer Intrusion 

Detection System, is proposed. It facilitates a scalable, distributed, and collaborative IDS scheme to identify the zero-

day and multi-vector attacks in healthcare networks. The proposed DML-IDS scheme uses a multi-layer approach and 

ensembled techniques to proactively detect cyber-attacks. 

1-2- Contributions 

The contribution of the proposed DML-IDS model is as follows: 

 Distributed IDS Framework: The proposed research introduces a distributed intrusion detection framework by 

deploying IDS across multiple network nodes, which facilitates collaborative detection and enhances scalability. 

 Multi-Layer Approach: The proposed DML-IDS framework uses a multi-layered approach, in which the first 

layer is (i) Distributed Threat Analysis Module (DTAM), the second layer is (ii) Threat Prioritization Layer (TPL), 

and the third layer is (iii) Confirmatory Ensemble Model (CEM), to ensure accurate and scalable detection. The 

first layer, DTAM, uses basic machine learning algorithms to perform initial screening of incoming packets. The 

second layer, TPL, analyzes the packets and checks for suspicious activities. If any are identified, the TPL denotes 

the corresponding packets as cyber threats. These suspicious packets are then further analyzed in the Confirmatory 

Ensemble Model (CEM).  

 Ensembled Models to Improve Detection Accuracy: To enhance threat detection accuracy, this research leverages 

ensemble techniques by combining multiple machine learning algorithms such as SVM, Random Forest, and 

Logistic Regression. Although the computation time of ensemble techniques is higher than traditional intrusion 

detection systems, the distributed nature of the proposed framework ensures that computational efficiency is not 

compromised. 

The paper is organized as follows: Section 2 discusses recent research on intrusion detection systems, distributed IDS, 

and ensemble machine learning techniques. Section 3 presents the system model of the proposed DML-IDS framework. 

Section 4 presents the performance evaluation and comparative analysis of the proposed DML-IDS with existing IDS 

schemes. Section 5 discusses the conclusion and future work. 

2- Related Works 

In this section, previous studies on Intrusion Detection Systems (IDS) based on deep learning, ensemble, and hybrid 

machine learning models are briefly described. These approaches have been extensively explored to enhance detection 

accuracy, adaptability, and robustness against emerging cyber threats. 

Xu et al. [12] presented an in-depth analysis of deep learning-based intrusion detection systems (DL-IDS), covering 

all phases including data collection, log analysis, graph summarization, and attack detection/analysis. The study 

explicitly mentions unsolved challenges in these systems, such as robustness and real-time constraints. Zhang et al. [13] 

reviewed deep learning applications in IDS with a focus on spatiotemporal feature extraction. They discussed issues 

related to class imbalance in IDS classification. The review emphasized that hybrid CNN–RNN architectures are more 

effective in capturing temporal correlations and spatial dynamics in packet-level data. However, due to class imbalance, 

these models perform poorly on minority attack types. To overcome this, the paper recommends using resampling 

methods and generative adversarial networks (GANs) to improve detection rates for rare attacks. 
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Mamatha et al. [14] proposed a Hybrid Ensemble Feature Engineering approach that combines Boruta, Relief, and 

Pearson correlation feature selection methods. Decision Tree, Random Forest, and Gradient Boosting were employed 

for Stacked Ensemble Classifiers. The hybrid ensemble model was trained and tested with the CICIDS-2017 dataset, 

specifically focusing on DoS and DDoS attacks. This hybrid feature selection method improved both training efficiency 

and detection performance due to dimensionality reduction. Accuracy was achieved above 98%, and precision was 

increased in DoS attacks. However, the processing time increased, and the setup process was complicated due to the 

multiple steps required for pre-processing and training. Ataa et al. [15] proposed a deep learning-based IDS for Software 

Defined Networks (SDN), focusing on LSTM, CNN, and hybrid models to secure SDN controllers and maintain control 

flows in the network. The research showed that hybrid models result in increased detection accuracy. However, 

implementing hybrid models on a single machine introduces significant latency and resource limitations, making real-

time operation challenging. Therefore, the study recommends further development to balance computational efficiency 

and processing load. 

Amouri et al. [16] presented a hybrid IDS that combines Kolmogorov-Arnold Networks (KAN) and XGBoost to 

improve intrusion detection in IoT environments. It uses KAN for feature transformation and representation learning 

and XGBoost as the final classifier. The method achieved accuracy above 99%, as well as high levels of Precision and 

Recall. Although it is robust in detecting various attacks, the computational load for training was higher than that of 

traditional ML classifiers, making it challenging for direct application on resource-constrained devices. Biber et al. [17] 

presented a comprehensive comparative study of individual ML models and ensemble strategies using two datasets, 

RoEduNet-SIMARGL2021 and CICIDS-2017. Ensemble methods such as Bagging, Stacking, Blending, Boosting, and 

individual models such as Decision Tree, Random Forest, SVM, and Neural Network were tested. The study found that 

ensemble methods consistently outperformed individual classifiers. In particular, the Stacking method achieved 99.1% 

accuracy on CICIDS-2017 and 98.7% accuracy on RoEduNet-SIMARGL2021. Bagging and Boosting methods were 

found to be better at reducing false positives. However, Stacking and Blending methods have challenges in implementing 

large-scale live IDS systems, as they require high computational loads 

To enhance NIDS capabilities, Liu et al. [18] incorporated host telemetry data and network flow information. By 

utilizing a deep learning pipeline that integrates both sources, the system outperforms standalone network-based models 

in terms of detection accuracy and false positives. This demonstrates the effectiveness of integrating multi-source 

features to improve IDS reliability in various operational contexts. 

Lansky et al. [19] presented a fundamental review of deep learning-based intrusion detection systems. They classified 

IDS approaches based on network types, such as autoencoders, convolutional neural networks (CNNs), recurrent neural 

networks (RNNs), and restricted Boltzmann machines (RBMs), and evaluated their performance on datasets such as 

KDD-Cup, NSL-KDD, and UNSW-NB15. They described the stages in feature discovery and classification and 

highlighted challenges such as model generalization and interpretability. 

In another study, Gao et al. [20] applied ensemble machine learning techniques to build an adaptive IDS model and 

emphasized its significance in intrusion detection development. Bringer et al. [21] conducted a review on honeypots in 

cybersecurity, analyzing recent advancements and future trends. Titarmare et al. [22] provided a detailed overview of 

honeypot systems, including their functions, types, and benefits. Verma & Dubey [23] discussed the development and 

real-time deployment of honeypots in network environments. Sharafaldin et al. [24] introduced the CICIDS-2017 dataset 

and compared it with existing datasets such as DARPA98, KDD99, ISC2012, and ADFA13 used for evaluating IDS and 

intrusion prevention approaches. They also evaluated network traffic features and applicable machine learning 

algorithms. Abbas et al. [25] developed an ensemble machine learning model for the Internet of Things and discussed 

the benefits of ML ensembling. Zhou et al. [26] proposed a distinctive method for model assembly and feature selection, 

explaining various algorithm combinations and recommending the most effective model. 

Das et al. [27] conducted a comparative analysis highlighting the advantages of ensemble ML models, also using the 

CICIDS-2017 dataset. Thockchom et al. [28] introduced a novel ensemble model trained on the CICIDS-2017 dataset, 

demonstrating performance improvements over individual models. Mhawi et al. [29] proposed an advanced feature 

selection mechanism to extract optimal features for training ensemble ML models. Maseer et al. [30] benchmarked 

various ML algorithms using the CICIDS-2017 dataset and compared their performance metrics. 

3- System Model 

The proposed DML-IDS: Distributed Multi-Layer Intrusion Detection System introduces a distributed and multi-

layer approach to detect cyber threats. The proposed DML-IDS framework consists of: (i) a Master Node for coordinating 

the ensemble models running on different networks, (ii) a Firewall in which the proposed multi-layer IDS is 

implemented, and (iii) Healthcare Resources. Figure 1 depicts the overall architecture of the proposed DML-IDS 

framework. 
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Figure 1. Overall architecture of the proposed DML-IDS framework 

Master Node (IDS-Co-Ordinator): Acts as a trusted supervisory entity in the distributed IDS framework. The primary 

responsibilities of the Master Node are to: (i) coordinate the firewalls deployed in distributed and heterogeneous 

healthcare networks, (ii) issue alerts immediately to connected firewalls upon detecting suspicious activities in the 

network, and (iii) synchronize IDS rules and detection models across interconnected firewalls to maintain uniform 

security standards. 

Firewall: Responsible for executing the multi-layer intrusion detection model, which detects harmful or highAlert 

packets entering the network. The firewall consists of: (i) the Distributed Threat Analysis Module (DTAM), which runs 

base classifiers including SVM, Random Forest, and Logistic Regression for preliminary threat evaluation, (ii) the Threat 

Prioritization Layer (TPL), which identifies highAlert packets, and (iii) the Confirmatory Ensemble Model (CEM), 

which performs attack-specific analysis. 

Healthcare Servers: Centralized systems within the network that host medical services and store confidential 

healthcare data. These servers are prime targets for cyber attackers and require continuous monitoring. 

3-1- Dataset Information 

In this research work, the CICIDS-2017 dataset is used for training and testing the proposed DML-IDS: Distributed 

Multi-Layer Intrusion Detection System. CICIDS-2017 is widely used in cybersecurity research, particularly for the 

development and evaluation of Intrusion Detection Systems (IDS). It contains real-life network traffic events, including 

various types of attacks such as DoS, DDoS, brute force, botnets, web attacks, and infiltration. The dataset consists of 

80 features and approximately 3 million network transaction records. 

The CICIDS-2017 dataset includes network traffic from cyber-attacks such as: (i) DDoS Attacks, (ii) Brute Force 

Attacks (SSH and FTP), and (iii) Web-based Attacks (XSS, SQL Injection, and Command Injection). Details of each 

cyber-attack and the corresponding network information are presented in Table 1. 

The CICIDS-2017 dataset, which includes diverse attack types, serves as a reliable and validated source for training 

and testing the proposed DML-IDS system. 
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Table 1. Dataset Information 

Dataset Info 
Records focusing on 

DDoS Attack 

Records focusing on Brute 

Force Attacks (SSH and FTP) 

Records focusing on Web based attacks  

(XSS, SQL injection and command injections) 

Total Records 225752 445910 170365 

Number of Training data 180682 356781 136453 

Number of Testing data 45142 89123 33917 

Total features 79 79 79 

Features chosen for Training 24 20 20 

Number of Attack Categories 1 2 3 

Percentage of MD+IA 1.42 0.25 1.09 

3-2- Dataset Information 

To reduce inconsistencies and achieve better accuracy in the proposed DML-IDS system, preprocessing techniques 

such as: (i) handling missing, infinite, and large values, (ii) categorical encoding, and (iii) feature scaling are applied. 

Missing, infinite, and large values are identified and removed from the dataset. Later, label encoding is performed to 

convert categorical values into a numerical format. The StandardScaler library is then used to standardize the data by 

removing the mean and scaling to unit variance. 

After preprocessing, the CICIDS-2017 dataset is split into an 80:20 ratio, where 80% is used for training the model 

and 20% for testing. 

3-3- Feature Extraction 

To achieve better accuracy, it is important to select the most relevant features from the dataset. As the proposed 

DTAM model handles multiple types of cyber-attacks, it is crucial to identify suitable features for training. In the 

proposed work, the SelectKBest algorithm is applied, and for each specified cyber-attack, the top 20 features are 

identified and extracted. 

The SelectKBest method finds the k most important features with the highest scores, as assessed by statistical 

measurements. Each feature is evaluated using a specific statistical test, such as f_regression for regression tasks or chi-

square for classification tasks.  

Let, Di =  { (x1
(i)

, y(i)) , (x2
(i)

, y(i)) , … , (xn
(i)

, y(i))} be the dataset for the 𝑖𝑡ℎ cyber-attack category where xj
i ∈  ℝm is the 

feature vector and yj
(i)

 is the corresponding label. Fi = { f1
i , f2

i , … , fm
i } be the set of all features in dataset 𝐷𝑖  

A statistical scoring function 𝑆(𝑓) is used to assign a relevance score to each feature, 

𝑆(𝑓𝑗
𝑖) =  𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑓𝑗

𝑖𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝐷𝑖   (1) 

To choose the 𝑘 features using SelectKBest algorithm, 

𝐹𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
𝑖 = arg 𝑡𝑜𝑝 − 𝑘  𝑆(𝑓𝑗

𝑖), for fj ∈  Fi  (2) 

For each cyber-attack, the dataset 𝐷𝑖 is, FSelected
i = {f1

i , f2
i , … , fk

i } 

SelectKbest feature extraction algorithm selects the ‘k’ features that score the highest. The primary objective of this 

algorithm is to improve the performance of the machine learning model by reducing the dimensionality of the data. This 

helps to control overtraining, increase training speed, and reduce the curse of dimensionality. To develop a DTAM 

model, which detects all types of cyber-attacks, a common feature in each dataset is extracted and combined as a unified 

dataset. 

Let, A =  { A1, A2, … , Ap} be the set of all types of cyber-attacks, FSelected
I  be the top k features from each 𝐴𝑖. Then, 

the common feature set used to train the combined DTAM model is,  

Funified =  ⋂ Fselected
ip

i=1   (3) 

The DTAM model is trained using Funified set to efficiently identify all types of cyberattacks. Figure 2 shows the 

extracted features from the CICISD 2017 data using the SelectKbest algorithm.  

The ANOVA F-value quantifies the ratio of variance between the groups to the variance within the groups. For a 

target variable Y and a feature X: 

𝐹 =
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑔𝑟𝑜𝑢𝑝𝑠

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑔𝑟𝑜𝑢𝑝𝑠
=

1

𝑘−1
∑ 𝑛𝑘(𝑋̅𝑘−𝑋̅)2𝑘

𝑘=1
1

𝑁−𝐾
∑ ∑ (𝑋𝑖𝑘− 𝑋̅𝑘)2𝑛𝑘

𝑖=1
𝑘
𝑘=1

  (4) 
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where, 𝑘 is the number of groups, 𝑛𝑘 is the number of samples in the group 𝑘, 𝑋̅𝑘 is the mean of the group 𝑘 , and 𝑋̅𝑘 is 

the overall mean. Figure 2 presents the features that are extracted from CICIDS-2017 dataset for training using 

SelectKbest method. 

 

Figure 2. Features extracted for training using SelectKbest method 

By identifying the most important features for each type of cyber-attack, the SelectKBest algorithm reduces the 

dimensionality of the data, which improves both accuracy and performance of the DTAM model in detecting various 

cyber threats. 

3-4- DML-IDS Multi-layer Approach 

The proposed DML-IDS: Distributed Multi-Layer Intrusion Detection System includes three distinct stages: (i) 

Distributed Threat Analysis Module (DTAM), (ii) Threat Prioritization Layer (TPL), and (iii) Confirmatory Ensemble 

Models (CEM). The DTAM, located in the firewall’s first layer, processes all incoming network packets and performs 

an initial threat assessment using the Random Forest machine learning algorithm. If any suspicious activity is detected, 

the DTAM module forwards the packets to the Threat Prioritization Layer (TPL). In this layer, malicious packets are 

flagged as highAlert (hA) packets based on the type and severity of the detected threat. 

These hA packets are then sent to the appropriate Confirmatory Ensemble Models (CEMs) for in-depth, attack-

specific analysis. The CEMs are designed to detect zero-day and multi-vector threats and are built to be scalable. This 

layered approach enables efficient detection of various types of cyber-attacks without the need to deploy separate models 

for each attack type, thereby reducing the computational load. 

3-4-1- Distributed Threat Analysis Module (DTAM) 

The DTAM module examines all incoming packets entering the network that contains healthcare resources. To 

classify packets as malicious or benign, the DTAM is trained using the Random Forest machine learning algorithm. A 

unified dataset, consisting of common features across all attack types, is used to train the model so that it can detect 

multiple types of cyber-attacks rather than being restricted to a single attack category. 
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𝐷𝑢𝑛𝑖𝑓𝑖𝑒𝑑 =  ⋃ 𝐹𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
(𝑖)𝑃

𝑖=1   (5) 

where, 𝐹𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
(𝑖)

 is the set of top features selected from the dataset 𝐷𝑖corresponding to the attack type 𝑖   and 𝑝 is the total 

number of different types of attack type considered.  

The shared characteristics of all the individual attack datasets are extracted and consolidated into a unified dataset. 

This dataset is then used to train the model, enabling it to anticipate and detect various forms of web attacks rather than 

being limited to a single attack type. The model is trained using the unified dataset as follows, 

𝑀𝐷𝑇𝐴𝑀 = 𝑇𝑟𝑎𝑖𝑛𝑅𝐹  (𝐷𝑢𝑛𝑖𝑓𝑖𝑒𝑑)  (6) 

where, 𝑀𝐷𝑇𝐴𝑀 represents the trained model, and 𝑇𝑟𝑎𝑖𝑛𝑅𝐹 denotes the training process of Random Forest algorithm. The 

Random Forest algorithm used in the DTAM model combines multiple decision trees to achieve better accuracy and to 

reduce the overfitting issues in the trained model. From the unified dataset 𝐷𝑢𝑛𝑖𝑓𝑖𝑒𝑑 , 𝑇 bootstrap samples 𝐷1, 𝐷2 … 𝐷𝑇  

are generated by the sampling with replacement. Each sample is used to train one decision tree.  

At each node, a random subset of features 𝐹𝑡 ⊂ {1,2, . . . , 𝑚} is selected. The best feature and threshold to split the 

node are determined using a criterion such as Gini Impurity, calculated as,  

𝐺(𝑁) = 1 − ∑ 𝑝𝑐
2𝐶

𝑐=1   (7) 

where 𝑝𝑐 is the proportion of instances belonging to class c at node 𝑁, and 𝐶 is the number of classes. Each trained 

decision tree ℎ𝑡provides a prediction for a given input 𝑥, ℎ𝑡(𝑥) = ∈ {0,1}, where 0 denotes benign and 1 denotes 

malicious. The final DTAM model us majority vote among all decision trees,  

𝐻(𝑥) = 𝑚𝑜𝑑𝑒{ℎ1(𝑥), ℎ2(𝑥), . . . , ℎ𝑇(𝑥)}  (8) 

The majority voting mechanism increases the model’s robustness and accuracy by reducing the impact of individual 

tree errors.  

3-4-2- Threat Priority Layer 

The second layer in the proposed DML-IDS: Distributed Multi-Layer Intrusion Detection System is the Threat 

Prioritization Layer (TPL). Network packets identified as malicious by the DTAM model are forwarded to the TPL 

for further evaluation based on their severity and potential impact. The primary goal of the Threat Prioritization 

Layer is to assign priority levels to the identified network packets, enabling the system to respond more quickly to 

high-risk attacks. 

The TPL uses a severity scoring function 𝑆(𝑥) to calculate the threat score for each network packet that is flagged as 

a highAlert packet by the DTAM model. The score is calculated from the key threat indicators such as, packet size, 

source reputation, port access pattern, frequency of attack signature and type of protocol.  

Let, 𝑥 = {𝑓1, 𝑓2, . . . , 𝑓𝑘} be the feature vector of a flagged packet. The severity scores 𝑆 (𝑥) is computed as,  

𝑆(𝑥) =  ∑ 𝑤𝑗 . 𝑓𝑗
𝑘
𝑗=1   (9) 

where 𝑓𝑗 is the 𝑗𝑡ℎ  selected feature of the packet, 𝑤𝑗  the weight assigned to feature 𝑓𝑗 and 𝑘 is the total number of features 

used for priority classification. 

A threshold 𝜃 𝑖s defined to classify the identified packets as highAlert (hA) packets,  

 𝐼𝑓 𝑆(𝑥) ≥ 𝜃, 𝑥 ∈ ℎ𝑖𝑔ℎ𝐴𝑙𝑒𝑟𝑡 (ℎ𝐴) 𝑠𝑒𝑡  (10) 

Network packets that exceed the threshold value are designated as high-priority packets and forwarded to the third 

layer, called the Confirmatory Ensemble Models (CEMs), for advanced and attack-specific analysis. 

3-4-3- Confirmatory Ensemble Models 

The third layer in the proposed DML-IDS: Distributed Multi-Layer Intrusion Detection System is the Confirmatory 

Ensemble Models (CEMs), in which multiple models are trained as an ensemble. The primary task of the CEM is to 

analyze the highAlert packets received from the Threat Prioritization Layer (TPL) in a targeted, attack-specific manner. 

These models are developed as specialized ensembles that achieve high accuracy against specific types of cyberattacks, 

such as web-based attacks, DDoS attacks, and Patator attacks. Each Confirmatory Ensemble Model includes the 

following base classifiers: (i) Random Forest (RF), (ii) Support Vector Machine (SVM), and (iii) Naïve Bayes (NB), as 

shown in Figure 3. 
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Figure 3. Confirmatory Ensembled Model to detect different types of cyber attack 

The outputs of these classifiers are combined using majority voting or another fusion strategy. This process ensures 

that the system can confirm whether an incoming packet is truly malicious and determines its specific attack type. 

In the third layer, CEM-1 is responsible for verifying DDoS attacks by combining Random Forest, SVM, and Naive 

Bayes. CEM-2 handles Patator attacks using Random Forest, SVM, and Logistic Regression and CEM-3 focuses on 

Web Attacks, using the same base classifiers as CEM-2.  

Let the prediction of classifier 𝑐𝑗 in 𝐶𝐸𝑀𝑖 for input 𝑥 be 𝑐𝑗
𝑖(𝑥), where 𝑗 =  1,2, … 𝑛 and 𝑖 = 1,2,3. Then the final 

CEM decision is computed as,  

𝐶𝐸𝑀𝑖
(𝑥)

= 𝑚𝑜𝑑𝑒{𝑐1
𝑖 (𝑥), 𝑐2

𝑖 (𝑥), . . . , 𝑐𝑛
𝑖 (𝑥)}  (11) 

where, 𝐶𝐸𝑀𝑖
(𝑥)

 gives the final label (benign or malicious for the specific attack type) and mode represents majority 

voting among the classifier predictions. 

4- Performance Evaluation 

The proposed DML-IDS: Distributed Multi-Layer Intrusion Detection System was trained on an HPC machine with 

the following configuration: Intel Xeon 4210 processor, 32 GB RAM, running on Ubuntu 22.04 LTS. Python 3.11 was 

used for model training. The experimental setup validated the process of training parallel ensemble models and 

efficiently managing large datasets. Table 2 shows the hyperparameters that were used for training the ensemble learning 

models. 

Table 2. Hyperparameters used for training the model 

Model Tuning Parameters Values 

Random Forest 

n_estimators 100 

max_depth 10 

min_samples_split 2 

SVM 

Kernel rbf 

Regularization Parameter (C) 1 

Gamma 'scale' 

Logistic Regression 

Regularization parameter 1 

Solver ibfgs 

Max Iterations 100 

Naïve Bayes Default Parameters Default Parameters 
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In the proposed work, Random Forest, Support Vector Machine, Logistic Regression, and Naïve Bayes algorithms 

are used for training the model. For the Random Forest algorithm, the number of trees is set to 100, the tree depth to 10, 

and the minimum sample split to 2. For the Support Vector Machine algorithm, the kernel type is set as RBF, the 

regularization parameter CC is set to 1, and the gamma value is set to ‘scale’. For the Logistic Regression algorithm, the 

regularization parameter CC is set to 1, the solver is set as ‘lbfgs’, and the maximum number of iterations is set to 100. 

For the Naïve Bayes algorithm, the default parameter settings are used. 

4-1- Evaluation of Distributed Threat Detection Model (DTAM) 

The first layer of the proposed DML-IDS: Distributed Multi-Layer Intrusion Detection System is the Distributed 

Threat Analysis Module (DTAM). In this layer, incoming network packets are classified as either malicious or benign. 

The model is trained using the 𝐷𝑢𝑛𝑖𝑓𝑖𝑒𝑑  dataset with the Random Forest algorithm. The trained model is evaluated using 

standard performance metrics such as accuracy, precision, and F1-score.  

The accuracy of the DTAM is calculated through, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑇𝐴𝑀 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑐𝑘𝑒𝑡𝑠
=

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  

Similarly, the precision of the DTAM is calculated from, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐷𝑇𝐴𝑀 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠

𝐴𝑙𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠
=

𝑇𝑃

𝑇𝑃+𝐹𝑃
 

F1 Score is calculated as, 𝐹1𝐷𝑇𝐴𝑀 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

The accuracy, precision and F1 score of the proposed DTAM model is shown in Figure 4. 

 

Figure 4. Performance evaluation of DTAM model with 𝑫𝒖𝒏𝒊𝒇𝒊𝒆𝒅 

The DTAM model, trained using the Random Forest algorithm on the unified dataset 𝐷𝑢𝑛𝑖𝑓𝑖𝑒𝑑 , directly monitors 

traffic passing through the network tunnel (firewall). It classifies traffic as normal or malicious. If an attack is suspected, 

the traffic is forwarded to the Threat Prioritization layer (TPL) for higher-level assessment.  

4-2- Threat Prioritization Layer (TPL) 

The DTAM layer acts as a primary filter to detect potential attacks. It applies a Random Forest (RF) algorithm to 

classify the malicious internet network packets and forwards it to the Threat Prioritization Layer (TPL), where the 

severity of the packets is evaluated.  

Let a detected threat 𝑇𝑃𝐿𝑖  be evaluated by the Threat Prioritization Layer based on multiple parameters such as, 

Severity score (𝑆𝑖), Frequency of Occurrence (𝐹𝑖), Classifier confidence score (𝐶𝑖) and Risk impact score (𝑅𝑖).  

Let weight be assigned to each factor: 

𝑤𝑠, 𝑤𝑓 , 𝑤𝑐 , 𝑤𝑟 ∈ [0,1] and 𝑤𝑠 + 𝑤𝑓 + 𝑤𝑐 + 𝑤𝑟 = 1 (12) 

Then the TPL of threat 𝑇𝑃𝐿𝑖  is defined as,  

𝑇𝑃𝐿𝑖 = 𝑤𝑠 ⋅ 𝑆𝑖 + 𝑤𝑓 ⋅ 𝐹𝑖 + 𝑤𝑐 ⋅ 𝐶𝑖 + 𝑤𝑟 ⋅ 𝑅𝑖  (13) 

Here, the value of 𝑆𝑖, 𝐹𝑖  , 𝐶𝑖 , 𝑅𝑖 are normalized to [0,1], 

0 ≤  𝑆𝑖 , 𝐹𝑖 , 𝐶𝑖, 𝑅𝑖  ≤ 1  
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Combining with weights 𝑤𝑠 + 𝑤𝑓 + 𝑤𝑐 + 𝑤𝑟 = 1, the convex combination be, 

𝑇𝑃𝐿𝑖 = ∑ 𝑤𝑗 ⋅ 𝑋𝑗
 
𝑗∈{𝑠,𝑓,𝑐,𝑟} , 𝑤ℎ𝑒𝑟𝑒 𝑋𝑗 ∈ [0,1]  (14) 

Using the properties of convex combination of bounded values 

Lower bound: if all 𝑋𝑗 = 0, then 𝑇𝑃𝐿𝑖 = 0 and 

Upper bound: if all 𝑋𝑗 = 1, then 𝑇𝑃𝐿𝑖 = 𝑤𝑠 + 𝑤𝑗 + 𝑤𝑐 + 𝑤𝑟 = 1 ⇒  0 ≤ 𝑇𝑃𝐿𝑖 ≤ 1 

4-2-1- Analysis of Threat Prioritization Layer (TPL) 

In the proposed DML-IDS architecture, the second layer, Threat Prioritization layer analyzes network packets that 

have been classified as benign packets by the DTAM layer. For each such packet, the 𝑇𝑃𝐿𝑖  is computed using the 

weighted combination of severity score, frequency of occurrence, classifier confidence, and risk impact, as defined in 

Equation 12. To evaluate the performance of the TPL layer, the Friday DDoS Day subset of CICIDS-2017 dataset was 

used. It consists of 225,745 records, in which 128,027 are DDoS attack packets and 97,718 benign packets.  

The first layer, DTAM correctly identified 126,761 packets as malicious and 98,984 packets as benign with the 

accuracy of 99.01%. However, to further tighten the security and to improve the accuracy of the detection system, the 

second layer, Threat Prioritization Layer calculates the threat value 𝑇𝑃𝐿𝑖 of each benign packet.  

The TPL layer evaluated all DTAM benign packets using the threshold value τ = 0.70. This process identified 5,867 

benign-classified packets with threat score exceeding the threshold value. Table 3 presents the detail of the analysis of 

Threat Prioritization Layer. 

Table 3. Analysis of Threat Prioritization Layer 

Metric Count 

Total Packets 225,745 

DTAM – Malicious (auto-HighAlert) 126,761 

DTAM-benign 98,984 

TPL-promoted (Score > 0.70) 5,867 

Recovered true attacks 1,726 

Benign promoted as hA packet 4,141 

Final High Alert packets 131,989 

Residual undetected attacks 179 

Total Packets 225,745 

DTAM – Malicious (auto-HighAlert) 126,761 

The malicious packets classified by the DTAM model and the packets that have threshold value of more than 0.70 

are flagged as high Alert (hA) packets and are fed to Confirmatory Ensemble Models (CEMs) for further analysis.  

4-3- Confirmatory Ensemble Models 

The Voting Classifier technique is applied to Confirmatory Ensemble Models (CEMs). Each base model is combined 

using a hard voting mechanism, where the predictions of multiple models are aggregated, and the majority vote 

determines the final output. This approach enhances both the accuracy and reliability of the model. As a result, the CEMs 

can detect and prevent attacks with greater accuracy and precision. Table 4 summarizes the overall performance results 

of the CEMs models based on the type of attack and Figure 5 depicts the accuracy, precision of F1 Score of the CEM 

model. 

Table 4. Performance evaluation of CEM Models proposed in the DML-IDS Framework 

Metric 
CEM 1  

DDoS 

CEM 2  

Patator 

CEM 3 

Web Attacks 

Accuracy 99.01 98.87 98.91 

Precision 98.12 98.97 98.31 

F1-Score 98.86 98.86 98.57 

Missed Detection (MD) 15 15 309 

Incorrect Alarm (IA) 875 210 59 

Total Test Values 45143 89120 33912 

Percentage of MD+IA 1.43 0.26 1.09 
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Figure 5. Performance evaluation of CEM Models 

The accuracy, precision and F1-score of each CEMs are measured. The results are promising with good accuracy and 

only a low level of false alarms and missed detection is observed. The detailed results of the proposed CEM models with 

respect to each attack type and algorithm used are denoted in Table 5. 

Table 5. Performance evaluation of CEM Models proposed in the DML-IDS Framework 

Attack Algorithm Used Accuracy Precision 
F1-

score 

Incorrect 

Alarm (IA) 

Missed Detection 

(MD) 

Total 

IA+MD 

Total 

Values 
Percentage 

DDoS 

Random Forest Classifier 99.89 99.99 99.96 1 18 19 

45143 

0.04 

SVM 98.32 97.32 98.62 708 11 719 1.59 

Naïve Bayes Classifier 98.12 96.85 98.38 835 9 844 1.87 

Patator 

Random Forest Classifier 99.05 99.99 99.99 0 0 0 

89129 

0 

SVM 98.90 98.9 98.91 230 8 238 0.27 

Logistic Regression 98.87 98.89 98.77 286 9 295 0.33 

Web 

Attacks 

Random Forest Classifier 99.24 99.33 99.3 52 49 101 

33912 

0.3 

SVM 98.73 98.2 98.12 61 309 370 1.09 

Logistic Regression 98.56 97.82 98.05 69 309 378 1.11 

4-4- Comparison of the Proposed DML-IDS System with Existing Work 

To improve the accuracy of cyber threat detection, several researchers have explored ensemble-based machine 

learning approaches using the CICIDS-2017 dataset. Abbas et al. [25] achieved 88.96% accuracy, indicating limitations 

in performance. Meanwhile, Zhou et al. [26] and S. Das et al. [27] achieved higher accuracies of 97.89% and 98.50%, 

respectively; however, their models can be considered limited, as both employed single-layer detection approaches with 

a small number of features. 

Similarly, Thokchom et al. [28] and Mhawi et al. [29] tested their models using a limited set of attack types, 

achieving 99.48% and 99.7% accuracy, respectively, but the lack of comprehensive attack coverage remains a 

limitation. Maseed et al. [30] achieved 98.9% accuracy using a Random Forest classifier; however, their approach 

focused on only a few specific attack types and did not incorporate an ensemble method. Table 6 presents a 

comparison between the existing works and the proposed DML-IDS: Distributed Multi-Layer Intrusion Detection 

System. 
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Table 6. Comparative Analysis of the proposed work with existing work 

Article Algorithm Used Accuracy  Remark 

Abbas et al. [25] Ensemble 88.96 Limited Accuracy 

Zhou et al. [26] Ensemble 99.89 Single Layer Approach and Lower Number of Features 

Das et al. [27] Ensemble 99.50 Less features used for training, single layer approach 

Thockchom et al. [28] Ensemble 99.48 Accuracy Persistent to limited attacks, some attacks are not detected 

Mhawi et al. [29] Ensemble 99.7 Single Layer Approach, only limited attacks taken into consideration 

Maseet et al. [30] Random Forest Classifier 98.9 No Ensembling and model limited to few types of attacks only 

Proposed Research Random Forest Classifier and Ensemble 99.01 
Multi-Layer approach, high Accuracy produced, and can detect various attacks, 

integrated honeypot mechanism, also works as in attack prevention 

The present study improves upon previous work by combining Random Forest and ensemble models within a 

multilayer architecture. This design achieves a high accuracy of 99.01% and enhances the model’s capability to detect a 

wide range of attacks. 

4-5- Analysis of Computational Overhead of Proposed DML-IDS System with Existing Work 

One of the primary objectives of the proposed DML-IDS architecture is to reduce the computational overhead of 

threat detection. The proposed model uses a multi-layer and distributed approach to reduce the computational overhead. 

To evaluate the computational efficiency of the proposed architecture, system resource usage and network packet 

processing time are measured.  

4-5-1- Analysis of Network Packet Processing Time 

The processing time of the DML-IDS framework was evaluated by measuring the average time taken to handle 

incoming network packets. A total of 200,000 network packets is taken into consideration to measure the processing 

time. Initially, the first 10,000 packets were processed in 0.259 seconds, and it gradually increased to 4.042 seconds for 

160,000 packets. Table 7 presents the processing time of 200,000 network packets. 

Table 7. Processing Time Taken to implement 200,000 network packets 

Packets DTAM Time (s) TPL Time (s) CEM Time (s) Total Time (s) 

10000 0.092 0.048 0.119 0.259 

20000 0.184 0.096 0.211 0.491 

30000 0.276 0.144 0.317 0.737 

40000 0.368 0.192 0.427 0.987 

50000 0.46 0.24 0.499 1.199 

60000 0.552 0.288 0.678 1.518 

70000 0.644 0.336 0.732 1.712 

80000 0.736 0.384 0.967 2.087 

90000 0.828 0.432 0.981 2.241 

100000 0.92 0.48 1.189 2.589 

110000 1.012 0.528 1.208 2.748 

120000 1.104 0.576 1.427 3.107 

130000 1.196 0.624 1.546 3.366 

140000 1.288 0.672 1.664 3.624 

150000 1.38 0.72 1.783 3.883 

160000 1.472 0.768 1.802 4.042 

170000 1.764 0.816 2.631 5.211 

180000 1.756 0.864 2.994 5.614 

190000 1.948 0.912 3.759 6.619 

200000 2.484 0.96 3.95 7.394 

After reaching 1,60,000 packets, there was a noticeable rise in the processing time. The Confirmatory Ensemble 

Models (CEMs) layer, where several machine learning models run simultaneously, handles high-alert (hA) packets, 

introducing computational cost that is responsible for this abrupt spike. The total time taken to process 200,000 network 

packets is shown in Figure 6. 
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Figure 6. Time taken to process 200,000 network packets 

In contrast to traditional IDS models, which sometimes show exponential increases in processing delays as traffic 

volume rises, the suggested DL-IDS exhibits noticeably higher efficiency. The two-layer method is largely responsible 

for this efficiency since it guarantees that only questionable packets are thoroughly examined at the CEM layer, which 

lowers the processing load overall. 

4-5-2- Resource Utilization 

To further evaluate the efficiency of the proposed DML-IDS architecture, the resource utilization for implementing 

DTAM, TPL, and CEM layers was measured. The CPU and memory usage were measured for each individual layer 

under a network workload of 200,000 packets. The DTAM layer and the TPL layer were implemented on the same 

machine, while the CEM models were implemented on a separate machine. 

DTAM Layer: To measure the resource utilization of the DTAM layer, a dataset containing 200,000 input packets 

was fed into the model. The average CPU utilization for processing these network packets was 18.5%, with a peak 

utilization of 22%. Memory usage averaged 62.7%, and the total processing time was 2.88 seconds. 

TP Layer: The packets that are classified as benign by the DTAM layer are reevaluated on the TPL layer. Out of 

200,000 network packets, 98,128 packets were classified as benign network packets. To process these packets, the 

average CPU utilization is 20.1%, and the peak CPU utilization is 25.6%. Also, the average memory utilization is 66.9%, 

and the total time for processing the benign packets in the TPL layer is 1.12 seconds. 

CEM Layer: The highAlert (hA) packets are further processed in this layer. As the CEM layer consists of multiple 

machine learning models, the resource utilization in the CEM layer is higher than the DTAM and TPL layers. The 

average CPU utilization is 42.7%, and the peak CPU utilization is 65.1%. The average memory utilization is 76% with 

a processing time of 4.12 seconds. Table 8 presents the CPU and memory utilization to process 200,000 network packets. 

Table 8. Resource utilization to process 200,000 network packets of individual layer 

Layer  
Avg. CPU Utilization  

% 

Peak CPU Utilization  

% 

Avg. Memory Utilization 

% 

Processing Time  

(s) 

DTAM 18.5 22.0 62.7 2.88 

TPL 20.1 25.6 66.9 1.12 

CEM 42.7 65.1 76 4.12 

Figure 7 illustrates the overall CPU and memory utilization of the proposed DML-IDS architecture to execute 200,000 

network packets. Average CPU utilization remains relatively low, ranging from 18% to 25% across varying traffic loads, 

due to the multi-layer filtering that reduces unnecessary processing in later stages. Peak CPU utilization shows noticeable 

spikes at 150,000 packets (48.61%), corresponding to increased CEM activity when a higher number of High Alert 

packets are forwarded for parallel ensemble classification. 
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Figure 7. Resource Utilization to process 200,000 network packets 

Average memory usage remains comparatively stable between 62% and 76%. Overall, the results confirm that while 

CPU demand fluctuates based on the volume of packets escalated to the CEM layer, memory usage stays steady across 

all layers, validating the scalability and efficiency of the DML-IDS in high-traffic environments. 

4-5-3- Comparative Analysis with Existing Ensembled Machine Learning Based IDS 

The computational overhead of the proposed DML-IDS scheme is compared with the conventional IDS models. Table 

9 shows the comparative analysis of the computation overhead. 

Table 9. Comparison of Computational Efficiency of existing ensembled technique with proposed architecture 

Metric 
Existing Ensembled  

Technique 

Proposed Distributed and Multilayer based  

DML-IDS architecture 

Processing Time (200K packets) 11.9 Sec 7.34 Sec 

CPU Utilizations 40%-55% 20%-35% 

Peak CPU Utilization 85% 75% 

Memory Utilization (Avg) 75%-85% 70%-80% 

The main reason for this improvement in the computational efficiency is because of the multi-layer approach, the 

DTAM and TPL layer forwards only the high-risk packets to the computationally demanding CEM layer after filtering 

out innocuous traffic. 

5- Conclusion 

The proposed DML-IDS: Distributed Multi-Layer Intrusion Detection System framework enhances cyber threat 

detection while minimizing computational overhead. The proposed framework integrates three function layers, such as 

the Distributed Threat Analysis Module (DTAM), the Threat Prioritization Layer (TPL), and Confirmatory Ensemble 

Models (CEM), to filter, prioritize, and verify the malicious network packets. Instead of running the IDS on a single 

machine, the proposed DML-IDS divides the IDS work into multiple layers and deploys it in a distributed network, 

which significantly improves the scalability and reduces the computational overhead on a single machine. The proposed 

DML-IDS model is trained with CICIDS-2017 data for detecting various types of cyber-attacks such as DDoS, Patator, 

and Web Attacks. The accuracy of the DTAM base classifier model is 98.5%, while the specialized CEMS models 

designed to detect DDoS, Patator, and Web attacks achieved 99.01%, 98.87%, and 98.91%, respectively. 

Also, the computational efficiency of the proposed model is analyzed by evaluating the packet processing time and 

resource utilized. The multi-layer filtering strategy reduces unnecessary processing in later stages, allowing the system 

to maintain lower average CPU usage (18–25%) and stable memory consumption (62–76%). Compared to conventional 

IDS, the proposed DML-IDS reduced processing time for 200,000 packets by 28.32% and exhibited improved efficiency 

in both CPU and memory usage. The proposed DML-IDS model has achieved high detection accuracy and computational 

efficiency. The future work will focus on integrating federated learning and collaborative model training across multiple 

healthcare datasets to further improve the detection accuracy against evolving cyber threats. Also, explainable AI 

methods such as SHAP or LIME will be incorporated to enhance the interpretability of model decisions, enabling security 

analysts to better understand the detection outcomes. 
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