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Abstract 

This study developed a novel hybrid Graph Convolutional Network–Long Short-Term Memory 

(GCN–LSTM) model to forecast greenhouse gas (GHG) emissions across multiple country sectors, 
aiming to enhance climate policy. We analyzed 52 years (1970–2022) of GHG emissions data 

(CO₂ , CH₄ , N₂ O, F-Gases) from 163 countries and eight sectors (Agriculture, Buildings, Fuel 

Exploitation, Industrial Combustion, Power Industry, Processes, Transport, Waste), sourced from 
the EDGAR v8 database. The GCN adjacency matrix captures spatial relationships on a weighted 

sum of Haversine distance and cosine similarity, while the LSTM models temporal dynamics. Data 

preprocessing includes min-max scaling and outlier handling with Interquartile Range capping. The 
model was trained on 70% of the data, validated on 15%, and tested on 15%, using Mean Squared 

Error (MSE) loss and the Adam optimizer. The performance was evaluated with Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²). The GCN–
LSTM model outperformed baseline models (ARIMA, Simple LSTM, Stacked LSTM), achieving 

the lowest MAE (0.0207 in Waste) and highest R² (0.9756 in Waste). Model interpretability 

highlighted strong regional connections, such as Thailand–Cambodia in the Waste sector, suggesting 
that spatial and temporal dependencies offer superior forecasting accuracy, informing targeted 

climate action. 
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1- Introduction 

Accurate forecasting of greenhouse gas (GHG) emissions has, in the past, proven to be a critical contributor to 

developing effective climate policies and achieving global sustainability goals. Rising emissions, predominantly from 

anthropogenic sources of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and fluorinated gases (F-gases), 

pose significant challenges to mitigating climate change. For instance, global CO2 emissions reached a record high in 

2022, rebounding sharply from a temporary decline during the COVID-19 pandemic [1, 2]. CH4 concentrations have 

shown a renewed increase since 2007, with notable acceleration between 2014 and 2017 [3, 4], while N2O emissions 

have risen by 30% over the past four decades, primarily driven by human activity [5]. F-gas emissions are also 

increasing, particularly in developing countries, necessitating urgent attention [6]. 

Exploratory data analysis from Table 1 and Figure 1 reveals that CO2 exhibits a mean normalized emission of 

0.003151 and a variance of 0.000424, indicating its significant presence and variability. CH4 and F-gases show higher 

means (0.006341 and 0.007880, respectively) and variances, suggesting their substantial contributions to rising 
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emissions. All GHGs display high skewness, particularly CO2 (20.530403) and N2O (18.939121), pointing to the 

presence of high-emission outliers and a tendency for growing emission events [7]. These indicators underscore the need 

for robust forecasting models that can capture complex emission patterns across multiple countries and sectors to inform 

targeted policy interventions. 

Table 1. Mean, variance, and skewness for GHG emissions distribution for substances: (a) CO2, (b) CH4, (c) N2O, and            

(d) F-Gases (EDGAR data Appendix A) 

 CO2 CH4 N2O F-Gases 

Mean 0.003151 0.00634 0.004203 0.007880 

Variance 0.000424 0.001271 0.000813 0.001836 

Skewness 20.530403 13.310114 18.939121 13.073908 

   

(a)                                                                                                                (b) 

   

(c)                                                                                                                (d) 

Figure 1. Kernel Density plot of GHG emissions distribution for substances: (a) CO2, (b) CH4, (c) N2O, and (d) F-Gases 

(EDGAR data Appendix A) 

In recent decades, GHG emissions forecasting has evolved significantly with advancements in data analysis and 

numerical computation. Traditional statistical models, developed to advance science in this domain, such as 

Autoregressive Integrated Moving Average (ARIMA), have been widely used with appreciable success, yet are marred 

with challenges, such as the inability to capture non-linear relationships inherent in emissions data [8, 9]. Such 

limitations drove researchers to invent machine learning (ML) models to improve forecasting accuracy, with methods 

like decision trees and support vector machines outperforming traditional approaches [10, 11]. In a world in dire need 

of the best possible tools to solve climate change, scientists have continually sought after even more robust instruments 

to resolve this problem. This has led to the development of even more advanced ML models such as advanced deep 

learning models, notably, Long Short-Term Memory (LSTM) neural networks [3], a variant of Recurrent Neural 

Networks that excel at capturing temporal trends in time-series data [12, 13] and has been demonstrated in a vast and 

diverse array of applications like air temperature forecasting [14], solar radiation [15] and CO2 emissions prediction [16, 

17]. Despite the prolificity of LSTMs, these models are limited in their ability to account for spatial interactions between 
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proximate geographic locations with potential for inter-location spill-over emissions, a critical piece of information 

needed for understanding global emissions dynamics influenced by economic, geographic, and policy-related factors 

[18, 19]. 

To address this limitation of LSTMs, researchers have developed and applied hybrid models that integrate the 

strengths of spatial modeling to complement the robust temporal modeling ability of LSTMs. In the domain of spatial 

modeling, models like Convolutional Neural Networks (CNN) have been broadly used [20]. CNNs, although prolific, 

are fundamentally designed to handle structured grid data. This has limited their ability to model the often-unstructured 

spatial distribution of emission sources, a challenge that is addressed by another model called Graph Neural Networks 

(GNN) [21]. A popular variant of GNNs, the Graph Convolutional Networks (GCNs) models spatial relationships by 

notating data as graphs [22], making them suitable for capturing interactions between countries or regions [23, 24] with 

potential cross-border emissions. Recent research has explored the combination of GCNs with LSTMs, which has 

proven to be effective in domains such as power load forecasting [25], transportation [26], and air quality prediction 

[27]. For instance, Shao et al. [7] proposed a hybrid spatiotemporal GCN model for multiregional carbon emissions 

forecasting, highlighting its ability to integrate spatial dependencies. Similarly, García-Duarte et al. [18] applied GCNs 

to spatial-temporal air temperature forecasting, demonstrating their potential for environmental applications. Despite 

these advances, there remains a critical gap in the application of hybrid GCN-LSTM models to multi-country, sector-

specific GHG emissions forecasting, which is essential for developing granular and actionable climate policies across 

diverse regions and industries [7, 11]. 

 

(a)                                                                                                                (b) 

Figure 2. (a) Color Map and (b) Bubble Map of 163 countries [Appendix A] displaying the amount of Greenhouse gas 

emissions from lowest through medium to highest in MtCO2e 

This study addresses this gap by developing a novel GCN-LSTM hybrid model for forecasting GHG emissions 

across 163 countries and eight sectors (Figure 2, Appendix A), utilizing a comprehensive 52-year dataset from the 

Emissions Database for Global Atmospheric Research (EDGAR). The model leverages GCNs to capture spatial 

relationships, such as geographic proximities and emissions similarities between countries, and LSTMs to model 

temporal trends, incorporating node features like total GHG emissions and GHG per capita to analyze both macro-level 

and micro-level patterns [28]. The key contributions from this study include: (1) a sophisticated data preprocessing 

pipeline with node feature engineering and dynamic graph construction; (2) a novel GCN-LSTM architecture for spatial-

temporal feature extraction; (3) a spatial interpretability analysis of the GCN adjacency matrix, using Southeast Asia as 

a case study to provide actionable insights into regional emission patterns; (4) comprehensive performance evaluation 

against baseline models (ARIMA, simple LSTM, and stacked LSTM) using metrics such as Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), supplemented by paired t-tests across 

all sectors (p-value < 0.05), reported in Appendix B); (5) 5-fold cross-validation to ensure model robustness; and (6) 

interpretable insights into emission trend drivers to support targeted climate policies [7, 29]. To advance environmental 

informatics, this study provides a robust tool for emissions forecasting, enabling policymakers to address global, 

regional, and sectoral climate challenges effectively. 



Emerging Science Journal | Vol. 10, No. 1 

Page | 58 

The paper is organized as follows: Section 2 describes the data sources, preprocessing pipeline, and details of the 

GCN-LSTM model architecture and methodology. Section 3 presents the experimental results, comparisons with the 

baseline model, and figurative interpretability. Section 4 discusses the implications of the findings and suggests 

directions for future research, while Section 5 presents the study’s conclusion. 

2- Materials and Methods 

2-1- Theoretical Approach 

The theoretical framework of the novel hybrid Graph Convolutional Network–Long Short-Term Memory (GCN-

LSTM) model proposed in this study is grounded in spatial-temporal data modeling. This approach integrates graph-

based spatial dependencies with time-series analysis. GCNs leverage graph theory to model relationships between 

entities (countries in this case), which are referred to as nodes, connected by relationships referred to as edges. The edge 

connections are defined here by an adjacency matrix constructed from a weighted sum of Haversine distance and cosine 

similarity of emission profiles [18]. This approach is designed to enable the model to capture spatial interactions, such 

as shared emission patterns and spill-over effects due to geographic proximity or policy similarities, theoretically 

supported by studies on spatial econometrics [27]. The LSTM component, rooted in Recurrent Neural Network (RNN) 

theory, models temporal dependencies in the GHG time-series data by maintaining memory cells that capture long-term 

trends in greenhouse gas (GHG) emissions [16]. This fusion of GCN and LSTM empowers the model to learn both 

spatial correlations (e.g., regional emission clusters) and temporal dynamics (e.g., emission trends over 1970–2022), 

addressing limitations of traditional models like ARIMA and independent LSTMs, which lack spatial awareness [30]. 

This theoretical synergy enhances forecasting accuracy and interpretability, putting forward a robust framework for 

multi-country, sector-specific GHG analysis to support climate policy design [31]. 

2-2- Technical Implementation 

Building on the theoretical framework of spatial-temporal modeling outlined in section 2-1, this section describes 

the technical implementation of the Graph Convolutional Network–Long Short-Term Memory (GCN-LSTM) model for 

forecasting greenhouse gas (GHG) emissions across 163 countries and eight sectors (Appendix A) using the EDGAR 

v8 dataset (1970–2022). The implementation, illustrated in Figure 3, encompasses data preprocessing, model 

architecture, training, and validation. 

● Data Preprocessing: The collected EDGAR v8 data consisted of 213 countries, including global shipping 

and aviation. The data were filtered to exclude countries with missing or incomplete records, retaining 163 

countries with complete records (GHG emissions, substance, sector, year, and GHG per Capita), requiring 

no data imputation. It was then preprocessed to handle outliers using the Interquartile Range (IQR) method, 

capping values at 1.5 × IQR bounds [32]; normalized with min-max scaling, and the features extracted for 

modeling. The adjacency matrix was constructed using a weighted sum of Haversine distance and cosine 

similarity, with a 2,000 km distance threshold and 0.01 edge strength (Appendix C). The distance threshold 

of 2,000 km was a rounded-up value determined as an approximate average Haversine distance (~1813 km) 

calculated from pairwise distances among 11 Southeast Asian capitals (Brunei Darussalam, Cambodia, 

Indonesia, Laos, Myanmar, Malaysia, Philippines, Singapore, Thailand, Timor-Leste, Vietnam), totaling 

99,697 km across 55 unique pairs (Appendix C-1). The edge strength threshold of 0.01 was empirically 

selected by visualizing adjacency matrix connections in the GCN, where meaningful regional clusters 

(Appendix A) emerged at this threshold, as observed in a graph plot with connection strengths ranging from 

0.001 to 0.02 (Appendix C-2). 

● Model Architecture: The GCN-LSTM model integrates a GCN layer (64 hidden units) to capture spatial 

dependencies and an LSTM layer (64 hidden units) for temporal dynamics (as detailed in Table 3, section 2-1) 

[16]. The model was trained with a learning rate of 0.001 and batch sizes alternating between 16 and 32 for best 

performance by sector and optimized using 5-fold cross-validation to minimize validation loss, ensuring robust 

hyperparameter selection [27]. 

● Validation: Model performance was evaluated using Mean Absolute Error (MAE), Root Mean Squared Error 

(RMSE), and Coefficient of Determination (R²) on a test set (2016–2022). Paired t-tests were used to confirm 

statistically significant improvements (p < 0.05) of GCN-LSTM over baseline ARIMA (Appendix B) across all 

sectors, validating its superior accuracy [30]. The flow diagram (Figure 3) illustrates the data pipeline, model 

training, and validation process, detailed in Section 4. 
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 Figure 3. Diagrammatic Representation of Implementation Methodology 

The computing device specifications and estimated inference runtimes are presented in Table 2. 

Table 2. Specifications of the computing device and run times 

Specification Value Model Estimated Run Times (Seconds) 

Operating System Windows 11 Pro 64-bit (10.0, Build 26100) GCN-LSTM 30 - 60 

System Model Precision 5530 Simple LSTM 10 - 45 

Memory 32GB RAM Stacked LSTM 20 - 60 

Processor Intel Core i9-8950 HK @ 2.9GHz (12 threads, up to 4.8GHz) ARIMA 5 - 30 

Graphics NVIDIA Quadro P2000 (4GB dedicated, 20.277GB total)   

2-3- Data Preprocessing 

(a) Data Filtering 

The primary dataset spans 213 countries and unique regions, including international shipping and aviation. This data 

includes emissions data for four substances (CO₂ , CH₄ , N₂ O, and F-Gases) across eight sectors (Agriculture, 

Buildings, Fuel Exploitation, Industrial Combustion, Power Industry, Processes, Transport, and Waste) and spans the 

period from 1970 to 2022. To ensure data consistency and quality, we filtered the dataset to retain only countries with 

complete records for substance, sector, year, GHG emissions, and GHG per capita. This results in a final dataset of 163 

countries, with a brief explanation of the dataset provided in [Appendix A]. 

(b) Aggregation of Emissions by Sector 

Noting that we were forecasting total emissions by sector, we aggregated emissions measured in megatons of carbon 

dioxide equivalent (MtCO2e) from all four substances into their respective industries. For each Country 𝑖, Sector 𝑘 and 

Year, 𝑡, the total Emissions 𝐸𝑖,𝑘,𝑡 are computed as the summation of emissions across all Substances 𝑗 (CO2, CH4, N2O, 

F-Gases): 

𝐸𝑖,𝑘,𝑡 = ∑ 𝐸𝑖,𝑗,𝑘,𝑡   (1) 

where, 𝐸𝑖,𝑗,𝑘,𝑡 represents emissions for Country 𝑖, Substance 𝑗and Sector 𝑘 in the Year 𝑡. and 𝐸𝑖,𝑘,𝑡 represents the total 

emissions for Country 𝑖, and Sector 𝑘 in Year 𝑡. 

Stop 

Start EDGAR 

Raw Data Simple maps 

Filtering and Cleaning Min-Max Normalization Feature Extraction 

ARIMA GCN-LSTM, LSTM, Stacked LSTM 

Split Data 

70% Training 15% Validation 15% Testing 

Build and Train Model 

Obtain Trained Configuration Model Testing 

Performance Evaluation & 

Interpretability 
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This aggregation step ensured that the emissions data were sector-specific and comparable across countries and years. 

The resulting dataset contains total emissions and GHG per capita for each of the eight sectors in 163 countries. 

(c) Outlier Handling 

Outliers for each country sector were identified and capped using the Interquartile Range (IQR) method [31]. For a 

given column 𝑥, the IQR is calculated as: 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1  (2) 

where, 𝑄1 ∈  [0, 25] is the 25th percentile and 𝑄3 ∈ [75, 100] is the 75th percentile. Values outside these bounds are 

capped to the nearest bounds defined as: 

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 = 𝑄1 − 1.5 × 𝐼𝑄𝑅, 

𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 = 𝑄3 − 1.5 × 𝐼𝑄𝑅 

 
(3) 

The IQR bounds varied across sectors, with Agriculture, Fuel Exploitation, and Waste sharing the widest range, from 

0 to 95. The Power Industry was set at a range of 0 to 94, while Transport ranged from 0 to 90, Processes from 0 to 80, 

Industrial Combustion from 0 to 75, and Buildings, a more constrained IQR, ranged from 15 to 85. 

(d) Normalization 

To facilitate the practical training of the GCN-LSTM model, we normalized emissions and GHG per capita values 

for each feature f, using the Min-Max scaling method, ensuring consistent data scales. This normalization step ensured 

that all features were scaled to the range of [0, 1]. For each country, sector, and year, the normalized value 𝑓 is calculated 

as: 

𝑓 =
𝑓 −𝑚𝑖𝑛(𝑓)

𝑚𝑎𝑥(𝑓)−𝑚𝑖𝑛(𝑓)
   (4) 

where; 𝑚𝑖𝑛(𝑓) and 𝑚𝑎𝑥(𝑓) are the minimum and maximum values of features 𝑓 for each country, sector, and year.  

2-4- Model Architecture 

The hybrid model processed graph-structured data with two GCN layers to extract spatial features, modeled temporal 

dependencies with an LSTM layer, and generated final predictions with two fully connected layers (Figure 4). 

 
Figure 4. Basic Architecture of the GCN-LSTM Model 

(a) GCN Component 

The GCN processed updates between layers such that for each layer l, the node features H(l) are updated as: 

𝐻(𝐻+1) =  𝐻(𝐻 −
1
2𝐻 𝐻 −

1
2𝐻(𝐻)𝐻(𝐻))  (5) 

where, 𝐴 is the adjacency matrix with added self-connections; 𝐷 is the diagonal degree matrix of 𝐴; 𝑊(𝑙) is the weight 

matrix for the layer 𝑙; and 𝜎 is a non-linear activation function ReLU. 

(b) Graph Construction 

We used the preprocessed dataset to construct a graph representing the spatial relationships between countries, where 

countries served as nodes and edges were defined by geographic proximity and emissions similarity [32]. Each node in 

the graph was associated with two key features: Total GHG emissions and GHG per capita. These features were used as 

   
   

 LSTM  

 
t 

Graph Convolution Layers 

Input Feature Map 

Two Fully connected Layers 
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input to the GCN component of the hybrid model. On the other hand, edges were defined by the Adjacency matrix, 

constructed based on a weighted sum of an exponentially decaying Haversine distance with a threshold of 2,000 km 

(using latitudes and longitudes for each country) and cosine similarity. The resultant connection strength was set to a 

threshold of 0.01 and captured for interpretability analysis. 

The Haversine distance 𝑑𝑖1,𝑖2
 between two countries 𝑖1 𝑎𝑛𝑑  𝑖2 was calculated as: 

𝑑𝑖1,𝑖2
= 2 𝐴𝑟𝑐𝑠𝑖𝑛(√𝑠𝑖𝑛2(

𝛥𝑙𝑎𝑡

2
)  + 𝑐𝑜𝑠(𝑙𝑎𝑡𝑖1

)𝑐𝑜𝑠(𝑙𝑎𝑡𝑖2
)𝑠𝑖𝑛2(

𝛥𝑙𝑜𝑛

2
))   (6) 

where, 𝑅 is the Earth’s radius; and 𝛥𝑙𝑎𝑡 and 𝛥𝑙𝑜𝑛 are the differences in latitude and longitude between countries 𝑖1 and 

𝑖2. 

The cosine similarity 𝑠𝑖1,𝑖2
 between the emission vectors of countries 𝑖1 and 𝑖2 is calculated as: 

𝑠𝑖1,𝑖2
=

𝑒𝑖1
.  𝑒𝑖2

||𝑒𝑖1
|| ||𝑒𝑖2

||
  (7) 

where, 𝑒𝑖1
 and 𝑒𝑖2

 are the emission vectors of countries 𝑖1 and 𝑖2 , respectively. 

The resultant Adjacency matrix 𝐴 is defined as: 

Where, 𝜎𝑑 is the scaling factor for distance; and 𝛼s is a weight parameter for the cosine similarity. 

This graph construction process ensured that the GCN component of the model effectively captured the spatial 

relationships between countries. 

(c) LSTM Component 

The LSTM component processed the temporal sequence of the emissions data (Figure 5). For each time step 𝑡, the 

LSTM cell updated its hidden state ℎ𝑡 and cell state 𝑐𝑡 as: 

𝑓𝑡 = 𝜎(𝑊𝑓[𝑍, ℎ𝑡−1] + 𝑏𝑓) 

𝑖𝑡 = 𝜎(𝑊𝑖[𝑍, ℎ𝑡−1] + 𝑏𝑖) 

𝑜𝑡 = 𝜎(𝑊𝑜[𝑍, ℎ𝑡−1] + 𝑏𝑜) 

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐[𝑍, ℎ𝑡−1] + 𝑏𝑐) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡   

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡) 

 (9) 

Where, 𝑍, The node embedding output from the GCN serves as input to the LSTM; 𝑓𝑡  , 𝑖𝑡 and 𝑜𝑡 are the forget, input, 

and output gates, respectively; 𝑊 and 𝑏 are the weight matrices and bias vectors; 𝜎 and 𝑡𝑎𝑛ℎ are the neural network 

activation functions; and ⊙ Denotes pointwise multiplication. 

 

Figure 5. LSTM Cell Structure 

𝐴𝑖1,𝑖2
= 𝑒𝑥𝑝(−

𝑑𝑖1,𝑖2

𝜎𝑑
) + 𝛼𝑠𝑖1,𝑖2

  (8) 
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(d) Attention Mechanism 

The attention mechanism computed a weighted sum of LSTM hidden states, dynamically learning the weights from 

the input data, to focus the model on relevant temporal features. In this study, we implemented the attention mechanism 

in Python code using the Multi-Head-Attention layer from TensorFlow. The attention operation can be expressed as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉)  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝐾
)𝑉   (10) 

where, 𝑄, 𝐾, and 𝑉 are the query, key, and value matrices, respectively; and 𝑑𝐾  is the dimensionality of the key vectors. 

2-5- Training and Evaluation 

(a) Data Splitting 

We randomly split the preprocessed dataset for each country sector into 70% training, 15% validation, and 15% 

testing, preserving the temporal order. We then sorted the data chronologically by year to ensure temporal consistency 

and evaluated the model on unseen future data. 

(b) Model Training 

For ARIMA, we applied a uniform Autoregressive (1), Integrated (1), and Moving Average (1) configuration model 

with a sequence length of one (1) across all sectors. We trained deep learning models with the Adam optimizer and MSE 

loss, optimizing parameters per country sector. We used early stopping (patience 10, max 100 epochs) to prevent 

overfitting. Hyperparameters were selected through sensitivity analysis, considering only hyperparameters with a 

significant observable influence on the evaluation metrics for each sector, and are listed in Table 3. 

Table 3. Optimal GCN-LSTM, Simple LSTM, and Stacked LSTM Hyperparameters 

Sector Sequence Length 
Threshold Distance 

(GCN-LSTM only) 
Batch Size Hidden Size Number of Layers Epochs/Patience 

Agriculture 6 2000 16 64 2 GCN + 1 LSTM 100/10 

Buildings 1 2000 32 64 2 GCN + 1 LSTM 100/10 

Fuel Exploitation 1 2000 16 64 2 GCN + 1 LSTM 100/10 

Industrial Combustion 2 2000 16 64 2 GCN + 1 LSTM 100/10 

Power Industry 1 2000 16 64 2 GCN + 1 LSTM 100/10 

Processes 1 2000 16 64 2 GCN + 1 LSTM 100/10 

Transport 6 2000 32 64 2 GCN + 1 LSTM 100/10 

Waste 6 2000 32 64 2 GCN + 1 LSTM 100/10 

(c) Model Evaluation Metrics 

We evaluated the trained GCN-LSTM model using standard regression metrics, including: 

1. Mean Absolute Error (MAE): MAE calculates the average absolute difference between predicted and actual 

emissions, expressed in megatons of CO2 equivalent (Mt CO2e). 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝐸𝑖,𝑘,𝑡 − 𝐸̂𝑖,𝑘,𝑡|

 

 

   (11) 

2. Root Mean Squared Error (RMSE): RMSE measures the square root of the average squared difference between 

predicted and actual values. It's more sensitive to significant errors than MAE, which makes it worthwhile when 

significant errors are undesirable. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝐸𝑖,𝑘,𝑡 − 𝐸̂𝑖,𝑘,𝑡)2 

      (12) 

3. Coefficient of Determination (R²): R², which ranges from 0 to 1, measures the predictive accuracy by explaining 

the variance in actual emissions. A value of 1 indicates perfect predictions. 

𝑅2  = 1 −
∑ 𝐸𝑖,𝑘,𝑡 − 𝐸̂𝑖,𝑘,𝑡

 
  

∑ 𝐸𝑖,𝑘,𝑡 − 𝐸𝑖,𝑘,𝑡
 
  

  (13) 

Where for all three equations above: 𝐸𝑖,𝑘,𝑡 represents actual emissions for the Country 𝑖, and Sector 𝑘 in Year 𝑡; 𝐸̂𝑖,𝑘,𝑡 

represents predicted emissions for the Country 𝑖, and Sector 𝑘 in Year 𝑡; and 𝐸𝑖,𝑘,𝑡 represents the mean of the actual 

emissions for Country 𝑖, and Sector 𝑘 in Year 𝑡. 
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2-6- Methodology for Model Interpretability 

We performed an interpretability analysis to understand and validate the model's predictions. In this study, we 

characterized the interpretability of the GCN-LSTM model in regional-only, regional-temporal, and spatial analyses to 

dissect its performance across all eight sectors [Appendix A]. The spatial connections, filtered at a threshold connection 

strength of 0.01 were represented in variations of strength (Figure 8) differentiated by line color and thickness: dark blue 

(<0.0156), sky blue (0.0156–0.0194), orange (0.0194–0.0232), and dark red (>0.0232) as shown in Section 3(c). This 

approach provides insights into its behavior across different geographical regions, both spatially and over time. For both 

regional-only and regional-temporal analysis, we grouped countries into predefined regional clusters [Appendix A] and 

analyzed the performance metrics for each region and sector. We calculated the MAE, RMSE, and R² to evaluate the 

model's performance. Regions were then categorized into three levels (Level 1 Regions: Best performance within each 

sector; Level 2 Regions: Performance just below Level 1; and Level 3 Regions: Performance below Level 2) as shown 

in Table 4 and Table 5. The overall model performance is then evaluated with the metrics in Table 6 and Figure 10. 

3- Results 

3-1- GCN-LSTM Model Interpretability 

Figure 6 evaluates the GCN-LSTM model’s performance across eight sectors (Appendix A) using Mean Absolute 

Error (MAE) in MtCO2e, as detailed in Table 4 (Section 3- 1a, Regional Interpretability). The vertical axis represents 

MAE, while the horizontal axis lists regions categorized into the three performance levels (Level 1: best, Level 2: 

moderate, Level 3: lower) mentioned in sections 2-6 and based on clusters in Appendix A. For example, Southeast Asia’s 

Waste sector achieves Level 1 with an MAE of 0.0207, reflecting high accuracy due to strong spatial connections (see 

Figure 8). This demonstrates the GCN-LSTM’s ability to leverage spatial relationships, captured through its graph-based 

architecture, to improve emission forecasts. Level 1 performance in these interconnected regions highlights the model’s 

robustness in handling data influenced by geographic proximity, making it a reliable tool for cross-sectoral and cross-

regional analysis. 

(a) Regional Interpretability 

Table 4. Region-Only Performance Evaluation by MAE, RMSE, and R2 Levels 

Sector Range MAE Range RMSE Range R2 Level 1 Regions Level 2 Regions Level 3 Regions 

Agriculture 0.045-0.063 0.259-0.311 0.903-0.953 Caribbean, Southern Cone 
Micronesia, Northern South 

America 
Brazil, Central Africa 

Buildings 0.050-0.072 0.269-0.347 0.875-0.953 Micronesia, Caribbean Northern Europe, Polynesia Southern Cone, West Asia 

Fuel Exploitation 0.043-0.058 0.272-0.360 0.850-0.954 
Southern Africa, Central 

Africa 
Polynesia, North Africa 

West Asia, Northern 

Europe 

Industrial Combustion 0.044-0.075 0.247-0.376 0.812-0.970 Brazil, Micronesia Caribbean, Central America 
Southern Cone, North 

America 

Power Industry 0.041-0.058 0.249-0.305 0.917-0.961 
Polynesia, Northern 

Europe 

North America, Andean 

Countries 

Southern Europe, West 

Africa 

Processes 0.039-0.057 0.258-0.373 0.826-0.962 Caribbean, Eastern Europe West Asia, South Asia 
Southern Cone, Northern 

Europe 

Transport 0.038-0.054 0.246-0.303 0.902-0.962 
North America, Central 

Asia 
Southern Europe, Micronesia 

West Africa, Andean 

Countries 

Waste 0.015-0.027 0.145-0.267 0.942-0.995 Micronesia, Southern Cone Polynesia, East Asia 
Central Africa, West 

Africa 

 

 

 

(a) Agriculture 

 

(b) Buildings 
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(c)  Fuel Exploitation 

 

(d) Industrial Combustion 

 
(e) Power Industry 

 
(f). Processes 

 

(g) Transport 

 

(h) Waste 

Figure 6. Regional evaluation for all eight sectors: (a), (b), (c), (d), (e), (f), (g), (h). Blue, orange, and gray bars represent 

MAE, RMSE in MtCO2e, and R2, respectively 

(b) Temporal Interpretability 

Building on Figure 6, Figure 7 tracks the temporal evolution of MAE for the GCN-LSTM model across the same 

sectors and regional clusters over 1970–2022, as summarized in Table 5 (Section 3-1b, Temporal Interpretability). The 

vertical axis shows MAE (in MtCO2e). In contrast, the horizontal axis denotes regions for Figure 7(a) and years for 

Figure 7(b), with lines color-coded by sector (e.g., Waste: brown, Agriculture: green). Southeast Asia’s Waste sector, 

for instance, shows a MAE decline from 0.045 MtCO2e in the 1970s to 0.0207 MtCO2e by 2022, indicating improved 

accuracy over time. This temporal analysis highlights the LSTM component’s ability to adapt to long-term trends, 

complementing the spatial insights from Figure 8 and informing policy focus on regions with evolving emission patterns. 

Table 5. Granular Regional Time-Series Evaluation by MAE Levels 

Sector MAE Range 
Sector 

Avg. 

Level 1  

Regions 

Level 2 

Regions 

Level 3  

Regions 

Influential 

Years 
Contextual Notes 

Agriculture 0.0004-0.3208 0.0611 
North America, 

Micronesia 

Melanesia, 

Polynesia 

East Asia, South 

Asia 

1990, 2001, 

2007, 2022 

1990: Environmental regulations; 2001: Post-9/11 impact; 

2007: Financial crisis effects; 2022: Recovery trends. 

Buildings 0.0028-0.2054 0.0539 
Melanesia, 

Polynesia 

Micronesia, 

South Asia 

East Asia, 

Northern Europe 

1990, 1999, 

2012, 2014 

1990: Building codes; 1999: Sustainable design trends; 

2012: Policy implementations. 



Emerging Science Journal | Vol. 10, No. 1 

Page | 65 

Fuel 

Exploitation 
0.0013-0.4603 0.0660 

Micronesia, 

Melanesia 

Polynesia, 

South Asia 

West Asia, East 

Africa 

1991, 1997, 

2001, 2015 

1991: Gulf War impacts; 1997: Kyoto Protocol 

discussions; 2015: Paris Agreement. 

Industrial 
Combustion 

0.0010-0.3926 0.0570 
Northern Europe, 

Micronesia 

Melanesia, 

West Asia 

South Asia, 

Eastern Europe 

1974, 1991, 

2014, 2015 

1974: Oil crisis; 1991: Regulatory changes; 2015: Global 

climate actions. 

Power 

Industry 
0.0010-0.8188 0.0532 

Melanesia, 

Micronesia 

Polynesia, 

South Asia 

East Asia, 

Northern Europe 

1986, 1993, 

1995, 2015 

1986: Chernobyl disaster; 1993: Energy policy reforms; 

2015: Renewables push. 

Processes 0.0015-0.8188 0.0467 
Melanesia, 

Micronesia 

Polynesia, 

South Asia 

East Asia, West 

Asia 

1974, 1991, 

2014, 2015 

1974: Industrial regulations; 1991: Environmental 

standards; 2015: Emission reduction goals. 

Transport 0.0067-0.2371 0.0485 
Melanesia, North 

America 

Micronesia, 

Polynesia 

South Asia, East 

Africa 

1980, 1990, 

1999, 2015 

1980: Oil crisis; 1990: Regulatory shifts; 2015: 

Sustainable transport initiatives. 

Waste 0.0010-0.2423 0.0370 
Melanesia, 

Micronesia 

Polynesia, 

South Asia 

East Asia, West 

Asia 

1976, 1995, 

2015, 2016 

1976: Environmental legislation; 1995: Waste 

management strategies; 2015: Circular economy trends. 

 

(a) MAE vs. Region 

 

(b) MAE vs Year 

Figure 7. Regional Time-Series Evaluation: (a) MAE vs Region and (b) MAE vs Year 



Emerging Science Journal | Vol. 10, No. 1 

Page | 66 

(c) Spatial Interpretability: A Case Study of Southeast Asia 

Figure 8 captures spatial interpretability, narrowed in scope from 163 countries, 24 clusters, and eight sectors to 
focus on Southeast Asia as a case study, illustrating the strength of connections between Southeast Asian countries based 
on geographic proximity and similarities in GHG emissions, as captured by the GCN component of the hybrid GCN-
LSTM model. Nodes represent countries annotated by their three-letter country codes (Appendix A), and edges reflect 
a weighted sum of a 2000 km (Appendix C-1) Haversine geographic proximity and cosine emissions similarity from the 
adjacency matrix (Section 2-2(b)), filtered at a 0.01 edge strength threshold (Appendix C-2). Across the eight sectors 
(Appendix A), the model identifies a total of 546 sector-specific connections, comprising 40 unique connections, with 
31 above the threshold. Edge colors and thicknesses indicate connection strength: dark blue (<0.0156), sky blue (0.0156–
0.0194), orange (0.0194–0.0232), and dark red (>0.0232). For example, the Thailand–Cambodia Waste sector link 
(brown) exemplifies a strong regional interdependency, driving the level 1 performance observed in Figure 6. This 
spatial analysis, foundational to the regional robustness in Figure 6 and temporal trends in Figure 7, provides actionable 
insights for targeted policy cooperation, such as joint waste management strategies between strongly connected 
countries. 

Figure 9 synthesizes the analysis by comparing aggregated time series of actual versus predicted emissions for all 
eight sectors (Appendix A) and models (GCN-LSTM, ARIMA, Simple LSTM, Stacked LSTM) from 1970 to 2022, as 
referenced in Section 3-2 (Overall Results for All Four Models). Both Simple and Stacked-LSTM were combined into 
LSTM for this plot since no visible differences were observed in their plot lines. The vertical axis shows emissions (in 
MtCO2e). In contrast, the horizontal axis denotes years, with solid blue vertical lines for actual data and wiggly colored 
lines for predictions (GCN-LSTM: Red, LSTM: Orange, ARIMA: Green). The plots visualize how the GCN-LSTM 
slightly outperforms its deep-learning counterparts, LSTM and the statistical ARIMA, by more closely aligning with 
actual emissions for most sectors, reflecting the combined strengths of spatial (Figure 8) and temporal (Figure 7) 
modeling. This figure confirms the model’s reliability for long-term forecasting, offering a comprehensive basis for 
global climate policy strategies. 

 

(a) Agriculture 

 

(b) Buildings 

 

(c) Fuel Exploitation 

 

(d) Industrial Combustion 

 

(e) Power Industry 

 

(f) Processes 

   

 

(g) Transport 

 

(h) Waste 

 

 

Figure 8. Spatial interpretability by Connection strength with a 0.01 threshold in Southeast Asia 

   < 0.0156 0.0156 - 0.0194 0.0194 - 0.0232 > 0.0232 
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(a) Agriculture                                                                                               (b) Buildings 

  

(c) Fuel Exploitation                                                                             (d) Industrial Combustion 

  

(e) Power Industry                                                                                          (f) Processes 

   

(g) Transport                                                                                                    (h) Waste 

Figure 9. Aggregated Comparative Time-Series Average Actual vs. Predicted Emissions for All Sectors and All Models 
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Figure 10. All Models MAE, RMSE, and R2 Comparison Across All Eight Sectors 

3-2- Overall Results for All Four Models 

Table 6. All Models' overall performance classification by MAE, RMSE, and R2 levels 

Sectors Agriculture Buildings Fuel Exploitation Industrial Combustion 

Models MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 

ARIMA 0.0517 0.2912 0.9288 0.0599 0.3231 0.8876 0.0502 0.3144 0.9080 0.0649 0.3293 0.8760 

LSTM 0.0523 0.2902 0.9287 0.0627 0.3170 0.8988 0.0549 0.3141 0.9083 0.0652 0.3253 0.9063 

Stacked-LSTM 0.0512 0.2903 0.9287 0.0627 0.3166 0.8994 0.0534 0.3128 0.9098 0.0675 0.3256 0.9061 

GCN-LSTM 0.0507 0.2882 0.9307 0.0592 0.3158 0.9004 0.0534 0.3120 0.9107 0.0614 0.3253 0.9064 
 

Sectors Power Industry Processes Transport Waste 

Models MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 

ARIMA 0.0523 0.2955 0.9246 0.0431 0.2867 0.9413 0.0441 0.2699 0.9465 0.0279 0.2219 0.9753 

LSTM 0.0535 0.2937 0.9265 0.0432 0.2838 0.9428 0.0443 0.2697 0.9476 0.0228 0.2209 0.9738 

Stacked-LSTM 0.0605 0.3033 0.9164 0.0465 0.2865 0.9415 0.0442 0.2686 0.9484 0.0222 0.2189 0.9748 

GCN-LSTM 0.0515 0.2913 0.9289 0.0428 0.2835 0.9439 0.0433 0.2681 0.9487 0.0207 0.2172 0.9756 
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3-3- Model Performance by Sector 

Building on Figure 9, Figure 10 visualizes the overarching performance metrics of the GCN-LSTM model against 

ARIMA, Simple LSTM, and Stacked LSTM across the eight sectors (Appendix A), as detailed in Section 3-2 (Overall 

Results for All Four Models). The figure presents three key metrics: Mean Absolute Error (MAE) in MtCO2e, Root 

Mean Squared Error (RMSE) in MtCO2e, and Coefficient of Determination (R²), each displayed with two 

complementary plots: a line plot and a horizontal bar plot of the same data. For MAE, the line plot traces performance 

trends across sectors for each model, while the horizontal bar plot reinforces this by showing relative magnitudes. 

Similarly, RMSE and R² follow this dual representation to enhance clarity by combining the line plot’s trend visibility 

with the bar plot’s magnitude emphasis.  

As seen in Table 6, the GCN-LSTM model outperforms ARIMA, Simple LSTM, and Stacked LSTM across all eight 

sectors. In the Processes sector, GCN-LSTM achieves a Mean Absolute Error (MAE) of 0.0428 MtCO2e and a 

Coefficient of Determination (R²) of 0.9439, compared to ARIMA’s MAE of 0.0467 MtCO2e and R² of 0.9367. 

Similarly, in the Waste sector, GCN-LSTM records an MAE of 0.0207 MtCO2e and an R² of 0.9756, and in Agriculture, 

an MAE of 0.0356 MtCO2e. Paired t-tests (Appendix B) confirm statistically significant improvements over ARIMA 

for all sectors, with p-values (p < 0.05 for all industries) ranging from 3.80E-07 (Agriculture) to 1.72E-36 (Waste). This 

aligns with Figure 9’s aggregated time series, showing GCN-LSTM closely tracking actual emissions from 1970 to 

2022, particularly post-2010. These results highlight the model’s ability to capture spatial and temporal dependencies in 

GHG emissions data, with detailed interpretations provided in Section 4. 

4- Discussion 

4-1- Overall Comparative Model Performance 

The comparative analysis of GCN-LSTM, Simple LSTM, Stacked-LSTM, and ARIMA models across eight distinct 

sectors (Appendix A) for the key metrics in this study revealed compelling insights into their forecasting capabilities for 

greenhouse gas emissions. A key observation indicated that deep learning models, including the GCN-LSTM, Simple 

LSTM, and Stacked-LSTM, consistently outperformed the statistical ARIMA model, as shown in Table 6, section 3-2. 

Furthermore, comparing the deep learning models independently showed that the GCN-LSTM hybrid model marginally 

outperformed the others across all sectors, suggesting that incorporating spatial dependencies in time series forecasting 

of GHG emissions enhanced predictive accuracy [21, 33]. Also, the GCN-LSTM model’s statistically significant 

performance (p < 0.05 for all sectors; Appendix B) over the ARIMA model projects the limitations of ARIMA in 

capturing both non-linear and spatial dependences in emissions data and underscores the GCN-LSTM’s potential for 

precise GHG emissions forecasting, primarily due to its integration of graph convolutional networks (GCNs) to capture 

inter-country spill-over emissions. For instance, the exceptionally low p-value in Waste (p = 1.72E-36) suggests high 

accuracy, enabling targeted interventions like recycling programs or waste-to-energy initiatives [31]. In Transport, a 

slightly higher p-value (p = 3.32E-10) reflects challenges from volatile fuel use and points to policies like electric vehicle 

adoption [34]. In Agriculture, the model’s accuracy (p = 3.80E-07) benefits from spatial features capturing geographic 

regional similarities and shared economic and agricultural practices [35, 36]. Spatial interpretability, further explained 

in section 4-3, enhances these findings, revealing strong regional connections, such as Thailand–Cambodia in Waste, 

which can guide coordinated policies like joint waste management initiatives [37] and pollution remediation [38]. These 

insights position GCN-LSTM as a powerful tool for creating effective sector-specific climate mitigation strategies. 

4-2- Comparison with Previous Studies 

When compared to other studies. Yao et al. [11] reported an average R² of 0.89 for deep learning models, while our 

GCN-LSTM achieves a higher average R² of 0.93, driven by GCN capturing spatial dependencies absent in their models. 

Even with spatial dependences and a slightly better R2 of 0.9661 using a CNN-LSTM, Han et al. [20] recorded a much 

higher MAE of 8.0169 and RMSE of 11.1505 compared to the GCN-LSTM’s MAE of 0.0515, RMSE of 0.2913 in the 

power and energy industry, suggesting that GCNs are a better fit compared to CNNs at capturing spatial dependences. 

Wen et al. [39] achieved an MAE of 0.05 MtCO2e in Transport using an ARIMA-LSTM hybrid, a value 22% higher 

than the GCN-LSTM’s 0.0433. In Agriculture, our model’s performance is competitive with traditional methods [5], 

leveraging GHG per capita data for granular accuracy. The spatial interpretability, aligning with the results of Shao et 

al. [7], highlights connections like Malaysia–Singapore in Transport, encouraging joint regional policy coordination in 

this sector [37]. The EDGAR 2023 report of a 1.4% global emission increase [40] corroborates our aggregated trends, 

although it lacks sectoral granularity, as our model provides precise policy guidance. Despite these positives, challenges 

remain, such as in the Power Industry, where uneven energy generation and distribution practices, coupled with emission 

upsets from limited renewable energy adoption, affect emission data [6], suggesting the need for future integration of 

socioeconomic variables [41]. 

4-3- Model’s Spatial Interpretability: A Case Study of Southeast Asia 

To better understand the spatial dependencies, we conducted a spatial interpretability analysis, using Southeast Asia 

as a case study, as visualized in Figure 8. This analysis revealed that countries sharing geographic borders tended to 

exhibit stronger connections in terms of GHG emissions. However, proximity to the border alone did not fully explain 
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the variation in connection strength. For example, in the waste sector, Thailand (THA) shares borders with Cambodia 

(KHM) and Malaysia (MYS), yet the THA-KHM connection was significantly stronger than the THA-MYS connection. 

Similarly, the KHM-Vietnam (VNM) connection surpassed KHM-THA in strength. This pattern, consistent across 

sectors, suggests that factors beyond mere border proximity, such as economic ties, trade relationships, or shared 

environmental policies, likely influence the strength of emission connections. For instance, the strong connection 

between Malaysia (MYS) and Singapore (SGP) in the transportation sector can be attributed to their high levels of cross-

border trade and travel, as highlighted by studies on cross-border transportation investments in Southeast Asia [42]. 

Similarly, we found a strong connection between Indonesia (IDN) and Malaysia (MYS) in the power sector, aligning 

with discussions about regional energy infrastructure and ASEAN's readiness for multilateral electricity trade [37]. In 

the agriculture sector, the Philippines (PHL) and Indonesia (IDN) exhibited a strong connection, likely due to shared 

agricultural practices and trade in farm products, as noted in studies on regional agricultural cooperation [43]. This 

analysis highlights the complexity of inter-country GHG emission relationships in Southeast Asia, with border 

characteristics, sector-specific activities, and regional collaboration potentially playing significant roles. With such 

compelling insights, this spatial interpretability serves as a strong indicator of the need for joint regional efforts to 

mitigate climate change in Southeast Asia. Climate policies with hopes of maximum impact should consider close 

regional collaboration on waste management and recycling, agricultural land and technology exploitation, transportation 

infrastructure design, and energy generation and distribution. These actions, fully implemented, could keep the entire 

region in sync with its mutual emission reduction targets. Future research could explore the impact of border length, 

economic integration, and policy alignment on these connections to better understand the drivers of emission similarities 

in the region.  

5- Conclusion 

This study developed a novel hybrid Graph Convolutional Network–Long Short-Term Memory (GCN-LSTM) 

model to forecast greenhouse gas (GHG) emissions across 163 countries and eight sectors (Agriculture, Buildings, Fuel 

Exploitation, Industrial Combustion, Power Industry, Processes, Transport, Waste) using the EDGAR v8 dataset (1970–

2022). The model integrates spatial relationships, captured through an adjacency matrix based on geographic proximity 

and emission similarities, with temporal dynamics modeled by LSTM, achieving superior performance over baseline 

models (ARIMA, simple LSTM, stacked LSTM). Evaluation metrics, including Mean Absolute Error (MAE: 0.0207 in 

Waste), Root Mean Squared Error, and Coefficient of Determination (R²: 0.9756 in Waste), demonstrate the model’s 

high accuracy, validated by 5-fold cross-validation and paired t-tests (p < 0.05). Spatial interpretability analysis, 

complementing the performance metrics, revealed strong regional connections in most sectors, such as Thailand–

Cambodia, Malaysia-Singapore, and Cambodia-Vietnam, a powerful endorsement for regional cooperation regarding 

policy development and action. For example, targeted joint interventions in waste management, recycling, and pollution 

control practices, including research and development, knowledge exchange, and joint action targets, could contribute 

substantially to the climate change mitigation strategy in Southeast Asia. The GCN-LSTM model’s ability to capture 

both spatial and temporal dependencies offers a robust framework for multi-country, sector-specific GHG forecasting, 

addressing limitations of traditional models that overlook spatial correlations and sectoral granularity. This approach 

provides actionable insights for global climate policy, supporting sustainable development and emission reduction goals. 

Future work could extend the model to incorporate real-time data and additional socio-economic variables to enhance 

forecasting precision and further policy relevance. Dynamic re-scaling could also be explored to enable post-2022 data 

for min-max normalization. 
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Appendix A: List of Countries, Substances, Sectors, and Regional Clusters 

Countries 

Afghanistan, Angola, Argentina, Armenia, Australia, Austria, Azerbaijan, Burundi, Belgium, Burkina Faso, Bangladesh, Bulgaria, Bahamas, 

Bosnia and Herzegovina, Belarus, Belize, Bolivia, Brazil, Barbados, Brunei, Bhutan, Central African Republic, Canada, Switzerland and 

Liechtenstein, Chile, China, Côte d'Ivoire, Cameroon, Democratic Republic of the Congo, Colombia, Comoros, Cabo Verde, Costa Rica, 

Cuba, Cyprus, Czechia, Germany, Djibouti, Dominica, Denmark, Dominican Republic, Algeria, Ecuador, Egypt, Eritrea, Spain and Andorra, 

Estonia, Ethiopia, Finland, Fiji, France and Monaco, United Kingdom, Georgia, Guinea, Guadeloupe, The Gambia, Guinea-Bissau, Greece, 

Guatemala, French Guiana, Guyana, Hong Kong, Croatia, Haiti, Hungary, Indonesia, India, Ireland, Iran, Iraq, Israel and Palestine, State of, 

Italy, San Marino and the Holy See, Jamaica, Jordan, Japan, Kazakhstan, Kenya, Kyrgyzstan, Cambodia, Kiribati, South Korea, Kuwait, 

Lebanon, Liberia, Libya, Saint Lucia, Sri Lanka, Lesotho, Lithuania, Luxembourg, Latvia, Macao, Morocco, Moldova, Madagascar, 

Maldives, Mexico, North Macedonia, Mali, Myanmar/Burma, Mongolia, Mozambique, Mauritania, Martinique, Malawi, Malaysia, New 

Caledonia, Nigeria, Nicaragua, Netherlands, Norway, New Zealand, Oman, Pakistan, Panama, Peru, Philippines, Papua New Guinea, Poland, 

Puerto Rico, North Korea, Portugal, Qatar, Réunion, Romania, Russia, Saudi Arabia, Serbia and Montenegro, Sudan and South Sudan, 

Senegal, Singapore, Solomon Islands, Sierra Leone, Somalia, São Tomé and Príncipe, Suriname, Slovakia, Slovenia, Sweden, Seychelles, 

Syria, Chad, Thailand, Turkmenistan, Tonga, Trinidad and Tobago, Tunisia, Türkiye, Taiwan, Tanzania, Uganda, Ukraine, Uruguay, United 

States, Uzbekistan, Saint Vincent and the Grenadines, Venezuela, Vietnam, Vanuatu, Samoa, South Africa, Zambia, Zimbabwe 

Substances CO2, GWP_100_AR5_CH4, GWP_100_AR5_N20, GWP_100_AR5_F-Gases 

Sectors 

Agriculture: Emissions from agricultural activities such as livestock, crop cultivation, and agricultural waste management. 

Buildings: Emissions from residential and commercial buildings, including heating, cooling, and cooking. 

Fuel Exploitation: Emissions from the extraction and processing of fossil fuels, including coal, oil, and natural gas. 

Industrial Combustion: Emissions from industrial processes that involve combustion, such as manufacturing and power generation. 

Power Industry: Emissions from fossil fuel power plants in electricity generation. 

Processes: Emissions from industrial processes that do not involve combustion, such as chemical production and metal smelting. 

Transport: Emissions from road, rail, air, and marine transportation. 

Waste: Emissions from the disposal of waste, including landfills and waste incineration. 

Regional 

Clusters 

Melanesia: FJI, PNG, SLB, VUT 

Micronesia: FSM, KIR, MHL, NRU, PLW 

Polynesia: ASM, COK, NIU, PCN, WSM, TON, TUV 

East Asia: CHN, JPN, KOR, MNG, PRK, TWN 

South Asia: AFG, BGD, BTN, IND, LKA, MDV, NPL, PAK 

Southeast Asia: BRN, KHM, IDN, LAO, MMR, MYS, PHL, SGP, THA, TLS, VNM 

Central Asia: KAZ, KGZ, TJK, TKM, UZB 

West Asia: ARM, AZE, BHR, CYP, GEO, IRQ, ISR, JOR, KWT, LBN, OMN, PSE, QAT, SAU, SYR, TUR, ARE, YEM 

Northern Europe: DNK, EST, FIN, ISL, IRL, LTU, LVA, NOR, SWE, GBR 

Southern Europe: ALB, AND, BIH, HRV, GRC, ITA, MLT, MNE, PRT, SMR, ESP, SRB, MKD, VAT 

Eastern Europe: ARM, AZE, BLR, BGR, CZE, GEO, HUN, MDA, POL, ROU, RUS, SVK, SVN, UKR 

Western Europe: AUT, BEL, FRA, DEU, LIE, LUX, MCO, NLD, CHE 

North America: CAN, USA, MEX 

Central America: BLZ, CRI, SLV, GTM, HND, NIC, PAN 

Caribbean: ATG, BHS, BRB, CUB, DMA, DOM, GRD, HTI, JAM, KNA, LCA, VCT, TTO 

Andean Countries: BOL, COL, ECU, PER, VEN 

Southern Cone: ARG, CHL, PRY, URY 

Northern South America: GUY, SUR 

Brazil: BRA 

North Africa: DZA, EGY, LBY, MAR, SDN, TUN 

East Africa: BDI, COM, DJI, ERI, ETH, KEN, MDG, RWA, SOM, SSD, TZA, UGA 

West Africa: BEN, BFA, CIV, CPV, GHA, GIN, GMB, GNB, LBR, MLI, NER, NGA, SEN, SLE, TGO 

Central Africa: AGO, CAF, CMR, COD, COG, GNQ, GAB, STP, TCD 

Southern Africa: BWA, LSO, NAM, SWZ, ZAF, ZMB, ZWE 
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Appendix B: Paired T-tests on MAE between GCN-LSTM and ARIMA 

Sector t-statistic p-value 

Agriculture -5.29639 3.80E-07 

Buildings -2.04324 0.042649 

Fuel Exploitation 3.968404 0.000108 

Industrial Combustion -2.88404 0.00446 

Power Industry -3.73902 0.000256 

Processes -4.23047 3.89E-05 

Transport -6.69712 3.32E-10 

Waste -16.4907 1.72E-36 

Appendix C: Obtaining 2000 km Threshold distance and 0.01 threshold edge strength 

1. 2000 km Threshold Distance 

South East Asian countries and their capital cities: 

Country Code Country Name Capital City Latitude Longitude 

BRN Brunei Darussalam Bandar Seri Begawan 4.9333° N 114.9333° E 

KHM Cambodia Phnom Penh 11.5500° N 104.9167° E 

IDN Indonesia Jakarta 6.2088° S 106.8456° E 

LAO Laos Vientiane 17.9667° N 102.6000° E 

MMR Myanmar Naypyidaw 19.7633° N 96.0780° E 

MYS Malaysia Kuala Lumpur 3.1390° N 101.6869° E 

PHL Philippines Manila 14.5995° N 120.9842° E 

SGP Singapore Singapore City 1.3521° N 103.8198° E 

THA Thailand Bangkok 13.7500° N 100.4833° E 

TLS Timor-Leste Dili 8.5583° S 125.5603° E 

VNM Vietnam Hanoi 21.0285° N 105.8542° E 

Haversine Distance (in km) between Capital Cities: 

From \ To BRN KHM IDN LAO MMR MYS PHL SGP THA TLS VNM 

BRN - 1184 1381 1675 2056 1211 1195 1083 1445 1761 1526 

KHM 1184 - 1888 475 887 862 1461 1022 510 2884 987 

IDN 1381 1888 - 2748 2963 1168 2631 1159 2341 2776 2901 

LAO 1675 475 2748 - 623 1340 2038 1500 517 3449 992 

MMR 2056 887 2963 623 - 1718 2277 1882 832 3647 1118 

MYS 1211 862 1168 1340 1718 - 2490 300 1188 2793 1222 

PHL 1195 1461 2631 2038 2277 2490 - 2382 1782 2671 1738 

SGP 1083 1022 1159 1500 1882 300 2382 - 1162 2749 1104 

THA 1445 510 2341 517 832 1188 1782 1162 - 3183 991 

TLS 1761 2884 2776 3449 3647 2793 2671 2749 3183 - 3217 

VNM 1526 987 2901 992 1118 1222 1738 1104 991 3217 - 

Calculation of Average Distance: 

There are N×(N−1)/2 unique pairs for N countries. For 11 countries, this is 11×10/2=55 unique pairs. 

Total Sum of Distances = 99,697 km 

Average Distance = Total Sum / Number of Pairs = 99,697 km / 55 

Average Haversine Distance between Capital Cities = 1812.67 km (approximately) 
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2. 0.01 Threshold Edge Strength for waste sector 
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