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This study aims to improve the estimation of quantile regression coefficients by adjusting probability
density functions using a selected t-function that exhibits symmetric properties. The research . . .
focuses on five quantile levels Q(20)™, Q(25)™, Q(50)*, Q(75)", and Q(80)" and compares the Quartile Regression; Kemel Function;
proposed method with conventional multiple regression through simulation experiments under Kurtosis Value; Skewed Value.

varying sample sizes and distributional conditions. Performance is evaluated using the mean
absolute error (MAE) as the primary metric. The findings indicate that for small sample sizes (n=8,
n=15), both multiple and quantile regression methods perform well, especially at lower quantiles
(Q(20)" to Q(50)™). However, as sample sizes increase (n=50, n=100), quantile regression at higher
quantiles (Q(50)", Q(75)™, Q(80)™) demonstrates superior estimation accuracy. In relation to
kurtosis and skewness, the Q(50)™" and Q(80)" quantiles are sensitive to distributional changes,
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1- Introduction

Regression analysis is a basic statistical technique frequently employed in many fields to study the relationship
between an independent variable and one or more independent variables. Ordinary Least Squares (OLS) is the most
widely used technique, yielding parameter estimates under standard assumptions, including normally distributed errors,
homoscedasticity, independence of error terms, and absence of influential outliers [1]. Although OLS works best under
these assumptions, available data in the real world usually violate such assumptions. Skewness (Sk), kurtosis (Ku),
heteroscedasticity, and outliers are some common deviations that may cause parameter estimate biasing and violate
statistical conclusions [2]. These data anomalies can also be seen using simple graphical tools like box plots. Here,
outliers are identified on the basis of the interquartile range: IQR = Q3 — Q1, and the distributions deviate from the
canons of symmetry and central tendency. To span the gaps of OLS, Koenker & Bassett [3] developed quantile regression
that allows us to make estimates of the conditional quantiles of the response variable. The technique finds special use in
the estimation of non-normal error structures, capturing heterogeneous relationships along the distribution, and reducing
the influence of outliers or non-constant variance. Its universality suits it for use in a wide range of practical problems,
especially where OLS assumptions do not apply.

Nevertheless, one of the classic problems of quantile regression is parameter estimation when the true probability
density function (PDF) is unknown. The precision and reliability of estimation and hypothesis testing are enhanced when
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the underlying density function is known or is well estimated [4, 5]. Nonparametric methods—basically Kernel Density
Estimation (KDE)—have become extremely popular tools for approximating complex, unknown distributions over
recent years. KDE is not a particular distributional form and can quite suitably reflect a large variety of shapes of density
by having a proper choice of bandwidth. Some studies have considered using KDE along with quantile regression, where
the t-function is used for rescaling the derived density function to enhance quantile estimation [6—8]. This provides the
possibility of comparing quantile regression performance with ordinary multiple regression under different conditions
of errors, such as non-normality and tail heaviness, generally measured with simulation [9].

In continuation of this line of research, several recent studies have extended quantile regression methods by adding
advanced density adjustment methods. Zhang et al. [10], for example, introduced a nonparametric density-adjusted
model to improve nonlinear data analysis. Lee & Kim [2] utilized kernel functions to improve robust estimation with
heavy-tailed distribution. He et al. [11] created a new density adjustment procedure to minimize bias, while Zhou et al.
[12] were constructing a nonparametric solution specifically aimed at skewed and heteroscedastic data. Koenker & Xiao
[13] extended these solutions further to high-dimensional and time-correlated data structures. These articles demonstrate
continued work in refining quantile regression in the face of increasingly sophisticated data issues.

Despite such advances, there is a lack of thorough comparative studies wherein quantile regression performance is
compared with that of multiple regression under various distributions of errors—especially regarding varying quantile
levels and nonparametric density adjustments. Filling this gap in research, the present study examines the estimation of
quantile regression coefficients [14] from adjusted nonparametric probability density functions [15, 16] based on
simulated data. Particularly, it measures estimation efficiency at five quantile levels (Q(20)th, Q(25)th, Q(50)th, Q(75)th,
Q(80)th) [17, 18], under different assumptions of skewness, kurtosis, and non-constant variance. The outcomes are
contrasted with those of conventional multiple regression, with mean absolute error (MAE), skewness (Sk), and kurtosis
(Ku) being the criteria for evaluation. The results strive to enlighten researchers on the appropriateness of regression
techniques depending on the distributional characteristics of their data and direct the construction of more reliable
estimation procedures for non-standard statistical settings.

2- Materials and Methods
2-1-Symbols and Meanings

In presenting the results of the data analysis, the researcher employed the following symbols to interpret the data:

Y Dependent variable vector of size n X 1 X Independent variable matrix of size n X p
B Regression coefficient vector of size p X1 n Sample size
p Number of parameters Q™) Quantile at the percentile position 7" of Y given X
By Coefficients of quantile vector at position of 7" fe Probability density function
K() Kernel function h Window width or bandwidth
sk Skewness Ku Kurtosis
r Quantile regression pr(u)  Loss function of quantile regression

2-2- Multiple Regression Coefficients Estimation (MRE)
The multiple regression estimation [19] is expressed through the following matrix equations:
y=XB+e (1)
where as, vector y = (1,72, m] - Instead of the dependent variable with size n x 1, the matrixx = (%2, X i

!
1x nxp
represents the independent variable with size n Xp, which is represented by the regression coefficient number p

.....

the matrix X is given (rank(X) = p < n), the method of least squares is used to find the regression coefficient g.In
estimation, 8 under the least square error is:

£= @ (xy) @

2-3- Estimation of the Quantile Regression Coefficient (Q(r"))

Quantile regression coefficient estimation is conceptually analogous to multiple regression in the way that it takes
into account the dependent and independent variable relationship. Nevertheless, they are not too similar in terms of
assumptions and calculation methods. Multiple regression is conditional based on the conditional mean, and therefore it
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is not appropriate in scenarios where data contain extreme values or outliers at both ends of distributions, or
heteroskedasticity due to large-scale variation in the independent variable. In such a situation, the dependent variable
contains too much variation or values far from the range of expectation, and multiple regression is inappropriate for the
depiction of such variations. To this, quantile regression offers an increasingly superior alternative, especially if the
dependent variable has a skew—Ieft or right. The procedure allows researchers to estimate conditional quantiles, by
which they are able to define the response of the dependent variable at any position along the distribution, particularly
the tails. That makes quantile regression qualified to be applied on data in which values are divergent from the mean.
Particularly, it predicts the q-th quantile of the distribution of the dependent variable [20], that is,

Fy(g) = P(y<ng) =q 3)

If specified P(y < 0) = F,(0) = 0.5. It shows that the probability that a value of'y is less than or equal to 0 is 0.5.
It shows that the probability that y is greater than a given constant. P(Y > y) = 1 — F(y) is given by q. It shows the
meaning of estimating the quantile regression coefficient using the conditional probability distribution F,(y) when x
the qth quantile condition is given by ¢ [19, 21], as follows:

Qy1x(q) = infimum{y: F,(y) = q} 4)

Where the distribution of the dependent variable E(Y |X) = XB; r instead of the percentile position that you want to

estimate, you will get the estimated regression coefficient at the percentile position rt".
lex(q) = XE(T) +£(T) (5)
where, as regression coefficient vector g = [[31(”, z(r),. ..,/3;5”] . Instead the quartile value is the position that rt"
- 1Xp

!

has the size p x 1 and vector ¢ = [gl(r), sgr),. . s,(lr)] . Substituting the error values at the position rt* with magnitude
1xXp

n x 1 under the weighted sum (q) of the error terms defined by [6, 19], find the regression coefficients £(; in the
estimation E(r); under the weighted sum, that is,

™ o o . |v_m_ o, _<r),| 3 o A |4_(r)_
é r%lln (q Zyizgir)+g§”gi1+...+g;”£ip Yi £1 Py X = ép 2 +@1 q)Zyizgir)+£§T)£i1+"'+gér)£’ip Vi [jl
i=1 i=1 (6)

@) @)
B, x—u_"'_ljp X

2-4- Density Estimation and Fitting of Probability Density Function for Estimation
2-4-1-Density Estimation

Theory 1 Let X = (X, X,,...,X,) be a population size with an unknown probability density function of n and
f(X, x;). Let x = (x1,%,,...,x,)be a random sample of size n from the population and let f(X, x;) be the density
estimator, a method that uses the principle of random variables with density functions. f (X, x;) [1, 22] as follows:

(X, %) =}li£réiP(xi—h<X <x;+h) (7)

For values h specified using proportions in the range (x; — h < X < x; + h)and with a weighting function. w(x)
Therefore, the density estimator f (X, x;)of f(X, x;). will be:

fotx) =23m, 2w (£x) ®

Theory 2 Let X = (X, X,,...,X,) be the population size with an unknown probability density function of f (X, x;).
Let x = (x4,x5,...,%,) be a random sample of size n from the population, and let x be the sample size of n. The kernel

function and K (%) are the window widths corresponding to the symmetric function fjooo K (%) dx = 1. So the
density estimator f (X, x;)of f(X, x;) will be:

Fxx) =3, K (B2) ©)

Theory 3 Let X = (X;, X5, ..., X,,) be the population size for which the probability density function is unknown
f(X,x;), Let x = (x4, %,...,%,). Itisarandom sample of size n from the population and is defined x as kernel function
K(t) with features [K(t)dt=1, [tK(t)dt =0 and [t*K(t)dt =k, # 0 when k, is a constant and h is the
window width with a value h = h(0) = 0 of n — oo, the bias of £ (X, x;), f (X, x;) [23, 24] will get bias:
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(FCx x0) =5 B2F @ ko, +O(?) (10)

Fox [25] found that the optimal window width for a population with a normal distribution and a Gaussian Kernel
20

function is the window width equal to h = = .
ns
2-4-2-Probability Density Function Fitting for Estimation

Lemma states that g € (0,1) under the estimation of the regression coefficient quantile ,[;’ ™ (Equation 6) has the
following symmetric properties [26]. -

1. Scale equivariance: for every constant ¢ > 0 and g € (0,1) will get;
1.1. é(r) (CX,X) = CE(T)(}I,X)
1.2. é(r) (—CX, X) = —cé(r)(y,X)
2. Shift equivariance: for every value d € R and q € (0,1) will get;
B (v +xd.x) = B (1) + d
3. Equivariance to reparameterization of design to make the matrix A have size p X p and q € (0,1) will get;
B (X'XA) = 4714 (X'X)

Finding the regression quantifier (Q(r)™) at percentile position Q(20)™, Q(25)™ , Q(50)", Q(75)™" and Q(80)™. In the
simulation study, the model's probability density function (PDF) is calculated with the help of the quantile regression
equation formula and properties of the random variable, with examples of symmetric distributions given where the
variation of regression coefficients, percentage of outliers, and extent of deviation from the mean are taken into
consideration. A careful choice of parameter values is practiced to cover a wide variety of situations. These
simulations are conducted with the t-function to approximate the kernel-based density function under the error term
(g), which is constructed to fulfill some statistical properties appropriate to the modeling conditions:

Step 1. Selecting the regression estimate from the function T — function. It is obtained by fitting the probability
density function for the estimation by Z?zlr(yi =P = Box' —.. —Bpx! ip) the corresponding functions 1) z(g) = 0,
2)1(0) =0, 3) t(e) = t(—¢), 4) t(e;) = t(¢;) for all values of [&] > [g], represents & the error vector and 5) 7(e) =
min(qe, (1 — q)g) (Conforming to Equation 4).

Step 2. Adjusting the probability density function from the outliers in equation (9) to IQR = Q; — Q; obtain

-1
h = min (ag,%) * n(?) in Equation 8, where o, is the standard deviation of error.

Step 3. Calculating the Equation 6 to estimate the regression coefficient [27] from the distribution of the dependent
variable at E(Y|X) = Xp" the quartile values. Q(20)", Q(25)", Q(50)™, Q(75)", Q(80)" and calculate the skewness (Sk)
and kurtosis (Ku) values.
2-5-Simulation

Simulate the data 1,000 times from the population with the following distribution and show the process of the
methodology in Figurel.

1) The independent variables are set to have a uniform distribution &;~U(0,2). From the model y; = B; + Byxi1 +... +¢;,
i =1,2,3,4,5 by setting the parameter value § = (10,0.5,2,3,4,5)" when the number of independent variables p = 2,3,4,5.

2) The error terms were specified to follow a normal distribution, g;~N(0,3), and data were simulated accordingly.
Three levels of sample size were considered to reflect different analytical contexts:

e Small sample size, typically used for preliminary analysis, was defined as fewer than 20 observations. Therefore,
sample sizes of n = 8 and n = 15were selected.

e Moderate sample size, aimed at achieving more accurate estimation, was defined within the range 20 <n < 50.
Accordingly, sample sizes of n =20 and n = 30 were chosen.

e Large sample size, used to produce highly reliable analytical results, was defined as n > 50, with sample sizes
of n =50 and n = 100 included in the simulation.
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3) To find the appropriate estimates of the multiple regression coefficient and the quantile regression
coefficient. By using the absolute value of the mean error (MAE) in measuring the error when y; substituted for
the actual value, ¥, substituted for the predicted value, and n substituted for the total number of sample units. The
formula is as follows;

n .'Yi_j/\l
i=1 Vi
n

MAE = (1D

Simulation

|

Define parameters based on the distribution of
independent variables and conditional error values.

|

Calculate the estimates of the multiple regression
coefficients and the quantile regression coefficients.

|

Create sample data based on the specified sample size.

||

Calculate MAE

Figure 1. Flowchart of the process of the methodology

3- Results and Discussion

3-1-Simulation Results

Based on the simulation results, the data are divided into two main parts. The first part presents the estimated averages
from the Minimum Risk Estimation (MRE) method and the quantile regression at the median position (Q(r'")), comparing
their performance across different numbers of parameters and sample sizes. The second part compares the skewness and
kurtosis values obtained from MRE and various quantile positions at different percentiles, also under varying sample
sizes, as detailed below:

e The results show a comparison of the mean estimates from MRE and median quantile estimates, along with their
standard deviations (standard errors) and mean absolute error (MAE) values, categorized by parameter values, as
follows:

(1) Estimation of mean MRE and Q(50)" under the parameter p = 2

Table 1. Comparison of Std. Errors and MAE values under the parameter p =2 for sample size 8, 15 and 20

Sample sizes 8 15 20
Methods MRE Q(50)th MRE Q(50)™ MRE Q(50)th
Std. Errors 216.701 238.978 227.994 275,900 340.128 357.381
MAE 1.422 1.162 2.950 3.279 5.609 5.892

Averages estimate

— 5.857 0.033 7.155 0.060 8.744 0.107
B1 (-0.558) (-0.003) (-0.715) (-0.006) (-0.874) (-0.010)
~ 3.282 0.035 1.430 0.036 1.748 0.022
B- (0.0164) (0.000) (0.007) (0.000) (0.008) (0.000)
B 3.484 0.048 3.393 0.031 3.438 0.019
3 (0.069) (-0.001) (0.067) (-0.001) (0.068) (0.000)
Change from mean 0.157 0.001 0.213 0.002 0.265 0.003

Page | 480



Emerging Science Journal | Vol. 10, No. 1

Table 2. Comparison of Std. Errors and MAE values under the parameter p =2 for sample size 30, 50 and 100

Sample sizes 30 50 100
Methods MRE Q(50)™ MRE Q(50)™ MRE Q(50)
Std. Errors 339.910 343.83 349.096 351.880 317.362 321.407
MAE 7.628 7.654 11915 11.786 20.542 19.363

Averages estimate

P 10.156 0.108 10478 0.112 11.637 0.112
B (1.015) (0.010) (1.047) (-0.011) (1.163) (-0.011)
s 1.328 0.016 0.893 0.003 0.990 0.015
B (0.006) (0.001) (0.0044 (0.000) (0.004) (-0.001)
= 2.593 0.018 2.842 0.023 1.647 0.010
Bs (0.051) (0.000) (0.056) (-0.001) (-0.032) (0.000)
Change from mean 0.357 0.003 0.369 0.003 0.378 0.004

As seen from Tables 1 and 2 (p = 2), the MAE values are to be compared in such a way that MRE yields lower MAE
in small sample sizes (1.422 and 2.950). Similarly, Q(50)" also performs better in smaller samples with similar MAE
values (1.162 and 3.279). Increasing the sample size, however, Q(50)™" also performs better than MRE with lower MAE
values (11.786 and 19.363). The MRE method exhibits variability around the mean for regression coefficients—Ieft tail
for smaller samples and right tail for larger samples. Q(50)" exhibits very minimal variability around the mean for all
sample sizes and demonstrates higher stability and strength in the estimation of coefficients.

Comparison of MAE (p=2) Comparison of Std. Errors (p=2)
25 1 400 -
MRE 350

20 |
=—>=Q(50) 300 -
250 -
200 A

150 A
=== MRE

Mean absolute error

100 A
50 ——Q(50)

=
Standard deviation of error

8 15 20 30 50 100 8 15 20 30 50 100

(@) (b)
Figure 2. Comparison of MRE and Q(50)", under p =2: (a) MAE, (b) Std. Errors

Figure 2 (p = 2) is a plot of MAE values and shows both procedures—MRE and Q(50)"—giving the same results.
The MAE values decrease, though, as the sample sizes become large, demonstrating better estimation precision with
larger data sets. The MRE procedure provides smaller standard error values for small sample sizes compared to the
Q(50)" procedure, but as the sample size increases, the standard errors of both procedures converge. The result implies
that although MRE might do slightly better when confronted with small data sets, quantile regression is competitive and
even stronger with larger sample data.

2) Estimation of mean MRE and median Q(50)™ under parameter p =3.
p p

Table 3. Comparison of Std. Errors and MAE values under the parameter p=3 for sample size 8, 15 and 20

Sample sizes 8 15 20
Methods MRE Q(50)t MRE Q(50)t MRE Q(50)t
Std. Errors 197.956 254.377 182.451 185.540 296.448 301.793
MAE 0.925 0.739 1.622 1.566 3.486 3.051

Averages estimate

= 5.991 0.039 5.220 0.062 7911 0.049

B (-0.599) (-0.003) (-0.522) (-0.006) (-0.791) (-0.004)
= 4.088 0.045 3.409 0.033 4.013 0.047
B. (0.020) (0.000) (0.017) (0.000) (0.200) (0.000)
- 2.132 0.022 3.146 0.021 2.907 0.033
Bs (0.042) (0.000) (0.062) (0.000) (0.058) (-0.000)
- 2.369 0.037 3.197 0.026 1.805 0.031
Ba (-0.071) (-0.001) (0.095) (-0.001) (-0.054) (-0.001)
Change from mean 0.151 0.001 0.086 0.001 0.146 0.001
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Table 4. Comparison of Std. Errors and MAE values under the parameter p=3 for sample size 30, 50 and 100.

Sample sizes 30 50 100
Methods MRE Q(50)™ MRE Q(50)™ MRE Q(50)™
Std. Errors 321.432 337.935 327.902 332.349 307.314 309.949
MAE 5.884 4.790 9.602 9.437 16.532 15.867
Averages estimate

P 8.270 0.031 8.602 0.113 9.847 0.100
B1 (-0.827) (-0.003) (-0.860) (-0.011) (-0.984) (-0.100)

— 2.527 0.043 2.305 0.004 1.788 0.024
B2 (0.012) (0.000) (0.011) (0.000) (0.008) (0.000)

™ 2.934 0.045 2.597 0.006 2.050 0.012
Bs (0.058) (-0.001) (0.051) (-0.001 (0.041) (0.000)

= 3.337 0.046 3.875 0.047 3.604 0.032
Bs (0.100) (-0.001) (0.116) (-0.001) (0.108) (-0.001)

Change from mean 0.163 0.001 0.170 0.003 0196 0.025

Tables 3 and 4 (p = 3) provide a comparison of the variation in MAE values. The MRE procedure has smaller MAE
for small samples (0.925 and 1.622). However, Q (50)" is always the smaller MAE for all samples, i.e., smaller samples
(0.739 and 1.566), and it even dominates MRE in larger samples (9.437 and 15.867). On regression coefficient levels,
the MRE method measures large departures from the mean in the direction of the left tail for any sample size. But Q(50)"
measures the least variation away from the mean with the best stability of estimation and robustness.

Comparison of MAE (p=3) Comparison of Std.Errors (p=3)
18 1 400 -
16 { | === MRE g 350 A
S
§ 141 | (50 < 300 A
s 127 £ 250 1
= 10 4 =
S £ 200 A
< 87 <
£ B 150 -
o <
s L, E 100 4 —— MRE
2 % 5 —8—Q(50)
0 . . . : ; . 0 . . . : . s
8 15 20 30 50 100 8 15 20 30 50 100
(a) (b)

Figure 3. Comparison of MRE and Q (50) " under p = 3: (a) MAE, (b) Std. Errors

Figure 3 (p = 3) is a plot of MAE values and demonstrates that Q(50)'" consistently has lower MAE irrespective of
the sample size. In the case of standard errors, the MRE estimate has slightly lower standard errors for small sample
sizes, but for large sample sizes, the standard errors of both methods are nearly indistinguishable from each other. This
result is further evidence of the robustness of Q(50)™ under different sample conditions.

3) Estimation of mean MRE and median Q(50)™ under parameter p = 4.
p p

Table 5. Comparison of Std. Errors and MAE values under the parameter p =4 for sample size 8, 15 and 20

Sample size 8 15 20
Methods MRE Q(50)™ MRE Q(50)™ MRE Q(50)™
Std. Errors 145.442 230.003 230.173 247.290 352.566 384.290
MAE 0.478 0.389 1.566 1.296 3.284 3.157
Averages estimate
= -3.510 0.012 9.045 0.096 10.616 0.161
B (-1.351) (-0.001) (-0.904) (-0.009) (1.061) (-0.016)
= 4.729 0.044 1.719 0.022 1.030 -0.001
B- (0.023) (0.000) (0.008) (0.000) (0.005) (-1.000)
— 3.601 0.042 1.521 0.015 2.665 0.016
Bs (0.072) (0.000) (0.030) (0.000) (0.053) (0.000)
- 7.540 0.043 2.359 0.011 2.609 0.005
Bs (0.226) (-0.001) (-0.070) (0.000) (-0.078) (0.000)
= 7.438 0.050 4.126 0.042 3.625 0.015
Bs (0.297) (-0.002) (0.165) (-0.001) (-0.145) (0.000)
Change from mean 0.146 0.001 0.166 0.002 0.179 0.203
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Table 6. Comparison of Std. Errors and MAE values under the parameter p =4 for sample size 30, 50 and 100

Sample size 30 50 100
Methods MRE Q(50)™ MRE Q(50)™ MRE Q(50)™
Std. Errors 340.148 370.788 345.658 351.677 312.663 319316
MAE 4.617 4.430 7.588 7.489 12.803 12.551
Averages estimate
P 9.990 0.097 10.038 0.111 10.602 0.104
B1 (-0.999) (-0.009) (1.003) (-0.011) (1.060) (-0.010)
- 1.146 0.003 1.090 0.001 0.272 -0.001
B2 (0.005) (0.000) (0.005) (0.000) (-0.001) (-0.002)
= 2.629 0.028 1.764 0.018 1.791 0.020
Bs (0.052) (0.000) (0.035) (0.000) (0.035) (0.000)
- 3.181 0.050 4,000 0.036 3.916 0.046
Bs (0.095) (-0.001) (0.1200) (-0.001) (0.117) (-0.001)
. 4.151 0.032 4.370 0.046 4.693 0.042
Bs (0.166) (-0.001) (0.174) (-0.001) (0.187) (-0.001)
Change from mean 0.135 0.002 0.253 0.002 0.265 0.003

From Tables 5 and 6 (p = 4), the comparison of MAE values shows that the MRE method gives low MAE values in
small sample sizes (0.478, 1.566), while Q(50)" gives low MAE values in all sizes, especially small sizes (0.389, 1.296),
and it is also much lower in large sizes (7.489, 12.551). For the regression coefficients, MRE is different from the mean
on the left side when the sample size is small and on the right side when the sample size is large, while Q(50)" remains
close to the mean.

Comparison of MAE (p=4) Comparison of Std.Errors (p=4)
14 - 450 4
4 MRE = 400 A
12 A e
s £ 350 - s
g 10 4 el Q(50) 3 —7\,‘
s 3 300 A =
] =
£ 8 £ 250 A .
© =
2 6 g 200 1 /
= -]
= s 150 1
5 ]
= £ 100 = MRE
27 g 50 Q(50)
0 - T T T T T ) 0 T T T T T )
8 15 20 30 50 100 8 15 20 30 50 100
(a) (b)

Figure 4. Comparison of MRE and Q(50)" under p=4: (a) MAE, (b) Std. Errors

From Figure 4 (p = 4), it shows the comparison of MAE values. It was found that the Q(50)"™ method gives lower
MAE values in all sample sizes as well as in the case of p=3. For the Std. Errors value, the MRE method gives lower
values in both small and medium sample sizes. However, when the sample size is larger, the values of both methods are
close to each other.

4) Estimation of mean MRE and median Q(50)™ under parameter p =5
p p

Table 7. Comparison of Std. Errors and MAE values under the parameter p=5 for sample size 8, 15 and 20

Sample sizes 8 15 20
Methods MRE Q(50)™ MRE MRE Q(50)™ MRE
Std. Errors 250.352 364.377 236.654 250.352 364.377 236.654
MAE 0.819 0.448 1.332 0.819 0.448 1.332
Averages estimate
— 8.660 0.142 9.436 8.660 0.142 9.436
B (-0.866) (-0.014) (-0.943) (-0.866) (-0.014) (-0.943)
= 1.939 0.048 1.626 1.939 0.048 1.626
B: (0.009) (0.000) (0.008) (0.009) (0.000) (0.008)
= 5.254 0.055 1.828 5254 0.055 1.828
Bs (0.105) (-0.001) (-0.036) (0.105) (-0.001) (-0.036)
— 9.581 0.077 2.060 9.581 0.077 2.060
Bs (0.287) (-0.002) (-0.061) (0.287) (-0.002) (-0.061)
= 2.581 -0.018 4.031 2.581 -0.018 4.031
Bs (-0.103) (-0.160) (0.161) (-0.103) (-0.160) (0.161)
= -3.783 -0.082 4.822 -3.783 -0.082 4.822
Bs (-0.439) (-0.254) (-0.241) (-0.439) (-0.254) (-0.241)
Change from mean 0.167 0.072 0.185 0.167 0.072 0.185
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Table 8. Comparison of Std. Errors and MAE values under the parameter p=5 for sample size 30, 50 and 100

Sample sizes 30 50 100
Methods MRE Q(50) MRE Q(50)th MRE Q(50)t
Std. Errors 323.898 387.169 335.313 347.430 315.310 319.930
MAE 3.475 3.728 5.664 5.536 10.804 10.325

Averages estimate

A 9.652 0.116 11.904 0.128 11.837 0.106
B1 (-0.965) (-0.011) (1.190) (-0.012) (1.183) (-0.010)
B 1.600 -0.001 1.361 0.024 1.160 0.008
2 (0.008) (-0.002) (0.006) (0.000) (0.005) (0.000)
B 3.271 0.030 2.742 0.023 2.323 0.019
3 (0.065) (-0.001) (0.054) (0.000) (0.046) (0.000)
B 2.135 0.033 1.576 0.003 2.565 0.027
4 (-0.064) (-0.001) (0.047) (0.000) (-0.076) (-0.001)
~ 4.907 0.059 4.394 0.042 3.892 0.042
Bs (0.196) (-0.002) (0.175) (-0.001) (-0.155) (-0.001)
~ 4.543 0.021 4.174 0.041 4.464 0.052
Bs (-0.227) (-0.001) (-0.208) (-0.002) (-0.223) (-0.002)
Change from mean 0.164 0.003 0.211 0.002 0.130 0.002

From Tables 7 and 8 (p = 5), the comparison of MAE values shows that the MRE method gives lower MAE than
Q(50)" at small sample sizes (0.819, 1.332), but Q(50)" is superior at large sample sizes (5.536, 10.325). For
regression coefficients, MRE is different from the left-tailed mean at all sample sizes, while Q(50)" remains the least
changed.
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Figure 5. Comparison of MRE and Q(50)" under p=5: (a) MAE, (b) Std. Errors

From Figure 5 (p = 5), it shows the comparison of MAE values. It was found that both methods gave similar MAE
values at all sample sizes (similar to the case of p = 2). For the Std. Errors value, the MRE method gave lower values at
small sample sizes, but when the sample size increased, the values of both methods became similar.

Based on the simulation results under parameter conditions p=2,3,4,5, the following can be concluded: First, in
comparison to the mean absolute error (MAE), the MRE method tends to have a smaller MAE for small sample sizes.
Yet, the Q(50)™" quantile regression in all cases has low MAE with any sample size, and it performs very well with small
samples and has much lower MAE in large samples as well. Secondly, based on the variability of estimates of regression
coefficients, the MRE method produces estimates to be distant from the mean, the left side of the distribution in small
samples and the right side in large samples. Contrarily, the Q(50)" approach has very little fluctuation in estimating
coefficients, which is always very close to the mean in all circumstances.

o The results show a comparison of the skewness (Sk) and kurtosis (Ku) values of the quantile regression coefficient
estimates at different percentile positions—Q(20)", Q(25)", Q(50)", Q(75)", Q(80)"—and the MRE method,
categorized by parameter values. The findings are summarized as follows:

(1) Comparison of kurtosis (Ku) and skewness (Sk) values under the parameter p = 2
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Table 9. Comparison of Ku and Sk values under the parameter p=2 for methods Q(20)*, Q(25)™ and Q(50)"

Methods Q(20)™ Q(25)* Q(50)™,
Sample sizes Ku Sk Ku Sk Ku Sk

8 -0.828 -0.004 -0.828 -0.004 -0.515 0.564
15 -0.953 -0.044 -0.813 -0.023 -0.896 0.071
20 -1.225 -0.035 -1.225 -0.035 -1.234 -0.187
30 -1.030 -0.114 -1.024 -0.114 -0.916 -0.089
50 -0.367 0.080 -0.158 0.063 -0.376 -0.023
100 -0.264 0.178 -0.132 0.219 -0.071 0.276

Table 10. Comparison of Ku and Sk values under the parameter p=2 for methods Q(75)™ and Q(80)™

Methods Q(75)™ Q(80)™ MRE
Sample sizes Ku Sk Ku Sk Ku Sk

8 -2.201 -0.273 -2.201 -0.273 -1.339 -0.140
15 -1.341 0.009 -1.341 0.009 -1.393 -0.042
20 -1.529 -0.221 -1.530 -0.221 -1.528 -0.194
30 -1.025 -0.040 -0.993 -0.013 -1.001 -0.076
50 -0.501 -0.204 -0.531 -0.222 -0.591 -0.045
100 -0.256 0.207 -0.261 0.204 -0.249 0.243

From Tables 9 and 10, under the parameter value p=2p = 2p=2, the comparison of kurtosis values reveals that both
the quantile regression estimates and the MRE method generally show decreasing kurtosis as the sample size increases.
This trend is particularly noticeable at Q(20)" and Q(25)™". However, at Q(50)", Q(75)", Q(80)™", and with the MRE
method, kurtosis values remain relatively high even as the sample size grows, indicating heavier tails. Regarding
skewness, both methods display values lower than the standard level, and skewness decreases further with larger sample
sizes. This suggests that the distributions become more centered around the mean, especially at the tails, as sample size

increases.
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Figure 6. Comparison of MRE and Q(r ) under p=2: (a) Kurtosis, (b) Skewness

Figure 6, under the parameter value p = 2, presents a comparison of kurtosis values, showing that Q(20)'" and Q(25)™"
exhibit the greatest concentration around the center, indicating lower peakedness and more balanced distributions. In the
comparison of skewness, the MRE method and Q(80)" display the most pronounced skewness near the center,
suggesting a stronger shift of the distribution toward one side while still centering around the mean.

(2) Comparison of kurtosis (Ku) and skewness (Sk) values under the parameter p = 3

Table 11. Comparison of Ku and Sk values under the parameter p = 3 for methods Q(20)", Q(25)™ and Q(50)"

Methods QQ20) Q(25)t Q(50)™
Sample sizes Ku Sk Ku Sk Ku Sk

8 -1.206 0.755 -0.915 0.8470 1.231 -0.753
15 -0.871 0.607 -0.884 0.6026 -0.070 0.712
20 -0.648 -0.115 -0.426 -0.0992 -0.310 -0.044
30 -0.991 0.159 -1.333 0.1196 0.312 0.055
50 -1.121 0.126 -1.047 0.1244 0.178 0.138
100 -0.689 0.264 -0.721 0.2445 -0.565 0.278
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Table 12. Comparison of Ku and Sk values under the parameter p=3 for methods Q(75)™ and Q(80)™

Methods Q(75)t Q(80)™ MRE
Sample sizes Ku Sk Ku Sk Ku Sk
8 1.015 -1.277 0.639 -1.199 -0.337 -0.115
15 -1.101 -0.113 -1.100 -0.114 -0.802 0.543
20 -0.486 -0.198 -1.055 -0.125 -1.054 0.064
30 -1.260 0.001 -1.341 -0.021 -1.310 0.057
50 -1.003 0.038 -1.003 0.035 -1.035 0.086
100 -0.386 0.223 -0.453 0.234 -0.679 0.233

From Tables 11 and 12, under the parameter value p = 3, the comparison of kurtosis values shows that the regression
coefficient estimates at Q(25)™ exhibit a clear decrease in kurtosis as the sample size increases, indicating a move toward
amore normal distribution. In contrast, the estimates at other quantile positions and the MRE method display fluctuating
kurtosis values—alternating between high and low depending on the sample size. Regarding skewness, both the quantile
regression methods and MRE show a decreasing trend as the sample size increases, suggesting that the distributions
become more symmetric and centered around the mean with larger datasets.
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Figure 7. Comparison of MRE and Q(r ") under p=3: (6.2) Kurtosis, (6.b) Skewness

Figure 7, under the parameter value p=3, presents a comparison of kurtosis values, showing that Q(50)'" and MRE
have the greatest spread around the center, indicating more balanced distributions with reduced peakedness. In terms of
skewness, both MRE and Q(50)'" exhibit the highest concentration of values near the center, suggesting that the data
distributions are shifting closer to the mean and becoming more symmetric as sample size increases.

(3) Comparison of kurtosis (Ku) and skewness (Sk) values under the parameter p = 4

Table 13. Comparison of Ku and Sk values under the parameter p=4 for methods Q(20)'*, Q(25)"" and Q(50)™

Methods Q(20)" Q(25) Q(50)™,
Sample sizes Ku Sk Ku Sk Ku Sk

8 6.811 2.544 4.631 2.098 6.730 2.491
15 1.135 1.281 1.146 1.284 1.181 -0.283
20 -0.036 0.754 -0.661 0.417 -0.325 0.109
30 -1.057 -0.137 -1.059 0.032 -0.618 0.043
50 -0.715 0.107 -0.628 0.056 -0.316 0.020
100 -0.221 0.242 -0.246 0.254 -0.274 0.196

Table 14. Comparison of Ku and Sk values under the parameter p = 4 for methods Q(75)"" and Q(80)®

Methods Q(75)t Q(80) MRE
Sample sizes Ku Sk Ku Sk Ku Sk

8 6.725 2.489 4.166 -1.980 -0.601 0.564
15 1.181 -0.283 1.043 -1.272 -0.207 -0.353
20 -1.713 -0.276 -1.722 -0.269 -1.135 0.023
30 -0.517 -0.693 -0.562 -0.676 -1.166 -0.149
50 -0.042 -0.049 -0.098 -0.136 -0.714 0.133
100 -0.095 0.012 -0.072 -0.085 -0.364 0.132
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Tables 13 and 14, under the parameter value p = 4, present a comparison of kurtosis values. The results show that
the regression coefficient estimates across different quantile positions, as well as the MRE method, initially exhibit
very high kurtosis, which decreases as the sample size increases. This indicates a transition toward more normally
distributed data with larger sample sizes. Regarding skewness, both methods demonstrate a consistent reduction in
skewness as the sample size grows, suggesting that the data distributions become more symmetric and centered around
the mean.
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Figure 8. Comparison of MRE and Q(r ™) under p = 4: (a) Kurtosis, (b) Skewness

Figure 8, under the parameter value p = 4, presents a comparison of kurtosis values, showing that Q(75)™ and the
MRE method exhibit the greatest spread around the center, indicating lower peakedness and more balanced distributions.
In the comparison of skewness, both MRE and Q(75)™ show the most pronounced concentration around the center,
suggesting that the data distributions are shifting closer to the mean and becoming more symmetric with increasing
sample size.

(4) Comparison of kurtosis (Ku) and skewness (Sk) values under the parameter p = 5

Table 15. Comparison of Ku and Sk values under the parameter p=5 for methods Q(20)'", Q(25)"" and Q(50)™

Methods Q(20)th Q(25)t Q(50)th,
Sample sizes Ku Sk Ku Sk Ku Sk

8 7.975 2.822 7.970 2.821 7.970 2.821
15 -0.127 0.750 -0.035 0.065 1.547 0.056
20 -1.612 0.369 -1.608 0.372 0.197 -0.457
30 0.224 -0.303 0.160 -0.200 1.960 -0.754
50 0.153 0.034 0.380 -0.023 0.480 0.058
100 -0.442 0.184 -0.523 0.190 -0.296 0.228

Table 16. Comparison of Ku and Sk values under the parameter p=5 for methods Q(75)™ and Q(80)"

Methods Q(75)th Q(80)™ MRE
Sample sizes Ku Sk Ku Sk Ku Sk
8 7.945 2.815 7.945 2.815 -0.958 0.616
15 2.007 -1.267 2.007 -1.267 -0.094 -0.426
20 1.954 -1.244 1.917 -1.237 -0.039 -0.618
30 1.751 -0.860 1.316 -0.707 -0.192 -0.226
50 0.451 -0.056 1.440 -0.299 0.194 0.001
100 -0.196 0.066 -0.160 0.029 -0.466 0.182

From Tables 15 and 16 under the parameter value p = 5, the results of the comparison of the kurtosis values are
shown. It was found that the regression coefficient estimates at different positions and the MRE method were very high
and decreased with increasing body size. As for the consideration of skewness, it was found that both methods had
decreased skewness as the sample size increased.
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Comparison of kurtosis (p=5) Comparison of skewness (p=5)
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Figure 9. Comparison of MRE and Q(r)'" under p = 5: (a) Kurtosis, (b) Skewness

Figure 9, under the parameter value p = 5, presents a comparison of kurtosis values, showing that Q(25)th and the
MRE method exhibit the widest spread around the center, indicating less peaked and more evenly distributed data. In
terms of skewness, the MRE method, Q(25)th, and Q(75)th display the most noticeable distortion near the center,
suggesting that the data are increasingly skewed toward the mean in the tails, resulting in a more centered distribution.

e An example: Export data to Russia from January 2021 to December 2022.

The worldwide 2019 coronavirus (COVID-19) pandemic [28], caused by a new strain of coronavirus called Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), was initially reported on 30 December 2019 by the Hubei
Province Wuhan Health Office of China. The epidemic resulted in more than 8 million cases worldwide and lasted for
more than two years, greatly influencing global and Thai economic output. Aside from the pandemic, there has been no
progress shown in the Russia-Ukraine war since 24 February 2022. As Thailand has always had traditional trade
transactions with Russia, it is the aim of this study to analyze the monthly volumes of major Thai products during those
times. The chosen independent variables—rubber; mango, guava, and mangosteen; processed sweet corn; fresh fish;
processed fish; and pet food—can hold six of the largest export categories from January 2021 to December 2022, with
24 months of information. No multicollinearity problem was detected between the variables. Data was split into two
intervals: the first 20 months (January 2021 to August 2022) for model development and the last 4 months (September
to December 2022) for testing prediction validity. Preliminary visualizations showed extreme product variability.
Interestingly, demand for products moved in the opposite direction of these crises, i.e., pet food and natural rubber
exports rose and orders of live and processed fish fell, as shown in Figure 10.
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Figure 10. Scatter plots of export products.

Using Thailand’s export value to Russia as the dependent variable and six key export products—natural rubber,
mango/guava/mangosteen, processed sweet corn, live fish, processed fish, and pet food—as independent variables
(treated as fixed parameters), the average estimates from both the MRE method and Q(r)™" at the median position were
evaluated. The comparative results of skewness and kurtosis values based on these estimations are summarized as
follows:
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Table 17. Comparison of Ku and Sk values Under the parameter p=6 for methods

Methods Q(0)t Q(@25)th Q(50)th, Q(75)t Q(80) MRE
Ku Sk Ku Sk Ku Sk Ku Sk Ku Sk Ku Sk
Distribution
-0.318 0.749 -0.318 0.749 0.805 0.971 1.329 0.778 1.329 0.778 -0.413 0.014
Std. Errors 99388.037 99388.037 111,775.437 139184.970 139184.970 77091.199
MAE 7.398 7.398 7.091 9.914 9.914 8.466
B -0.021 -0.021 -0.021 -0.021 -0.021 1934435
B. 3.038x10° 3.038x10° -2.356x107 8.079x10° 8.079x10° 0.003
Bs -2.356x107 -2.356x107 -2.348x107 -2.348%1073 -2.348x107 -0.005
B 2.790x10-5 2.790x10- 2.920x10°3 2.920x103 2.920x10° 0.005
Bs -2.600x10- -2.600x10- -2.600x10-3 -2.600x10- -2.600x10- -0.001
Be 9.070x10"7 9.070x10"7 -2.900x10-¢ -0.001x10¢ -0.001x10° -3.753%10°3
B, 4.836x10°¢ 4.836x10°¢ 7.522x10° 8.815x10° 8.815x10° -0.006

From Table 17, the comparison of MAE values indicates that Q(50)" yields the lowest MAE at 7.091. In terms of
kurtosis, values closest to zero—indicating a more normal distribution—are observed for Q(20)™*, Q(25)", Q(50)', and
MRE. Regarding skewness, the MRE method produces a value closest to zero, suggesting a more symmetric
distribution. Additionally, the estimated parameter values were applied to evaluate their predictive accuracy on a
separate validation dataset covering four months (September to December 2022), allowing for assessment of deviation
from actual values during this period.

Table 18. Percentage difference from actual value, September - December 2022

Methods Q(20)h Q(25)™ Q(50)th Q(75)th Q(80)h MRE
September 0.310 0.310 0.201 0.055 0.055 0.193
October 0.153 0.153 0.244 0.402 0.402 1.432
November 0.583 0.583 0.373 0.223 0.223 0.429
December 0.303 0.303 0.100 0.476 0.476 0.976
MAE 0.013 0.013 0.009 0.011 0.011 0.031

Table 18 presents the differences between the estimated and actual values for both methods. The results show that
the regression coefficient estimate from Q(50)™ provides the closest match to the actual data, followed by Q(75)™ and
Q(25)™. In contrast, the MRE method yields the largest deviations from the real data. These findings suggest that when
the dataset contains irregularities or deviates from typical patterns, quantile regression—particularly at the median—
offers a more accurate and reliable predictive model compared to traditional methods.

3-2- Discussion

This research examined the estimation of regression coefficients by altering the probability density function
(PDF) using a chosen t-function with symmetric characteristics. The overall objective was to improve the precision
and reliability of quantile regression estimates and compare their performance against usual multiple regression
under both simulated and actual data scenarios [21, 22]. The findings confirm that the method is highly in line with
recent literary trends calling for kernel-based and non-parametric methods to better quantify quantile regression
estimation. For instance, Huang & Nguyen [29] proved how the use of kernel methods significantly decreases
estimation error due to more precise modeling of difficult PDFs, a finding similar to the current study. Moreover,
quantile regression provides a broader set of information about the data by estimating different points on the
conditional distribution, in contrast to the usual least squares (OLS) regression, which only estimates the
conditional mean. The multi-dimensionality can capture more refined knowledge of the relationship between the
dependent and independent variables along the distribution, especially where data are not normally shaped [30].
Our results also validate that quantile regression works particularly well in dealing with skewed data or heavy-
tailed distributions, as also found in earlier research by Chen et al. [31] and Santos et al. [32], who noted its outlier
resistance and use in high-dimensional data settings.

Additional evidence that quantitative regression's good points are in the real application of data, considering the
export figures, is shown at the median level, where it shows lower mean absolute error values than with the MRE
method. This study is corroborating findings in Tang et al. [33] and Lee & Park [34], which hold that in terms of
forecasting and decision-making, quantile regression is ahead. Furthermore, for big or heterogeneous samples, quantile
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regression will, in all circumstances, be better than OLS. As noted by Khaothong et al. [35], median-based quantile
regression yields more robust conditional distribution estimates when data are highly variable or asymmetric. Perhaps
the strongest factor for quantile regression reliability in this research was the symmetric PDF adjustment. Koenker [36]
explicated how such an adjustment, while usually performed via kernel functions, is more versatile in approximating
the actual shape of the data distribution. Our findings are congruent with Wang et al. [37], who highlight model
specification and variable selection as key elements in quantile regression for addressing big data at an optimal level.
The findings of this research indicate the integration of density corrections with robust estimation methods not only
enhances fit but also sustains stability under changing sample conditions.

In addition to kernel-based estimation, several other parameter estimation methods were also investigated. The
research proves the adequacy of methods like maximum likelihood estimation derived from the Fisher information
matrix [38] and the Minimum Risk Estimation (MRE) method for certain situations. The MRE method, in particular,
was found to be more suitable for small models or samples with few parameters, according to Nikitina et al. [39] and
Ferrari & Paterlini [40]. Although MRE yields robust estimates under limited conditions, quantile regression is more
versatile and precise in a broader range of data conditions, especially when the parameters or data size increases.
Overall, the results of this current research support and supplement existing research using empirical data to back up
the usability of quantile regression in dealing with asymmetric, skewed, and high-variance data. By applying
symmetric t-function-based PDF adjustments and performance assessment under a variety of conditions, this current
research adds value to literature that calls for the use of quantile regression as a superior supplement to OLS and as a
versatile response to existing data issues.

4- Conclusions
4-1-Simulation Results and Comparison of MRE and Quantile Regression

The simulation results indicate very large differences between the Minimum Risk Estimation (MRE) procedure
and quantile regression according to estimation performance under different conditions. The increase in the number
of parameters and sample size impacts considerably estimation accuracy first. MRE produced the lowest mean
absolute error (MAE) for small and medium sample sizes, but quantile regression was superior to MRE for small
and large sample sizes. This indicates that both methods are better adapted to other scales and the data conditions.
Secondly, as regards the heteroscedasticity of the regression coefficients, quantile regression proved to be more
stable since its estimates were closer to the mean and not very sensitive to data fluctuations. Third, in terms of
distributional properties such as skewness and kurtosis, quantile regression reduced skewness by drawing outlier
observations to the center and effectively eliminated kurtosis in bigger samples. Such results support that quantile
regression produces more symmetrically distributed and less dispersed estimates and therefore is a safe alternative
for heterogeneous data regimes.

4-2- Application to Real Data

Using real data from the two years of monthly export records of the six major Thai commodities to Russia exemplifies
the usefulness of quantile regression. The approach gave the smallest MAE and best estimates between MRE and other
estimators of quantiles. The results support the relevance of the quantile regression in analyzing asymmetrically or non-
normally distributed data, especially when confronted with disturbance such as the COVID-19 crisis. The case study
continued with the way external shocks such as the COVID-19 pandemic and the Russia—Ukraine war brought
monumental volatility to export amounts. For example, the buying of rubber and pet food went up, and that of fresh and
processed fish went down at some times. Volatility led to the effects of extremely dispersed, skewed, and heteroscedastic
data.

Quantile regression in this case was superior to MRE, as it provided more information than the conditional mean.
Estimating the relationship at different points in the distribution, involving the Q(25)th, Q(50)th, and Q(75)th, provides
a better insight into independent variables' impact on different segments of the response variable. It is particularly helpful
during times of crisis, with outliers and extreme values being the norm. On balance, evidence from simulation and real-
data analysis verifies that quantile regression is a better and more stable method for modeling data in non-normal form
under uncertain conditions.
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