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Forecasting Accuracy.

1- Introduction

Accurate forecasting of greenhouse gas (GHG) emissions has, in the past, proven to be a critical contributor to
developing effective climate policies and achieving global sustainability goals. Rising emissions, predominantly from
anthropogenic sources of carbon dioxide (CO2), methane (CH,), nitrous oxide (N20), and fluorinated gases (F-gases),
pose significant challenges to mitigating climate change. For instance, global CO, emissions reached a record high in
2022, rebounding sharply from a temporary decline during the COVID-19 pandemic [1, 2]. CH. concentrations have
shown a renewed increase since 2007, with notable acceleration between 2014 and 2017 [3, 4], while N2O emissions
have risen by 30% over the past four decades, primarily driven by human activity [5]. F-gas emissions are also
increasing, particularly in developing countries, necessitating urgent attention [6].

Exploratory data analysis from Table 1 and Figure 1 reveals that CO, exhibits a mean normalized emission of
0.003151 and a variance of 0.000424, indicating its significant presence and variability. CH4 and F-gases show higher
means (0.006341 and 0.007880, respectively) and variances, suggesting their substantial contributions to rising
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emissions. All GHGs display high skewness, particularly CO, (20.530403) and N,O (18.939121), pointing to the
presence of high-emission outliers and a tendency for growing emission events [7]. These indicators underscore the need
for robust forecasting models that can capture complex emission patterns across multiple countries and sectors to inform
targeted policy interventions.

Table 1. Mean, variance, and skewness for GHG emissions distribution for substances: (a) COz, (b) CHa, (c) N20O, and
(d) F-Gases (EDGAR data Appendix A)

CO, CH, N,O F-Gases

Mean 0.003151 0.00634 0.004203 0.007880
Variance 0.000424 0.001271 0.000813 0.001836
Skewness 20.530403 13.310114 18.939121 13.073908
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Figure 1. Kernel Density plot of GHG emissions distribution for substances: (a) COz, (b) CHa, (¢) N20O, and (d) F-Gases
(EDGAR data Appendix A)

In recent decades, GHG emissions forecasting has evolved significantly with advancements in data analysis and
numerical computation. Traditional statistical models, developed to advance science in this domain, such as
Autoregressive Integrated Moving Average (ARIMA), have been widely used with appreciable success, yet are marred
with challenges, such as the inability to capture non-linear relationships inherent in emissions data [8, 9]. Such
limitations drove researchers to invent machine learning (ML) models to improve forecasting accuracy, with methods
like decision trees and support vector machines outperforming traditional approaches [10, 11]. In a world in dire need
of the best possible tools to solve climate change, scientists have continually sought after even more robust instruments
to resolve this problem. This has led to the development of even more advanced ML models such as advanced deep
learning models, notably, Long Short-Term Memory (LSTM) neural networks [3], a variant of Recurrent Neural
Networks that excel at capturing temporal trends in time-series data [12, 13] and has been demonstrated in a vast and
diverse array of applications like air temperature forecasting [14], solar radiation [15] and CO2 emissions prediction [16,
17]. Despite the prolificity of LSTMs, these models are limited in their ability to account for spatial interactions between
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proximate geographic locations with potential for inter-location spill-over emissions, a critical piece of information
needed for understanding global emissions dynamics influenced by economic, geographic, and policy-related factors
[18, 19].

To address this limitation of LSTMs, researchers have developed and applied hybrid models that integrate the
strengths of spatial modeling to complement the robust temporal modeling ability of LSTMs. In the domain of spatial
modeling, models like Convolutional Neural Networks (CNN) have been broadly used [20]. CNNs, although prolific,
are fundamentally designed to handle structured grid data. This has limited their ability to model the often-unstructured
spatial distribution of emission sources, a challenge that is addressed by another model called Graph Neural Networks
(GNN) [21]. A popular variant of GNNs, the Graph Convolutional Networks (GCNs) models spatial relationships by
notating data as graphs [22], making them suitable for capturing interactions between countries or regions [23, 24] with
potential cross-border emissions. Recent research has explored the combination of GCNs with LSTMs, which has
proven to be effective in domains such as power load forecasting [25], transportation [26], and air quality prediction
[27]. For instance, Shao et al. [7] proposed a hybrid spatiotemporal GCN model for multiregional carbon emissions
forecasting, highlighting its ability to integrate spatial dependencies. Similarly, Garcia-Duarte et al. [18] applied GCNs
to spatial-temporal air temperature forecasting, demonstrating their potential for environmental applications. Despite
these advances, there remains a critical gap in the application of hybrid GCN-LSTM models to multi-country, sector-
specific GHG emissions forecasting, which is essential for developing granular and actionable climate policies across
diverse regions and industries [7, 11].
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Figure 2. (a) Color Map and (b) Bubble Map of 163 countries [Appendix A] displaying the amount of Greenhouse gas
emissions from lowest through medium to highest in MtCO2e

This study addresses this gap by developing a novel GCN-LSTM hybrid model for forecasting GHG emissions
across 163 countries and eight sectors (Figure 2, Appendix A), utilizing a comprehensive 52-year dataset from the
Emissions Database for Global Atmospheric Research (EDGAR). The model leverages GCNs to capture spatial
relationships, such as geographic proximities and emissions similarities between countries, and LSTMs to model
temporal trends, incorporating node features like total GHG emissions and GHG per capita to analyze both macro-level
and micro-level patterns [28]. The key contributions from this study include: (1) a sophisticated data preprocessing
pipeline with node feature engineering and dynamic graph construction; (2) a novel GCN-LSTM architecture for spatial-
temporal feature extraction; (3) a spatial interpretability analysis of the GCN adjacency matrix, using Southeast Asia as
a case study to provide actionable insights into regional emission patterns; (4) comprehensive performance evaluation
against baseline models (ARIMA, simple LSTM, and stacked LSTM) using metrics such as Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R2), supplemented by paired t-tests across
all sectors (p-value < 0.05), reported in Appendix B); (5) 5-fold cross-validation to ensure model robustness; and (6)
interpretable insights into emission trend drivers to support targeted climate policies [7, 29]. To advance environmental
informatics, this study provides a robust tool for emissions forecasting, enabling policymakers to address global,
regional, and sectoral climate challenges effectively.
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The paper is organized as follows: Section 2 describes the data sources, preprocessing pipeline, and details of the
GCN-LSTM model architecture and methodology. Section 3 presents the experimental results, comparisons with the
baseline model, and figurative interpretability. Section 4 discusses the implications of the findings and suggests
directions for future research, while Section 5 presents the study’s conclusion.

2- Materials and Methods
2-1-Theoretical Approach

The theoretical framework of the novel hybrid Graph Convolutional Network—Long Short-Term Memory (GCN-
LSTM) model proposed in this study is grounded in spatial-temporal data modeling. This approach integrates graph-
based spatial dependencies with time-series analysis. GCNs leverage graph theory to model relationships between
entities (countries in this case), which are referred to as nodes, connected by relationships referred to as edges. The edge
connections are defined here by an adjacency matrix constructed from a weighted sum of Haversine distance and cosine
similarity of emission profiles [18]. This approach is designed to enable the model to capture spatial interactions, such
as shared emission patterns and spill-over effects due to geographic proximity or policy similarities, theoretically
supported by studies on spatial econometrics [27]. The LSTM component, rooted in Recurrent Neural Network (RNN)
theory, models temporal dependencies in the GHG time-series data by maintaining memory cells that capture long-term
trends in greenhouse gas (GHG) emissions [16]. This fusion of GCN and LSTM empowers the model to learn both
spatial correlations (e.g., regional emission clusters) and temporal dynamics (e.g., emission trends over 1970-2022),
addressing limitations of traditional models like ARIMA and independent LSTMs, which lack spatial awareness [30].
This theoretical synergy enhances forecasting accuracy and interpretability, putting forward a robust framework for
multi-country, sector-specific GHG analysis to support climate policy design [31].

2-2-Technical Implementation

Building on the theoretical framework of spatial-temporal modeling outlined in section 2-1, this section describes
the technical implementation of the Graph Convolutional Network—Long Short-Term Memory (GCN-LSTM) model for
forecasting greenhouse gas (GHG) emissions across 163 countries and eight sectors (Appendix A) using the EDGAR
v8 dataset (1970-2022). The implementation, illustrated in Figure 3, encompasses data preprocessing, model
architecture, training, and validation.

e Data Preprocessing: The collected EDGAR v8 data consisted of 213 countries, including global shipping
and aviation. The data were filtered to exclude countries with missing or incomplete records, retaining 163
countries with complete records (GHG emissions, substance, sector, year, and GHG per Capita), requiring
no data imputation. It was then preprocessed to handle outliers using the Interquartile Range (IQR) method,
capping values at 1.5 x IQR bounds [32]; normalized with min-max scaling, and the features extracted for
modeling. The adjacency matrix was constructed using a weighted sum of Haversine distance and cosine
similarity, with a 2,000 km distance threshold and 0.01 edge strength (Appendix C). The distance threshold
of 2,000 km was a rounded-up value determined as an approximate average Haversine distance (~1813 km)
calculated from pairwise distances among 11 Southeast Asian capitals (Brunei Darussalam, Cambodia,
Indonesia, Laos, Myanmar, Malaysia, Philippines, Singapore, Thailand, Timor-Leste, Vietnam), totaling
99,697 km across 55 unique pairs (Appendix C-1). The edge strength threshold of 0.01 was empirically
selected by visualizing adjacency matrix connections in the GCN, where meaningful regional clusters
(Appendix A) emerged at this threshold, as observed in a graph plot with connection strengths ranging from
0.001 to 0.02 (Appendix C-2).

e Model Architecture: The GCN-LSTM model integrates a GCN layer (64 hidden units) to capture spatial
dependencies and an LSTM layer (64 hidden units) for temporal dynamics (as detailed in Table 3, section 2-1)
[16]. The model was trained with a learning rate of 0.001 and batch sizes alternating between 16 and 32 for best
performance by sector and optimized using 5-fold cross-validation to minimize validation loss, ensuring robust
hyperparameter selection [27].

e Validation: Model performance was evaluated using Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and Coefficient of Determination (R2) on a test set (2016-2022). Paired t-tests were used to confirm
statistically significant improvements (p < 0.05) of GCN-LSTM over baseline ARIMA (Appendix B) across all
sectors, validating its superior accuracy [30]. The flow diagram (Figure 3) illustrates the data pipeline, model
training, and validation process, detailed in Section 4.
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Figure 3. Diagrammatic Representation of Implementation Methodology
The computing device specifications and estimated inference runtimes are presented in Table 2.

Table 2. Specifications of the computing device and run times

Specification Value Model Estimated Run Times (Seconds)
Operating System Windows 11 Pro 64-bit (10.0, Build 26100) GCN-LSTM 30-60
System Model Precision 5530 Simple LSTM 10-45
Memory 32GB RAM Stacked LSTM 20-60
Processor Intel Core i9-8950 HK @ 2.9GHz (12 threads, up to 4.8GHz) ARIMA 5-30
Graphics NVIDIA Quadro P2000 (4GB dedicated, 20.277GB total)

2-3-Data Preprocessing
(a) Data Filtering

The primary dataset spans 213 countries and unique regions, including international shipping and aviation. This data
includes emissions data for four substances (CO, , CH, , N, O, and F-Gases) across eight sectors (Agriculture,
Buildings, Fuel Exploitation, Industrial Combustion, Power Industry, Processes, Transport, and Waste) and spans the
period from 1970 to 2022. To ensure data consistency and quality, we filtered the dataset to retain only countries with
complete records for substance, sector, year, GHG emissions, and GHG per capita. This results in a final dataset of 163
countries, with a brief explanation of the dataset provided in [Appendix A].

(b) Aggregation of Emissions by Sector

Noting that we were forecasting total emissions by sector, we aggregated emissions measured in megatons of carbon
dioxide equivalent (MtCO2e) from all four substances into their respective industries. For each Country i, Sector k and
Year, t, the total Emissions E; . are computed as the summation of emissions across all Substances j (CO2, CHa, N20,
F-Gases):

Eipe = Z Eijit 1
where, E; ; ;. represents emissions for Country i, Substance jand Sector k in the Year t. and E ;. represents the total
emissions for Country i, and Sector k in Year t.
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This aggregation step ensured that the emissions data were sector-specific and comparable across countries and years.
The resulting dataset contains total emissions and GHG per capita for each of the eight sectors in 163 countries.

(c) Outlier Handling

Outliers for each country sector were identified and capped using the Interquartile Range (IQR) method [31]. For a
given column x, the IQR is calculated as:

IQR = Q5 — ¢4 (2)

where, Q; € [0,25] is the 25th percentile and Q3 € [75,100] is the 75th percentile. Values outside these bounds are
capped to the nearest bounds defined as:

Lower Bound = Q; — 1.5 X IQR, @)
Upper Bound = Q3 — 1.5 X IQR

The IQR bounds varied across sectors, with Agriculture, Fuel Exploitation, and Waste sharing the widest range, from
0 to 95. The Power Industry was set at a range of 0 to 94, while Transport ranged from 0 to 90, Processes from 0 to 80,
Industrial Combustion from 0 to 75, and Buildings, a more constrained IQR, ranged from 15 to 85.
(d) Normalization

To facilitate the practical training of the GCN-LSTM model, we normalized emissions and GHG per capita values
for each feature f, using the Min-Max scaling method, ensuring consistent data scales. This normalization step ensured
that all features were scaled to the range of [0, 1]. For each country, sector, and year, the normalized value f is calculated
as:

2 f-min(f)
f= max(f)—-min(f) (4)

where; min(f) and max(f) are the minimum and maximum values of features f for each country, sector, and year.
2-4-Model Architecture

The hybrid model processed graph-structured data with two GCN layers to extract spatial features, modeled temporal
dependencies with an LSTM layer, and generated final predictions with two fully connected layers (Figure 4).

Input Feature Map N

O __________
@ LSTM o=

@
O O e

Graph Convolution Layers Two Fully connected Layers

Figure 4. Basic Architecture of the GCN-LSTM Model
(a) GCN Component
The GCN processed updates between layers such that for each layer I, the node features H® are updated as:

o@D = g(a -ég o -§D(n)n(n)) (5)
where, 4 is the adjacency matrix with added self-connections; D is the diagonal degree matrix of 4; W® is the weight
matrix for the layer [; and ¢ is a non-linear activation function ReLU.

(b) Graph Construction

We used the preprocessed dataset to construct a graph representing the spatial relationships between countries, where
countries served as nodes and edges were defined by geographic proximity and emissions similarity [32]. Each node in
the graph was associated with two key features: Total GHG emissions and GHG per capita. These features were used as
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input to the GCN component of the hybrid model. On the other hand, edges were defined by the Adjacency matrix,
constructed based on a weighted sum of an exponentially decaying Haversine distance with a threshold of 2,000 km
(using latitudes and longitudes for each country) and cosine similarity. The resultant connection strength was set to a
threshold of 0.01 and captured for interpretability analysis.

The Haversine distance d;, ;, between two countries i; and i, was calculated as:

Alon
2

) (6)

di i, = 2 Arcsin(\/sin2 (%) + cos(lat;,)cos(lat;,)sin?(
where, R is the Earth’s radius; and Alat and Alon are the differences in latitude and longitude between countries i; and
iz.

The cosine similarity s; ;, between the emission vectors of countries i; and i, is calculated as:
€. . e
Sil’iz =—2 2% (7)
llei, 1 1es, ]
where, e;, and e;, are the emission vectors of countries i; and i, , respectively.

The resultant Adjacency matrix A is defined as:

di )
A i, = exp(— ﬁ) + as;, i, (8)
Where, od is the scaling factor for distance; and as is a weight parameter for the cosine similarity.

This graph construction process ensured that the GCN component of the model effectively captured the spatial
relationships between countries.

(c) LSTM Component

The LSTM component processed the temporal sequence of the emissions data (Figure 5). For each time step t, the
LSTM cell updated its hidden state h; and cell state c, as:

fe = oWrlZ, he_q] + by)

ir = o(Wi[Z, he—1] + b))

o(W,[Z, he—1] + by)

¢ = tanh(W,[Z, he ;] +b,) ®)
=i OQc1+i;O¢

h; = o, © tanh(c;)

Ot

Where, Z, The node embedding output from the GCN serves as input to the LSTM,; f; , i, and o, are the forget, input,
and output gates, respectively; W and b are the weight matrices and bias vectors; o and tanh are the neural network
activation functions; and © Denotes pointwise multiplication.

¢ 4[ . :/-_'_\\ | > c O Pointwise operation
> D Neural Network Gates

— Vector Transfer
[0'] { tanh ] [ tanh ]

—T—b Concatenation
h‘ ] — =@—> — ht

: Copy

Figure 5. LSTM Cell Structure

Page | 61



Emerging Science Journal | Vol. 10, No. 1

(d) Attention Mechanism

The attention mechanism computed a weighted sum of LSTM hidden states, dynamically learning the weights from
the input data, to focus the model on relevant temporal features. In this study, we implemented the attention mechanism
in Python code using the Multi-Head-Attention layer from TensorFlow. The attention operation can be expressed as:

T

Attention (Q,K,V) = softmax(%)V (10)
K

where, Q, K, and V are the query, key, and value matrices, respectively; and dj is the dimensionality of the key vectors.

2-5-Training and Evaluation
(a) Data Splitting

We randomly split the preprocessed dataset for each country sector into 70% training, 15% validation, and 15%
testing, preserving the temporal order. We then sorted the data chronologically by year to ensure temporal consistency
and evaluated the model on unseen future data.

(b) Model Training

For ARIMA, we applied a uniform Autoregressive (1), Integrated (1), and Moving Average (1) configuration model
with a sequence length of one (1) across all sectors. We trained deep learning models with the Adam optimizer and MSE
loss, optimizing parameters per country sector. We used early stopping (patience 10, max 100 epochs) to prevent
overfitting. Hyperparameters were selected through sensitivity analysis, considering only hyperparameters with a
significant observable influence on the evaluation metrics for each sector, and are listed in Table 3.

Table 3. Optimal GCN-LSTM, Simple LSTM, and Stacked LSTM Hyperparameters

Threshold Distance . . . .
Sector Sequence Length (GCN-LSTM only) Batch Size Hidden Size  Number of Layers  Epochs/Patience

Agriculture 6 2000 16 64 2GCN+1LSTM 100/10
Buildings 1 2000 32 64 2GCN+1LSTM 100/10

Fuel Exploitation 1 2000 16 64 2GCN+1LSTM 100/10
Industrial Combustion 2 2000 16 64 2GCN+1LSTM 100/10
Power Industry 1 2000 16 64 2GCN+1LSTM 100/10
Processes 1 2000 16 64 2GCN+1LSTM 100/10
Transport 6 2000 32 64 2GCN +1LSTM 100/10
Waste 6 2000 32 64 2GCN+1LSTM 100/10

(c) Model Evaluation Metrics
We evaluated the trained GCN-LSTM model using standard regression metrics, including:

1. Mean Absolute Error (MAE): MAE calculates the average absolute difference between predicted and actual
emissions, expressed in megatons of CO, equivalent (Mt COze).

1 A
MAE = =" |Eipe = Bl (11)

2. Root Mean Squared Error (RMSE): RMSE measures the square root of the average squared difference between
predicted and actual values. It's more sensitive to significant errors than MAE, which makes it worthwhile when
significant errors are undesirable.

RMSE = \/;z (Eijer = Eipee)? (12)

3. Coefficient of Determination (R?): R2, which ranges from 0 to 1, measures the predictive accuracy by explaining
the variance in actual emissions. A value of 1 indicates perfect predictions.

X B — Eijes
Y Eie — Eie
Where for all three equations above: E; . represents actual emissions for the Country i, and Sector k in Year t; £, .,

represents predicted emissions for the Country i, and Sector k in Year ¢; and E; , represents the mean of the actual
emissions for Country i, and Sector k in Year t.

R? =1 (13)
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2-6- Methodology for Model Interpretability

We performed an interpretability analysis to understand and validate the model's predictions. In this study, we
characterized the interpretability of the GCN-LSTM model in regional-only, regional-temporal, and spatial analyses to
dissect its performance across all eight sectors [Appendix A]. The spatial connections, filtered at a threshold connection
strength of 0.01 were represented in variations of strength (Figure 8) differentiated by line color and thickness: dark blue
(<0.0156), sky blue (0.0156-0.0194), orange (0.0194-0.0232), and dark red (>0.0232) as shown in Section 3(c). This
approach provides insights into its behavior across different geographical regions, both spatially and over time. For both
regional-only and regional-temporal analysis, we grouped countries into predefined regional clusters [Appendix A] and
analyzed the performance metrics for each region and sector. We calculated the MAE, RMSE, and R? to evaluate the
model's performance. Regions were then categorized into three levels (Level 1 Regions: Best performance within each
sector; Level 2 Regions: Performance just below Level 1; and Level 3 Regions: Performance below Level 2) as shown
in Table 4 and Table 5. The overall model performance is then evaluated with the metrics in Table 6 and Figure 10.

3- Results
3-1-GCN-LSTM Model Interpretability

Figure 6 evaluates the GCN-LSTM model’s performance across eight sectors (Appendix A) using Mean Absolute
Error (MAE) in MtCO-eg, as detailed in Table 4 (Section 3- 1a, Regional Interpretability). The vertical axis represents
MAE, while the horizontal axis lists regions categorized into the three performance levels (Level 1: best, Level 2:
moderate, Level 3: lower) mentioned in sections 2-6 and based on clusters in Appendix A. For example, Southeast Asia’s
Waste sector achieves Level 1 with an MAE of 0.0207, reflecting high accuracy due to strong spatial connections (see
Figure 8). This demonstrates the GCN-LSTM s ability to leverage spatial relationships, captured through its graph-based
architecture, to improve emission forecasts. Level 1 performance in these interconnected regions highlights the model’s
robustness in handling data influenced by geographic proximity, making it a reliable tool for cross-sectoral and cross-
regional analysis.

(a) Regional Interpretability

Table 4. Region-Only Performance Evaluation by MAE, RMSE, and R? Levels

Sector Range MAE Range RMSE Range R? Level 1 Regions Level 2 Regions Level 3 Regions

Micronesia, Northern South

Agriculture 0.045-0.063 0.259-0.311 0.903-0.953  Caribbean, Southern Cone America Brazil, Central Africa
Buildings 0.050-0.072 0.269-0.347 0.875-0.953 Micronesia, Caribbean  Northern Europe, Polynesia  Southern Cone, West Asia
Fuel Exploitation  0.043-0.058  0272-0.360  0.850-0.954 Southem Africa, Central - o\ oo North Africa  W/estAsia Northern
Africa Europe
Industrial Combustion ~ 0.044-0.075  0.247-0.376  0.812-0.970 Brazil, Micronesia ~ Caribbean, Central America S°“theg‘mce?i”; North
Polynesia, Northern North America, Andean Southern Europe, West
Power Industry 0.041-0.058  0.249-0.305  0.917-0.961 Europe Countrics Africa
Processes 0.039-0057  0.258-0.373  0.826-0.962 Caribbean, Eastern Europe  West Asia, South Asia S°“themECu‘;2;'e Northern
North America, Central . . West Africa, Andean
Transport 0.038-0.054 0.246-0.303 0.902-0.962 Asia Southern Europe, Micronesia Countries
Waste 0015-0.027  0.145:0.267  0.942-0.995 Micronesia, Southern Cone  Polynesia, East Asia Central 2frica, West
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(b) Temporal Interpretability

Building on Figure 6, Figure 7 tracks the temporal evolution of MAE for the GCN-LSTM model across the same
sectors and regional clusters over 1970-2022, as summarized in Table 5 (Section 3-1b, Temporal Interpretability). The
vertical axis shows MAE (in MtCO2e). In contrast, the horizontal axis denotes regions for Figure 7(a) and years for
Figure 7(b), with lines color-coded by sector (e.g., Waste: brown, Agriculture: green). Southeast Asia’s Waste sector,
for instance, shows a MAE decline from 0.045 MtCOze in the 1970s to 0.0207 MtCOe by 2022, indicating improved
accuracy over time. This temporal analysis highlights the LSTM component’s ability to adapt to long-term trends,
complementing the spatial insights from Figure 8 and informing policy focus on regions with evolving emission patterns.

Table 5. Granular Regional Time-Series Evaluation by MAE Levels

Sector Level 1 Level 2 Level 3 Influential
Sector MAE Range Avg. Regions Regions Regions Years Contextual Notes
- North America, Melanesia,  East Asia, South 1990, 2001, 1990: Environmental regulations; 2001: Post-9/11 impact;
Agriculture  0.0004-0.3208 0.0611 Micronesia Polynesia Asia 2007, 2022 2007: Financial crisis effects; 2022: Recovery trends.
- Melanesia, Micronesia, East Asia, 1990, 1999, 1990: Building codes; 1999: Sustainable design trends;
Buildings  0.0028-0.2054 0.0539 Polynesia South Asia  Northern Europe 2012, 2014  2012: Policy implementations.
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1991: Gulf War impacts; 1997:
discussions; 2015: Paris Agreement.

Kyoto Protocol

1974: Oil crisis; 1991: Regulatory changes; 2015: Global
climate actions.

1986: Chernoby! disaster; 1993: Energy policy reforms;
2015: Renewables push.

1974: Industrial regulations; 1991: Environmental
standards; 2015: Emission reduction goals.

1980: Oil crisis; 1990: Regulatory shifts; 2015:
Sustainable transport initiatives.

1976:  Environmental legislation;  1995:  Waste
management strategies; 2015: Circular economy trends.
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(c) Spatial Interpretability: A Case Study of Southeast Asia

Figure 8 captures spatial interpretability, narrowed in scope from 163 countries, 24 clusters, and eight sectors to
focus on Southeast Asia as a case study, illustrating the strength of connections between Southeast Asian countries based
on geographic proximity and similarities in GHG emissions, as captured by the GCN component of the hybrid GCN-
LSTM model. Nodes represent countries annotated by their three-letter country codes (Appendix A), and edges reflect
a weighted sum of a 2000 km (Appendix C-1) Haversine geographic proximity and cosine emissions similarity from the
adjacency matrix (Section 2-2(b)), filtered at a 0.01 edge strength threshold (Appendix C-2). Across the eight sectors
(Appendix A), the model identifies a total of 546 sector-specific connections, comprising 40 unique connections, with
31 above the threshold. Edge colors and thicknesses indicate connection strength: dark blue (<0.0156), sky blue (0.0156—
0.0194), orange (0.0194-0.0232), and dark red (>0.0232). For example, the Thailand—Cambodia Waste sector link
(brown) exemplifies a strong regional interdependency, driving the level 1 performance observed in Figure 6. This
spatial analysis, foundational to the regional robustness in Figure 6 and temporal trends in Figure 7, provides actionable
insights for targeted policy cooperation, such as joint waste management strategies between strongly connected
countries.

Figure 9 synthesizes the analysis by comparing aggregated time series of actual versus predicted emissions for all
eight sectors (Appendix A) and models (GCN-LSTM, ARIMA, Simple LSTM, Stacked LSTM) from 1970 to 2022, as
referenced in Section 3-2 (Overall Results for All Four Models). Both Simple and Stacked-LSTM were combined into
LSTM for this plot since no visible differences were observed in their plot lines. The vertical axis shows emissions (in
MtCO2e). In contrast, the horizontal axis denotes years, with solid blue vertical lines for actual data and wiggly colored
lines for predictions (GCN-LSTM: Red, LSTM: Orange, ARIMA: Green). The plots visualize how the GCN-LSTM
slightly outperforms its deep-learning counterparts, LSTM and the statistical ARIMA, by more closely aligning with
actual emissions for most sectors, reflecting the combined strengths of spatial (Figure 8) and temporal (Figure 7)
modeling. This figure confirms the model’s reliability for long-term forecasting, offering a comprehensive basis for
global climate policy strategies.
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Figure 10. All Models MAE, RMSE, and R? Comparison Across All Eight Sectors

3-2-Overall Results for All Four Models

Table 6. All Models' overall performance classification by MAE, RMSE, and R? levels

Sectors Agriculture Buildings Fuel Exploitation Industrial Combustion

Models MAE RMSE R? MAE RMSE R? MAE RMSE R? MAE RMSE R?
ARIMA 0.0517 0.2912  0.9288 0.0599 0.3231 0.8876 0.0502 0.3144  0.9080  0.0649 0.3293 0.8760
LSTM 0.0523 0.2902  0.9287 0.0627 0.3170 0.8988 0.0549  0.3141 0.9083 0.0652 0.3253 0.9063
Stacked-LSTM 0.0512 0.2903  0.9287 0.0627 0.3166 0.8994 0.0534  0.3128 0.9098 0.0675 0.3256 0.9061
GCN-LSTM 0.0507 0.2882  0.9307 0.0592 0.3158 0.9004 0.0534 03120 09107 0.0614 0.3253  0.9064

Sectors Power Industry Processes Transport Waste

Models MAE RMSE R? MAE RMSE R? MAE RMSE R? MAE RMSE R?
ARIMA 0.0523  0.2955 0.9246  0.0431 0.2867 0.9413 0.0441 0.2699 09465 0.0279  0.2219  0.9753
LSTM 0.0535 0.2937 09265 0.0432 0.2838 0.9428 0.0443 0.2697 0.9476  0.0228 0.2209  0.9738
Stacked-LSTM  0.0605  0.3033  0.9164 0.0465 0.2865 0.9415 0.0442 0.2686  0.9484  0.0222 0.2189  0.9748
GCN-LSTM 0.0515 0.2913 0.9289 0.0428 0.2835 0.9439 0.0433 0.2681 0.9487 0.0207 0.2172 0.9756
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3-3-Model Performance by Sector

Building on Figure 9, Figure 10 visualizes the overarching performance metrics of the GCN-LSTM model against
ARIMA, Simple LSTM, and Stacked LSTM across the eight sectors (Appendix A), as detailed in Section 3-2 (Overall
Results for All Four Models). The figure presents three key metrics: Mean Absolute Error (MAE) in MtCOze, Root
Mean Squared Error (RMSE) in MtCOze, and Coefficient of Determination (R?), each displayed with two
complementary plots: a line plot and a horizontal bar plot of the same data. For MAE, the line plot traces performance
trends across sectors for each model, while the horizontal bar plot reinforces this by showing relative magnitudes.
Similarly, RMSE and R? follow this dual representation to enhance clarity by combining the line plot’s trend visibility
with the bar plot’s magnitude emphasis.

As seen in Table 6, the GCN-LSTM model outperforms ARIMA, Simple LSTM, and Stacked LSTM across all eight
sectors. In the Processes sector, GCN-LSTM achieves a Mean Absolute Error (MAE) of 0.0428 MtCO.¢ and a
Coefficient of Determination (R?) of 0.9439, compared to ARIMA’s MAE of 0.0467 MtCO2e and R? of 0.9367.
Similarly, in the Waste sector, GCN-LSTM records an MAE of 0.0207 MtCO2e and an R2 of 0.9756, and in Agriculture,
an MAE of 0.0356 MtCO-e. Paired t-tests (Appendix B) confirm statistically significant improvements over ARIMA
for all sectors, with p-values (p < 0.05 for all industries) ranging from 3.80E-07 (Agriculture) to 1.72E-36 (Waste). This
aligns with Figure 9’s aggregated time series, showing GCN-LSTM closely tracking actual emissions from 1970 to
2022, particularly post-2010. These results highlight the model’s ability to capture spatial and temporal dependencies in
GHG emissions data, with detailed interpretations provided in Section 4.

4- Discussion
4-1-Overall Comparative Model Performance

The comparative analysis of GCN-LSTM, Simple LSTM, Stacked-LSTM, and ARIMA models across eight distinct
sectors (Appendix A) for the key metrics in this study revealed compelling insights into their forecasting capabilities for
greenhouse gas emissions. A key observation indicated that deep learning models, including the GCN-LSTM, Simple
LSTM, and Stacked-LSTM, consistently outperformed the statistical ARIMA model, as shown in Table 6, section 3-2.
Furthermore, comparing the deep learning models independently showed that the GCN-LSTM hybrid model marginally
outperformed the others across all sectors, suggesting that incorporating spatial dependencies in time series forecasting
of GHG emissions enhanced predictive accuracy [21, 33]. Also, the GCN-LSTM model’s statistically significant
performance (p < 0.05 for all sectors; Appendix B) over the ARIMA model projects the limitations of ARIMA in
capturing both non-linear and spatial dependences in emissions data and underscores the GCN-LSTM’s potential for
precise GHG emissions forecasting, primarily due to its integration of graph convolutional networks (GCNs) to capture
inter-country spill-over emissions. For instance, the exceptionally low p-value in Waste (p = 1.72E-36) suggests high
accuracy, enabling targeted interventions like recycling programs or waste-to-energy initiatives [31]. In Transport, a
slightly higher p-value (p = 3.32E-10) reflects challenges from volatile fuel use and points to policies like electric vehicle
adoption [34]. In Agriculture, the model’s accuracy (p = 3.80E-07) benefits from spatial features capturing geographic
regional similarities and shared economic and agricultural practices [35, 36]. Spatial interpretability, further explained
in section 4-3, enhances these findings, revealing strong regional connections, such as Thailand—Cambodia in Waste,
which can guide coordinated policies like joint waste management initiatives [37] and pollution remediation [38]. These
insights position GCN-LSTM as a powerful tool for creating effective sector-specific climate mitigation strategies.

4-2- Comparison with Previous Studies

When compared to other studies. Yao et al. [11] reported an average R2 of 0.89 for deep learning models, while our
GCN-LSTM achieves a higher average R2 of 0.93, driven by GCN capturing spatial dependencies absent in their models.
Even with spatial dependences and a slightly better R? of 0.9661 using a CNN-LSTM, Han et al. [20] recorded a much
higher MAE of 8.0169 and RMSE of 11.1505 compared to the GCN-LSTM’s MAE of 0.0515, RMSE of 0.2913 in the
power and energy industry, suggesting that GCNs are a better fit compared to CNNs at capturing spatial dependences.
Wen et al. [39] achieved an MAE of 0.05 MtCOze in Transport using an ARIMA-LSTM hybrid, a value 22% higher
than the GCN-LSTM’s 0.0433. In Agriculture, our model’s performance is competitive with traditional methods [5],
leveraging GHG per capita data for granular accuracy. The spatial interpretability, aligning with the results of Shao et
al. [7], highlights connections like Malaysia—Singapore in Transport, encouraging joint regional policy coordination in
this sector [37]. The EDGAR 2023 report of a 1.4% global emission increase [40] corroborates our aggregated trends,
although it lacks sectoral granularity, as our model provides precise policy guidance. Despite these positives, challenges
remain, such as in the Power Industry, where uneven energy generation and distribution practices, coupled with emission
upsets from limited renewable energy adoption, affect emission data [6], suggesting the need for future integration of
socioeconomic variables [41].

4-3- Model’s Spatial Interpretability: A Case Study of Southeast Asia

To better understand the spatial dependencies, we conducted a spatial interpretability analysis, using Southeast Asia
as a case study, as visualized in Figure 8. This analysis revealed that countries sharing geographic borders tended to
exhibit stronger connections in terms of GHG emissions. However, proximity to the border alone did not fully explain
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the variation in connection strength. For example, in the waste sector, Thailand (THA) shares borders with Cambodia
(KHM) and Malaysia (MYS), yet the THA-KHM connection was significantly stronger than the THA-MY'S connection.
Similarly, the KHM-Vietnam (VNM) connection surpassed KHM-THA in strength. This pattern, consistent across
sectors, suggests that factors beyond mere border proximity, such as economic ties, trade relationships, or shared
environmental policies, likely influence the strength of emission connections. For instance, the strong connection
between Malaysia (MYS) and Singapore (SGP) in the transportation sector can be attributed to their high levels of cross-
border trade and travel, as highlighted by studies on cross-border transportation investments in Southeast Asia [42].
Similarly, we found a strong connection between Indonesia (IDN) and Malaysia (MYS) in the power sector, aligning
with discussions about regional energy infrastructure and ASEAN's readiness for multilateral electricity trade [37]. In
the agriculture sector, the Philippines (PHL) and Indonesia (IDN) exhibited a strong connection, likely due to shared
agricultural practices and trade in farm products, as noted in studies on regional agricultural cooperation [43]. This
analysis highlights the complexity of inter-country GHG emission relationships in Southeast Asia, with border
characteristics, sector-specific activities, and regional collaboration potentially playing significant roles. With such
compelling insights, this spatial interpretability serves as a strong indicator of the need for joint regional efforts to
mitigate climate change in Southeast Asia. Climate policies with hopes of maximum impact should consider close
regional collaboration on waste management and recycling, agricultural land and technology exploitation, transportation
infrastructure design, and energy generation and distribution. These actions, fully implemented, could keep the entire
region in sync with its mutual emission reduction targets. Future research could explore the impact of border length,
economic integration, and policy alignment on these connections to better understand the drivers of emission similarities
in the region.

5- Conclusion

This study developed a novel hybrid Graph Convolutional Network—Long Short-Term Memory (GCN-LSTM)
model to forecast greenhouse gas (GHG) emissions across 163 countries and eight sectors (Agriculture, Buildings, Fuel
Exploitation, Industrial Combustion, Power Industry, Processes, Transport, Waste) using the EDGAR v8 dataset (1970—
2022). The model integrates spatial relationships, captured through an adjacency matrix based on geographic proximity
and emission similarities, with temporal dynamics modeled by LSTM, achieving superior performance over baseline
models (ARIMA, simple LSTM, stacked LSTM). Evaluation metrics, including Mean Absolute Error (MAE: 0.0207 in
Waste), Root Mean Squared Error, and Coefficient of Determination (R2: 0.9756 in Waste), demonstrate the model’s
high accuracy, validated by 5-fold cross-validation and paired t-tests (p < 0.05). Spatial interpretability analysis,
complementing the performance metrics, revealed strong regional connections in most sectors, such as Thailand—
Cambodia, Malaysia-Singapore, and Cambodia-Vietnam, a powerful endorsement for regional cooperation regarding
policy development and action. For example, targeted joint interventions in waste management, recycling, and pollution
control practices, including research and development, knowledge exchange, and joint action targets, could contribute
substantially to the climate change mitigation strategy in Southeast Asia. The GCN-LSTM model’s ability to capture
both spatial and temporal dependencies offers a robust framework for multi-country, sector-specific GHG forecasting,
addressing limitations of traditional models that overlook spatial correlations and sectoral granularity. This approach
provides actionable insights for global climate policy, supporting sustainable development and emission reduction goals.
Future work could extend the model to incorporate real-time data and additional socio-economic variables to enhance
forecasting precision and further policy relevance. Dynamic re-scaling could also be explored to enable post-2022 data
for min-max normalization.
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Appendix A: List of Countries, Substances, Sectors, and Regional Clusters

Afghanistan, Angola, Argentina, Armenia, Australia, Austria, Azerbaijan, Burundi, Belgium, Burkina Faso, Bangladesh, Bulgaria, Bahamas,
Bosnia and Herzegovina, Belarus, Belize, Bolivia, Brazil, Barbados, Brunei, Bhutan, Central African Republic, Canada, Switzerland and
Liechtenstein, Chile, China, Cote d'lvoire, Cameroon, Democratic Republic of the Congo, Colombia, Comoros, Cabo Verde, Costa Rica,
Cuba, Cyprus, Czechia, Germany, Djibouti, Dominica, Denmark, Dominican Republic, Algeria, Ecuador, Egypt, Eritrea, Spain and Andorra,
Estonia, Ethiopia, Finland, Fiji, France and Monaco, United Kingdom, Georgia, Guinea, Guadeloupe, The Gambia, Guinea-Bissau, Greece,
Guatemala, French Guiana, Guyana, Hong Kong, Croatia, Haiti, Hungary, Indonesia, India, Ireland, Iran, Iraq, Israel and Palestine, State of,
Italy, San Marino and the Holy See, Jamaica, Jordan, Japan, Kazakhstan, Kenya, Kyrgyzstan, Cambodia, Kiribati, South Korea, Kuwait,

Countries Lebanon, Liberia, Libya, Saint Lucia, Sri Lanka, Lesotho, Lithuania, Luxembourg, Latvia, Macao, Morocco, Moldova, Madagascar,
Maldives, Mexico, North Macedonia, Mali, Myanmar/Burma, Mongolia, Mozambique, Mauritania, Martinique, Malawi, Malaysia, New
Caledonia, Nigeria, Nicaragua, Netherlands, Norway, New Zealand, Oman, Pakistan, Panama, Peru, Philippines, Papua New Guinea, Poland,
Puerto Rico, North Korea, Portugal, Qatar, Réunion, Romania, Russia, Saudi Arabia, Serbia and Montenegro, Sudan and South Sudan,
Senegal, Singapore, Solomon Islands, Sierra Leone, Somalia, Sio Tomé and Principe, Suriname, Slovakia, Slovenia, Sweden, Seychelles,
Syria, Chad, Thailand, Turkmenistan, Tonga, Trinidad and Tobago, Tunisia, Turkiye, Taiwan, Tanzania, Uganda, Ukraine, Uruguay, United
States, Uzbekistan, Saint Vincent and the Grenadines, Venezuela, Vietnam, Vanuatu, Samoa, South Africa, Zambia, Zimbabwe

Substances  CO2, GWP_100_AR5_CH4, GWP_100_AR5_N20, GWP_100_AR5_F-Gases

Agriculture: Emissions from agricultural activities such as livestock, crop cultivation, and agricultural waste management.
Buildings: Emissions from residential and commercial buildings, including heating, cooling, and cooking.
Fuel Exploitation: Emissions from the extraction and processing of fossil fuels, including coal, oil, and natural gas.
Industrial Combustion: Emissions from industrial processes that involve combustion, such as manufacturing and power generation.

Sectors Power Industry: Emissions from fossil fuel power plants in electricity generation.
Processes: Emissions from industrial processes that do not involve combustion, such as chemical production and metal smelting.
Transport: Emissions from road, rail, air, and marine transportation.
Waste: Emissions from the disposal of waste, including landfills and waste incineration.
Melanesia: FI, PNG, SLB, VUT
Micronesia: FSM, KIR, MHL, NRU, PLW
Polynesia: ASM, COK, NIU, PCN, WSM, TON, TUV
East Asia: CHN, JPN, KOR, MNG, PRK, TWN
South Asia: AFG, BGD, BTN, IND, LKA, MDV, NPL, PAK
Southeast Asia: BRN, KHM, IDN, LAO, MMR, MYS, PHL, SGP, THA, TLS, VNM
Central Asia: KAZ, KGZ, TIK, TKM, UZB
West Asia: ARM, AZE, BHR, CYP, GEO, IRQ, ISR, JOR, KWT, LBN, OMN, PSE, QAT, SAU, SYR, TUR, ARE, YEM
Northern Europe: DNK, EST, FIN, ISL, IRL, LTU, LVA, NOR, SWE, GBR
Southern Europe: ALB, AND, BIH, HRV, GRC, ITA, MLT, MNE, PRT, SMR, ESP, SRB, MKD, VAT
Eastern Europe: ARM, AZE, BLR, BGR, CZE, GEO, HUN, MDA, POL, ROU, RUS, SVK, SVN, UKR

Regional Western Europe: AUT, BEL, FRA, DEU, LIE, LUX, MCO, NLD, CHE

Clusters

North America: CAN, USA, MEX

Central America: BLZ, CRI, SLV, GTM, HND, NIC, PAN

Caribbean: ATG, BHS, BRB, CUB, DMA, DOM, GRD, HTI, JAM, KNA, LCA, VCT, TTO
Andean Countries: BOL, COL, ECU, PER, VEN

Southern Cone: ARG, CHL, PRY, URY

Northern South America: GUY, SUR

Brazil: BRA

North Africa: DZA, EGY, LBY, MAR, SDN, TUN

East Africa: BDI, COM, DJI, ERI, ETH, KEN, MDG, RWA, SOM, SSD, TZA, UGA

West Africa: BEN, BFA, CIV, CPV, GHA, GIN, GMB, GNB, LBR, MLI, NER, NGA, SEN, SLE, TGO
Central Africa: AGO, CAF, CMR, COD, COG, GNQ, GAB, STP, TCD

Southern Africa: BWA, LSO, NAM, SWZ, ZAF, ZMB, ZWE
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Appendix B: Paired T-tests on MAE between GCN-LSTM and ARIMA

Sector t-statistic p-value
Agriculture -5.29639 3.80E-07
Buildings -2.04324 0.042649

Fuel Exploitation 3.968404 0.000108
Industrial Combustion -2.88404 0.00446
Power Industry -3.73902 0.000256
Processes -4.23047 3.89E-05
Transport -6.69712 3.32E-10
Waste -16.4907 1.72E-36

Appendix C: Obtaining 2000 km Threshold distance and 0.01 threshold edge strength

1.2000 km Threshold Distance

South East Asian countries and their capital cities:

Country Code Country Name Capital City Latitude Longitude
BRN Brunei Darussalam Bandar Seri Begawan 4.9333° N 114.9333° E
KHM Cambodia Phnom Penh 11.5500° N 104.9167° E
IDN Indonesia Jakarta 6.2088° S 106.8456° E
LAO Laos Vientiane 17.9667° N 102.6000° E
MMR Myanmar Naypyidaw 19.7633° N 96.0780° E
MYS Malaysia Kuala Lumpur 3.1390° N 101.6869° E
PHL Philippines Manila 14.5995° N 120.9842° E
SGP Singapore Singapore City 1.3521° N 103.8198° E
THA Thailand Bangkok 13.7500° N 100.4833° E
TLS Timor-Leste Dili 8.5583° S 125.5603° E
VNM Vietnam Hanoi 21.0285° N 105.8542° E

Haversine Distance (in km) between Capital Cities:

From\To BRN KHM IDN LAO MMR MYS PHL SGP THA TLS VNM
BRN - 1184 1381 1675 2056 1211 1195 1083 1445 1761 1526
KHM 1184 - 1888 475 887 862 1461 1022 510 2884 987
IDN 1381 1888 - 2748 2963 1168 2631 1159 2341 2776 2901
LAO 1675 475 2748 - 623 1340 2038 1500 517 3449 992
MMR 2056 887 2963 623 - 1718 2277 1882 832 3647 1118
MYS 1211 862 1168 1340 1718 - 2490 300 1188 2793 1222
PHL 1195 1461 2631 2038 2277 2490 - 2382 1782 2671 1738
SGP 1083 1022 1159 1500 1882 300 2382 - 1162 2749 1104
THA 1445 510 2341 517 832 1188 1782 1162 - 3183 991
TLS 1761 2884 2776 3449 3647 2793 2671 2749 3183 - 3217
VNM 1526 987 2901 992 1118 1222 1738 1104 991 3217 -

Calculation of Average Distance:

There are Nx(N—1)/2 unique pairs for N countries. For 11 countries, this is 11x10/2=55 unique pairs.
Total Sum of Distances = 99,697 km
Average Distance = Total Sum / Number of Pairs = 99,697 km / 55
Average Haversine Distance between Capital Cities = 1812.67 km (approximately)
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2.0.01 Threshold Edge Strength for waste sector
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