
 Available online at www.ijournalse.org 

Emerging Science Journal 
(ISSN: 2610-9182) 

Vol. 10, No. 1, February, 2026 

 

 

Page | 476 

Probability Density Function Adjustment for Estimating 

Quantile Regression Coefficients 

 

Pimpan Amphanthong 1* , Warangkhana Riansut 2 

1 Deparment of Mathematics, Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Suphanburi, 13000, Thailand. 

2 Mathematics and Data Management Program, Faculty of Science and Digital Innovation, Thaksin University, Phatthalung, 93210, Thailand. 

 
 

Abstract 

This study aims to improve the estimation of quantile regression coefficients by adjusting probability 

density functions using a selected τ-function that exhibits symmetric properties. The research 

focuses on five quantile levels Q(20)th, Q(25)th, Q(50)th, Q(75)th, and Q(80)th and compares the 

proposed method with conventional multiple regression through simulation experiments under 

varying sample sizes and distributional conditions. Performance is evaluated using the mean 

absolute error (MAE) as the primary metric. The findings indicate that for small sample sizes (n=8, 

n=15), both multiple and quantile regression methods perform well, especially at lower quantiles 

(Q(20)th to Q(50)th). However, as sample sizes increase (n=50, n=100), quantile regression at higher 

quantiles (Q(50)th, Q(75)th, Q(80)th) demonstrates superior estimation accuracy. In relation to 

kurtosis and skewness, the Q(50)th and Q(80)th quantiles are sensitive to distributional changes, 

effectively capturing transitions from high to normal kurtosis and central shifts in skewed 

distributions. The novelty of this research lies in the integration of the τ-function into the quantile 

regression framework, enhancing robustness and accuracy in coefficient estimation under non-

normal conditions. This approach contributes to methodological advancements in regression 

analysis, particularly in applications involving non-standard data distributions. 
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1- Introduction 

Regression analysis is a basic statistical technique frequently employed in many fields to study the relationship 

between an independent variable and one or more independent variables. Ordinary Least Squares (OLS) is the most 

widely used technique, yielding parameter estimates under standard assumptions, including normally distributed errors, 

homoscedasticity, independence of error terms, and absence of influential outliers [1]. Although OLS works best under 

these assumptions, available data in the real world usually violate such assumptions. Skewness (Sk), kurtosis (Ku), 

heteroscedasticity, and outliers are some common deviations that may cause parameter estimate biasing and violate 

statistical conclusions [2]. These data anomalies can also be seen using simple graphical tools like box plots. Here, 

outliers are identified on the basis of the interquartile range: IQR = Q3 − Q1, and the distributions deviate from the 

canons of symmetry and central tendency. To span the gaps of OLS, Koenker & Bassett [3] developed quantile regression 

that allows us to make estimates of the conditional quantiles of the response variable. The technique finds special use in 

the estimation of non-normal error structures, capturing heterogeneous relationships along the distribution, and reducing 

the influence of outliers or non-constant variance. Its universality suits it for use in a wide range of practical problems, 

especially where OLS assumptions do not apply. 

Nevertheless, one of the classic problems of quantile regression is parameter estimation when the true probability 

density function (PDF) is unknown. The precision and reliability of estimation and hypothesis testing are enhanced when 
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the underlying density function is known or is well estimated [4, 5]. Nonparametric methods—basically Kernel Density 

Estimation (KDE)—have become extremely popular tools for approximating complex, unknown distributions over 

recent years. KDE is not a particular distributional form and can quite suitably reflect a large variety of shapes of density 

by having a proper choice of bandwidth. Some studies have considered using KDE along with quantile regression, where 

the τ-function is used for rescaling the derived density function to enhance quantile estimation [6–8]. This provides the 

possibility of comparing quantile regression performance with ordinary multiple regression under different conditions 

of errors, such as non-normality and tail heaviness, generally measured with simulation [9]. 

In continuation of this line of research, several recent studies have extended quantile regression methods by adding 

advanced density adjustment methods. Zhang et al. [10], for example, introduced a nonparametric density-adjusted 

model to improve nonlinear data analysis. Lee & Kim [2] utilized kernel functions to improve robust estimation with 

heavy-tailed distribution. He et al. [11] created a new density adjustment procedure to minimize bias, while Zhou et al. 

[12] were constructing a nonparametric solution specifically aimed at skewed and heteroscedastic data. Koenker & Xiao 

[13] extended these solutions further to high-dimensional and time-correlated data structures. These articles demonstrate 

continued work in refining quantile regression in the face of increasingly sophisticated data issues. 

Despite such advances, there is a lack of thorough comparative studies wherein quantile regression performance is 

compared with that of multiple regression under various distributions of errors—especially regarding varying quantile 

levels and nonparametric density adjustments. Filling this gap in research, the present study examines the estimation of 

quantile regression coefficients [14] from adjusted nonparametric probability density functions [15, 16] based on 

simulated data. Particularly, it measures estimation efficiency at five quantile levels (Q(20)th, Q(25)th, Q(50)th, Q(75)th, 

Q(80)th) [17, 18], under different assumptions of skewness, kurtosis, and non-constant variance. The outcomes are 

contrasted with those of conventional multiple regression, with mean absolute error (MAE), skewness (Sk), and kurtosis 

(Ku) being the criteria for evaluation. The results strive to enlighten researchers on the appropriateness of regression 

techniques depending on the distributional characteristics of their data and direct the construction of more reliable 

estimation procedures for non-standard statistical settings. 

2- Materials and Methods 

2-1- Symbols and Meanings 

In presenting the results of the data analysis, the researcher employed the following symbols to interpret the data: 

𝑌 Dependent variable vector of size 𝑛 × 1 𝑋 Independent variable matrix of size 𝑛 × 𝑝 

𝛽 Regression coefficient vector of size p ×1 𝑛 Sample size 

𝑝 Number of parameters Q(r th) Quantile at the percentile position 𝑟𝑡ℎ of Y given X 

𝛽𝑟  Coefficients of quantile vector at position of  𝑟𝑡ℎ 𝑓(∙) Probability density function 

𝐾(∙) Kernel function ℎ Window width or bandwidth 

𝑠𝑘 Skewness 𝐾𝑢 Kurtosis 

𝑟 Quantile regression 𝜌𝑟 (𝑢) Loss function of quantile regression 

2-2- Multiple Regression Coefficients Estimation (MRE) 

The multiple regression estimation [19] is expressed through the following matrix equations: 

𝑦 = 𝑋𝛽 + 𝜖 (1) 

where as, vector 𝑦 = [𝑦1,𝑦2,...,𝑦𝑛]
1×𝑛

′
. Instead of the dependent variable with size 𝑛 × 1, the matrix𝑋 = [𝑥′𝑖1,𝑥′𝑖2,...,𝑥′𝑖𝑝,]𝑛×𝑝

 

represents the independent variable with size 𝑛 ×p, which is represented by the regression coefficient number p 

(consists of constant values or called the y-intercept), and regression coefficient vector 𝛽 = [𝛽1,𝛽2,...,𝛽𝑝]
1×𝑝

′

 
of size 𝑝 × 1 

and vector 𝜀 = [𝜀1,𝜀2,...,𝜀𝑛]
1×𝑝

′
, instead of the error value that has a size 𝑛 × 1. When the number 𝜀 ~𝑁(0, 𝜎 2) of forces of 

the matrix 𝑋 is given (𝑟𝑎𝑛𝑘(𝑋) = 𝑝 < 𝑛),
 
the method of least squares is used to find the regression coefficient   𝛽̂. In 

estimation, 𝛽 under the least square error is: 

𝛽̂ =  (𝑋′𝑋)−1 (𝑋′𝑦) (2) 

2-3- Estimation of the Quantile Regression Coefficient (Q(rth)) 

Quantile regression coefficient estimation is conceptually analogous to multiple regression in the way that it takes 

into account the dependent and independent variable relationship. Nevertheless, they are not too similar in terms of 

assumptions and calculation methods. Multiple regression is conditional based on the conditional mean, and therefore it 
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is not appropriate in scenarios where data contain extreme values or outliers at both ends of distributions, or 

heteroskedasticity due to large-scale variation in the independent variable. In such a situation, the dependent variable 

contains too much variation or values far from the range of expectation, and multiple regression is inappropriate for the 

depiction of such variations. To this, quantile regression offers an increasingly superior alternative, especially if the 

dependent variable has a skew—left or right. The procedure allows researchers to estimate conditional quantiles, by 

which they are able to define the response of the dependent variable at any position along the distribution, particularly 

the tails. That makes quantile regression qualified to be applied on data in which values are divergent from the mean. 

Particularly, it predicts the q-th quantile of the distribution of the dependent variable [20], that is, 

Fy(μq) =  P(y ≤ μq) = q (3) 

If specified P(𝑦 ≤ 0) = 𝐹𝑦(0) = 0.5. It shows that the probability that a value of y is less than or equal to 0 is 0.5. 

It shows that the probability that y is greater than a given constant. P(𝑌 > 𝑦) = 1 − 𝐹(𝑦) is given by q. It shows the 

meaning of estimating the quantile regression coefficient using the conditional probability distribution 𝐹𝑦(𝑦) when 𝑥 

the qth quantile condition is given by q [19, 21], as follows: 

𝑄𝑦|𝑥(𝑞) = infimum{𝑦: 𝐹𝑦(𝑦) ≥ 𝑞} (4) 

Where the distribution of the dependent variable 𝐸(𝑌|𝑋) =  𝑋𝛽̂(𝑟); 𝑟 instead of the percentile position that you want to 

estimate, you will get the estimated regression coefficient at the percentile position 𝑟𝑡ℎ . 

𝑄𝑦|𝑥(𝑞) = 𝑋𝛽(𝑟) + 𝜖 (𝑟) (5) 

where, as regression coefficient vector 𝛽(𝑟) = [𝛽1
(𝑟)

, 𝛽2
(𝑟)

, . . . , 𝛽𝑝
(𝑟)

]
1×𝑝

′
. Instead the quartile value is the position that 𝑟𝑡ℎ  

has the size 𝑝 × 1 and vector 𝜀 (𝑟) = [𝜀1
(𝑟)

, 𝜀2
(𝑟)

, . . . , 𝜀𝑛
(𝑟)

]
1×𝑝

′
. Substituting the error values at the position 𝑟𝑡ℎ with magnitude 

𝑛 × 1 under the weighted sum (𝑞) of the error terms defined by [6, 19], find the regression coefficients 𝛽̂(𝑟); in the 

estimation 𝛽(𝑟); under the weighted sum, that is, 

𝛽̂(𝑟) = min
𝛽̂1

(𝑞 ∑ |𝑦𝑖 − 𝛽̂1

(𝑟)
− 𝛽̂2

(𝑟)
𝑥 ′

𝑖1
−. . . −𝛽̂𝑝

(𝑟)
𝑥 ′

𝑖𝑝
|

𝑦𝑖≥𝛽̂1
(𝑟)

+𝛽̂2
(𝑟)

𝑥′
𝑖1

+...+𝛽̂𝑝
(𝑟)

𝑥′
𝑖𝑝

𝑖=1 

+ (1 − 𝑞) ∑ |𝑦𝑖 − 𝛽̂1

(𝑟)
−

𝑦𝑖≥𝛽̂1
(𝑟)

+𝛽̂2
(𝑟)

𝑥′
𝑖1

+...+𝛽̂𝑝
(𝑟)

𝑥′
𝑖𝑝

𝑖=1 

𝛽̂2

(𝑟)
𝑥 ′

𝑖1
−. . . −𝛽̂𝑝

(𝑟)
𝑥 ′

𝑖𝑝
|)  

(6) 

2-4- Density Estimation and Fitting of Probability Density Function for Estimation 

2-4-1-Density Estimation 

Theory 1 Let 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑛) be a population size with an unknown probability density function of n and 

𝑓(𝑋, 𝑥𝑖). Let 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)be a random sample of size n from the population and let  𝑓̂(𝑋, 𝑥𝑖) be the density 

estimator, a method that uses the principle of random variables with density functions. 𝑓(𝑋, 𝑥𝑖) [1, 22] as follows: 

𝑓(𝑋, 𝑥𝑖) = lim
ℎ→0

1

2ℎ
𝑃(𝑥𝑖 − ℎ < 𝑋 < 𝑥𝑖 + ℎ)  (7) 

For values ℎ specified using proportions in the range (𝑥𝑖 − ℎ < 𝑋 < 𝑥𝑖 + ℎ)and with a weighting function. 𝑤(𝑥)  
Therefore, the density estimator 𝑓̂(𝑋, 𝑥𝑖)of 𝑓(𝑋, 𝑥𝑖). will be:

 
𝑓̂(𝑋, 𝑥𝑖) =

1

𝑛
∑

1

ℎ
𝑤 (

𝑋−𝑥𝑖

ℎ
)𝑛

𝑖=0  

 

(8)

 
Theory 2 Let 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑛) be the population size with an unknown probability density function of 𝑓(𝑋, 𝑥𝑖). 

Let 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be a random sample of size n from the population, and let 𝑥 be the sample size of n. The kernel 

function and  𝐾 (
𝑋−𝑥𝑖

ℎ
) are the window widths corresponding to the symmetric function ∫ 𝐾 (

𝑋−𝑥𝑖

ℎ
)

∞

−∞
𝑑𝑥 = 1. So the 

density estimator 𝑓̂(𝑋, 𝑥𝑖)of 𝑓(𝑋, 𝑥𝑖) will be:

 
𝑓̂(𝑋, 𝑥𝑖) =

1

𝑛ℎ
∑ 𝐾 (

𝑋−𝑥𝑖

ℎ
)𝑛

𝑖=0 .

 

(9)

 
Theory 3 Let 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑛) be the population size for which the probability density function is unknown 

𝑓(𝑋, 𝑥𝑖), 𝐿𝑒𝑡 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛).  It is a random sample of size n from the population and is defined 𝑥 as kernel function 

𝐾(𝑡)  with features ∫ 𝐾(𝑡) 𝑑𝑡 = 1, ∫ 𝑡𝐾(𝑡) 𝑑𝑡 = 0 and ∫ 𝑡2𝐾(𝑡) 𝑑𝑡 = 𝑘2 ≠ 0  when 𝑘2  is a constant and h is the 

window width with a value ℎ = ℎ(0) → 0 of 𝑛 → ∞, the bias of 𝑓̂(𝑋, 𝑥𝑖), 𝑓(𝑋, 𝑥𝑖) [23, 24] will get bias:
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(𝑓̂(𝑋, 𝑥𝑖)) =
1

2
ℎ2𝑓(2)(𝑥)𝑘2+, , , +𝑂(ℎ2)

 

(10)

 
Fox [25] found that the optimal window width for a population with a normal distribution and a Gaussian Kernel 

function is the window width equal to ℎ =
2𝜎

𝑛
1
5

 . 

2-4-2-Probability Density Function Fitting for Estimation 

Lemma states that 𝑞 ∈ (0,1) under the estimation of the regression coefficient quantile 𝛽̂(𝑟) (Equation 6) has the 

following symmetric properties [26]. 

1. Scale equivariance: for every constant 𝑐 > 0 and 𝑞 ∈ (0,1)
 
will get; 

1.1.  𝛽̂(𝑟) (𝑐𝑦, 𝑋) = 𝑐𝛽̂(𝑟)(𝑦, 𝑋) 

1.2.  𝛽̂(𝑟) (−𝑐𝑦, 𝑋) = −𝑐𝛽̂(𝑟)(𝑦, 𝑋) 

2. Shift equivariance: for every value 𝑑 ∈ 𝑅𝑘  and 𝑞 ∈ (0,1)
 
will get; 

              𝛽̂(𝑟) (𝑦 + 𝑋𝑑, 𝑋) = 𝛽̂(𝑟) (𝑦, 𝑋) + 𝑑 

3. Equivariance to reparameterization of design to make the matrix 𝐴 have size 𝑝 × 𝑝 and 𝑞 ∈ (0,1)
 
will get; 

      𝛽̂(𝑟) (𝑦, 𝑋𝐴) = 𝐴−1𝛽̂(𝑟) (𝑦, 𝑋) 

Finding the regression quantifier (Q(r)th ) at percentile position Q(20)th, Q(25)th , Q(50)th, Q(75)th and Q(80)th. In the 

simulation study, the model's probability density function (PDF) is calculated with the help of the quantile regression 

equation formula and properties of the random variable, with examples of symmetric distributions given where the 

variation of regression coefficients, percentage of outliers, and extent of deviation from the mean are taken into 

consideration. A careful choice of parameter values is practiced to cover a wide variety of situations. These 

simulations are conducted with the τ-function to approximate the kernel-based density function under the error term 

(ε), which is constructed to fulfill some statistical properties appropriate to the modeling conditions: 

Step 1. Selecting the regression estimate from the function 𝜏 − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. It is obtained by fitting the probability 

density function for the estimation by ∑ 𝜏 (𝑦𝑖 − 𝛽̂1 − 𝛽̂2𝑥′
𝑖1

−. . . −𝛽̂𝑝𝑥′
𝑖𝑝

)𝑛
𝑖=1  the corresponding functions 1) 𝜏(𝜀) ≥ 0,           

2) 𝜏(0) = 0, 3) 𝜏(𝜀) =  𝜏(−𝜀),  4) 𝜏(𝜀𝑖) ≥  𝜏(𝜀𝑗) for all values of ⌈𝜀𝑖⌉ ≥  ⌈𝜀𝑗⌉, represents 𝜺 the error vector and 5) 𝜏(𝜀) =

𝑚𝑖𝑛(𝑞𝜀, (1 − 𝑞)𝜀) (Conforming to Equation 4). 

Step 2. Adjusting the probability density function from the outliers in equation (9) to 𝐼𝑄𝑅 = 𝑄3 − 𝑄1 obtain                             

ℎ = 𝑚𝑖𝑛 (𝜎𝜀 ,
𝐼𝑄𝑅

1.34
) ∗ 𝑛

(
−1

5
)
 in Equation 8, where 𝜎𝜀  is the standard deviation of error. 

Step 3. Calculating the Equation 6 to estimate the regression coefficient [27] from the distribution of the dependent 

variable at 𝐸(𝑌|𝑋) = 𝑋𝛽̂(𝑟) the quartile values. Q(20)th, Q(25)th, Q(50)th, Q(75)th, Q(80)th and calculate the skewness (Sk) 

and kurtosis (Ku) values. 

2-5- Simulation  

Simulate the data 1,000 times from the population with the following distribution  and show the process of the 

methodology in Figure1. 

1) The independent variables are set to have a uniform distribution 𝜀𝑖~𝑈(0,2). From the model 𝑦𝑖 = 𝛽1 + 𝛽1𝑥𝑖1+. . . +𝜀𝑖 ,

𝑖 = 1, 2, 3, 4, 5 by setting the parameter value 𝛽 = (10,0.5,2,3,4,5)′ when the number of independent variables 𝑝 = 2, 3, 4, 5. 

2) The error terms were specified to follow a normal distribution, 𝜀𝑖~𝑁(0,3), and data were simulated accordingly. 

Three levels of sample size were considered to reflect different analytical contexts: 

• Small sample size, typically used for preliminary analysis, was defined as fewer than 20 observations. Therefore, 

sample sizes of n = 8 and n = 15were selected.  

• Moderate sample size, aimed at achieving more accurate estimation, was defined within the range 20 < n < 50. 

Accordingly, sample sizes of n = 20 and n = 30 were chosen. 

• Large sample size, used to produce highly reliable analytical results, was defined as n > 50, with sample sizes 

of n = 50 and n = 100 included in the simulation. 
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3) To find the appropriate estimates of the multiple regression coefficient and the quantile regression 

coefficient. By using the absolute value of the mean error (MAE) in measuring the error when 𝑦𝑖  substituted for 

the actual value, 𝑦𝑖̂ substituted for the predicted value, and 𝑛 substituted for the total number of sample units. The 

formula is as follows; 

𝑀𝐴𝐸 =
∑ ⌈

𝑦𝑖−𝑦𝑖̂
𝑦𝑖

⌉𝑛
𝑖=1

𝑛
  (11) 

 

Figure 1. Flowchart of the process of the methodology 

3- Results and Discussion 

3-1- Simulation Results 

Based on the simulation results, the data are divided into two main parts. The first part presents the estimated averages 

from the Minimum Risk Estimation (MRE) method and the quantile regression at the median position (Q(rth)), comparing 

their performance across different numbers of parameters and sample sizes. The second part compares the skewness and 

kurtosis values obtained from MRE and various quantile positions at different percentiles, also under varying sample 

sizes, as detailed below: 

• The results show a comparison of the mean estimates from MRE and median quantile estimates, along with their 

standard deviations (standard errors) and mean absolute error (MAE) values, categorized by parameter values, as 

follows: 

(1) Estimation of mean MRE and Q(50)th under the parameter p = 2 

Table 1. Comparison of Std. Errors and MAE values under the parameter p = 2 for sample size 8, 15 and 20 

Sample sizes 8 15 20 

Methods MRE Q(50)th MRE Q(50)th MRE Q(50)th 

Std. Errors 216.701 238.978 227.994 275,900 340.128 357.381 

MAE 1.422 1.162 2.950 3.279 5.609 5.892 

Averages estimate 

𝜷̂𝟏 
5.857 

(-0.558) 

0.033 

(-0.003) 

7.155 

(-0.715) 

0.060 

(-0.006) 

8.744 

(-0.874) 

0.107 

(-0.010) 

𝜷̂𝟐 
3.282 

(0.0164) 

0.035 

(0.000) 

1.430 

(0.007) 

0.036 

(0.000) 

1.748 

(0.008) 

0.022 

(0.000) 

𝜷̂𝟑 
3.484 

(0.069) 

0.048 

(-0.001) 

3.393 

(0.067) 

0.031 

(-0.001) 

3.438 

(0.068) 

0.019 

(0.000) 

Change from mean 0.157 0.001 0.213 0.002 0.265 0.003 

Define parameters based on the distribution of 

independent variables and conditional error values. 

Calculate the estimates of the multiple regression 

coefficients and the quantile regression coefficients. 

Calculate MAE 

Create sample data based on the specified sample size. 

Simulation 
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Table 2. Comparison of Std. Errors and MAE values under the parameter p = 2 for sample size 30, 50 and 100 

Sample sizes 30 50 100 

Methods MRE Q(50)th MRE Q(50)th MRE Q(50)th 

Std. Errors 339.910 343.83 349.096 351.880 317.362 321.407 

MAE 7.628 7.654 11.915 11.786 20.542 19.363 

Averages estimate 

𝜷̂𝟏 
10.156 

(1.015) 

0.108 

(0.010) 

10.478 

(1.047) 

0.112 

(-0.011) 

11.637 

(1.163) 

0.112 

(-0.011) 

𝜷̂𝟐 
1.328 

(0.006) 

0.016 

(0.001) 

0.893 

(0.0044 

0.003 

(0.000) 

0.990 

(0.004) 

0.015 

(-0.001) 

𝜷̂𝟑 
2.593 

(0.051) 

0.018 

(0.000) 

2.842 

(0.056) 

0.023 

(-0.001) 

1.647 

(-0.032) 

0.010 

(0.000) 

Change from mean 0.357 0.003 0.369 0.003 0.378 0.004 

As seen from Tables 1 and 2 (p = 2), the MAE values are to be compared in such a way that MRE yields lower MAE 

in small sample sizes (1.422 and 2.950). Similarly, Q(50)th also performs better in smaller samples with similar MAE 

values (1.162 and 3.279). Increasing the sample size, however, Q(50)th also performs better than MRE with lower MAE 

values (11.786 and 19.363). The MRE method exhibits variability around the mean for regression coefficients—left tail 

for smaller samples and right tail for larger samples. Q(50)th exhibits very minimal variability around the mean for all 

sample sizes and demonstrates higher stability and strength in the estimation of coefficients. 

  
       (a)               (b) 

Figure 2. Comparison of MRE and Q(50)th, under p = 2: (a) MAE, (b) Std. Errors 

Figure 2 (p = 2) is a plot of MAE values and shows both procedures—MRE and Q(50)th—giving the same results. 

The MAE values decrease, though, as the sample sizes become large, demonstrating better estimation precision with 

larger data sets. The MRE procedure provides smaller standard error values for small sample sizes compared to the 

Q(50)th procedure, but as the sample size increases, the standard errors of both procedures converge. The result implies 

that although MRE might do slightly better when confronted with small data sets, quantile regression is competitive and 

even stronger with larger sample data. 

(2) Estimation of mean MRE and median Q(50)th under parameter p =3. 

Table 3. Comparison of Std. Errors and MAE values under the parameter p=3 for sample size 8, 15 and 20 

Sample sizes 8 15 20 

Methods MRE Q(50)th MRE Q(50)th MRE Q(50)th 

Std. Errors 197.956 254.377 182.451 185.540 296.448 301.793 

MAE 0.925 0.739 1.622 1.566 3.486 3.051 

Averages estimate 

𝜷̂𝟏 
5.991 

(-0.599) 

0.039 

(-0.003) 

5.220 

(-0.522) 

0.062 

(-0.006) 

7.911 

(-0.791) 

0.049 

(-0.004) 

𝜷̂𝟐 
4.088 

(0.020) 

0.045 

(0.000) 

3.409 

(0.017) 

0.033 

(0.000) 

4.013 

(0.200) 

0.047 

(0.000) 

𝜷̂𝟑 
2.132 

(0.042) 

0.022 

(0.000) 

3.146 

(0.062) 

0.021 

(0.000) 

2.907 

(0.058) 

0.033 

(-0.000) 

𝜷̂𝟒 
2.369 

(-0.071) 

0.037 

(-0.001) 

3.197 

(0.095) 

0.026 

(-0.001) 

1.805 

(-0.054) 

0.031 

(-0.001) 

Change from mean 0.151 0.001 0.086 0.001 0.146 0.001 
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Table 4. Comparison of Std. Errors and MAE values under the parameter p=3 for sample size 30, 50 and 100. 

Sample sizes 30 50 100 

Methods MRE Q(50)th MRE Q(50)th MRE Q(50)th 

Std. Errors 321.432 337.935 327.902 332.349 307.314 309.949 

MAE 5.884 4.790 9.602 9.437 16.532 15.867 

Averages estimate 

𝜷̂𝟏 
8.270 

(-0.827) 

0.031 

(-0.003) 

8.602 

(-0.860) 

0.113 

(-0.011) 

9.847 

(-0.984) 

0.100 

(-0.100) 

𝜷̂𝟐 
2.527 

(0.012) 

0.043 

(0.000) 

2.305 

(0.011) 

0.004 

(0.000) 

1.788 

(0.008) 

0.024 

(0.000) 

𝜷̂𝟑 
2.934 

(0.058) 

0.045 

(-0.001) 

2.597 

(0.051) 

0.006 

(-0.001 

2.050 

(0.041) 

0.012 

(0.000) 

𝜷̂𝟒 
3.337 

(0.100) 

0.046 

(-0.001) 

3.875 

(0.116) 

0.047 

(-0.001) 

3.604 

(0.108) 

0.032 

(-0.001) 

Change from mean 0.163 0.001 0.170 0.003 0196 0.025 

Tables 3 and 4 (p = 3) provide a comparison of the variation in MAE values. The MRE procedure has smaller MAE 

for small samples (0.925 and 1.622). However, Q (50)th is always the smaller MAE for all samples, i.e., smaller samples 

(0.739 and 1.566), and it even dominates MRE in larger samples (9.437 and 15.867). On regression coefficient levels, 

the MRE method measures large departures from the mean in the direction of the left tail for any sample size. But Q(50)th 

measures the least variation away from the mean with the best stability of estimation and robustness. 

  
       (a)                (b) 

Figure 3. Comparison of MRE and Q (50) th under p = 3: (a) MAE, (b) Std. Errors 

Figure 3 (p = 3) is a plot of MAE values and demonstrates that Q(50)th consistently has lower MAE irrespective of 

the sample size. In the case of standard errors, the MRE estimate has slightly lower standard errors for small sample 

sizes, but for large sample sizes, the standard errors of both methods are nearly indistinguishable from each other. This 

result is further evidence of the robustness of Q(50)th under different sample conditions. 

(3) Estimation of mean MRE and median Q(50)th under parameter p = 4. 

Table 5. Comparison of Std. Errors and MAE values under the parameter p = 4 for sample size 8, 15 and 20 

Sample size 8 15 20 

Methods MRE Q(50)th MRE Q(50)th MRE Q(50)th 

Std. Errors 145.442 230.003 230.173 247.290 352.566 384.290 

MAE 0.478 0.389 1.566 1.296 3.284 3.157 

Averages estimate 

𝜷̂𝟏 
-3.510 

(-1.351) 

0.012 

(-0.001) 

9.045 

(-0.904) 

0.096 

(-0.009) 

10.616 

(1.061) 

0.161 

(-0.016) 

𝜷̂𝟐 
4.729 

(0.023) 

0.044 

(0.000) 

1.719 

(0.008) 

0.022 

(0.000) 

1.030 

(0.005) 

-0.001 

(-1.000) 

𝜷̂𝟑 
3.601 

(0.072) 

0.042 

(0.000) 

1.521 

(0.030) 

0.015 

(0.000) 

2.665 

(0.053) 

0.016 

(0.000) 

𝜷̂𝟒 
7.540 

(0.226) 

0.043 

(-0.001) 

2.359 

(-0.070) 

0.011 

(0.000) 

2.609 

(-0.078) 

0.005 

(0.000) 

𝜷̂𝟓 
7.438 

(0.297) 

0.050 

(-0.002) 

4.126 

(0.165) 

0.042 

(-0.001) 

3.625 

(-0.145) 

0.015 

(0.000) 

Change from mean 0.146 0.001 0.166 0.002 0.179 0.203 
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Table 6. Comparison of Std. Errors and MAE values under the parameter p = 4 for sample size 30, 50 and 100 

Sample size 30 50 100 

Methods MRE Q(50)th MRE Q(50)th MRE Q(50)th 

Std. Errors 340.148 370.788 345.658 351.677 312.663 319.316 

MAE 4.617 4.430 7.588 7.489 12.803 12.551 

Averages estimate 

𝜷̂𝟏 
9.990 

(-0.999) 

0.097 

(-0.009) 

10.038 

(1.003) 

0.111 

(-0.011) 

10.602 

(1.060) 

0.104 

(-0.010) 

𝜷̂𝟐 
1.146 

(0.005) 

0.003 

(0.000) 

1.090 

(0.005) 

0.001 

(0.000) 

0.272 

(-0.001) 

-0.001 

(-0.002) 

𝜷̂𝟑 
2.629 

(0.052) 

0.028 

(0.000) 

1.764 

(0.035) 

0.018 

(0.000) 

1.791 

(0.035) 

0.020 

(0.000) 

𝜷̂𝟒 
3.181 

(0.095) 

0.050 

(-0.001) 

4,000 

(0.1200) 

0.036 

(-0.001) 

3.916 

(0.117) 

0.046 

(-0.001) 

𝜷̂𝟓 
4.151 

(0.166) 

0.032 

(-0.001) 

4.370 

(0.174) 

0.046 

(-0.001) 

4.693 

(0.187) 

0.042 

(-0.001) 

Change from mean 0.135 0.002 0.253 0.002 0.265 0.003 

From Tables 5 and 6 (p = 4), the comparison of MAE values shows that the MRE method gives low MAE values in 
small sample sizes (0.478, 1.566), while Q(50)th gives low MAE values in all sizes, especially small sizes (0.389, 1.296), 

and it is also much lower in large sizes (7.489, 12.551). For the regression coefficients, MRE is different from the mean 
on the left side when the sample size is small and on the right side when the sample size is large, while Q(50)th remains 

close to the mean. 

  
    (a)                (b) 

Figure 4. Comparison of MRE and Q(50)th under p=4: (a) MAE, (b) Std. Errors 

From Figure 4 (p = 4), it shows the comparison of MAE values. It was found that the Q(50)th method gives lower 

MAE values in all sample sizes as well as in the case of p=3. For the Std. Errors value, the MRE method gives lower 
values in both small and medium sample sizes. However, when the sample size is larger, the values of both methods are 
close to each other. 

(4) Estimation of mean MRE and median Q(50)th under parameter p =5  

Table 7. Comparison of Std. Errors and MAE values under the parameter p=5 for sample size 8, 15 and 20 

Sample sizes 8 15 20 

Methods MRE Q(50)th MRE MRE Q(50)th MRE 

Std. Errors 250.352 364.377 236.654 250.352 364.377 236.654 

MAE 0.819 0.448 1.332 0.819 0.448 1.332 

Averages estimate 

𝜷̂𝟏 
8.660 

(-0.866) 

0.142 

(-0.014) 

9.436 

(-0.943) 

8.660 

(-0.866) 

0.142 

(-0.014) 

9.436 

(-0.943) 

𝜷̂𝟐 
1.939 

(0.009) 

0.048 

(0.000) 

1.626 

(0.008) 

1.939 

(0.009) 

0.048 

(0.000) 

1.626 

(0.008) 

𝜷̂𝟑 
5.254 

(0.105) 

0.055 

(-0.001) 

1.828 

(-0.036) 

5.254 

(0.105) 

0.055 

(-0.001) 

1.828 

(-0.036) 

𝜷̂𝟒 
9.581 

(0.287) 

0.077 

(-0.002) 

2.060 

(-0.061) 

9.581 

(0.287) 

0.077 

(-0.002) 

2.060 

(-0.061) 

𝜷̂𝟓 
2.581 

(-0.103) 

-0.018 

(-0.160) 

4.031 

(0.161) 

2.581 

(-0.103) 

-0.018 

(-0.160) 

4.031 

(0.161) 

𝜷̂𝟔 
-3.783 

(-0.439) 

-0.082 

(-0.254) 

4.822 

(-0.241) 

-3.783 

(-0.439) 

-0.082 

(-0.254) 

4.822 

(-0.241) 

Change from mean 0.167 0.072 0.185 0.167 0.072 0.185 
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Table 8. Comparison of Std. Errors and MAE values under the parameter p=5 for sample size 30, 50 and 100 

Sample sizes 30 50 100 

Methods MRE Q(50)th MRE Q(50)th MRE Q(50)th 

Std. Errors 323.898 387.169 335.313 347.430 315.310 319.930 

MAE 3.475 3.728 5.664 5.536 10.804 10.325 

Averages estimate 

𝜷̂𝟏 
9.652 

(-0.965) 

0.116 

(-0.011) 

11.904 

(1.190) 

0.128 

(-0.012) 

11.837 

(1.183) 

0.106 

(-0.010) 

𝜷̂𝟐 
1.600 

(0.008) 

-0.001 

(-0.002) 

1.361 

(0.006) 

0.024 

(0.000) 

1.160 

(0.005) 

0.008 

(0.000) 

𝜷̂𝟑 
3.271 

(0.065) 

0.030 

(-0.001) 

2.742 

(0.054) 

0.023 

(0.000) 

2.323 

(0.046) 

0.019 

(0.000) 

𝜷̂𝟒 
2.135 

(-0.064) 

0.033 

(-0.001) 

1.576 

(0.047) 

0.003 

(0.000) 

2.565 

(-0.076) 

0.027 

(-0.001) 

𝜷̂𝟓 
4.907 

(0.196) 

0.059 

(-0.002) 

4.394 

(0.175) 

0.042 

(-0.001) 

3.892 

(-0.155) 

0.042 

(-0.001) 

𝜷̂𝟔 
4.543 

(-0.227) 

0.021 

(-0.001) 

4.174 

(-0.208) 

0.041 

(-0.002) 

4.464 

(-0.223) 

0.052 

(-0.002) 

Change from mean 0.164 0.003 0.211 0.002 0.130 0.002 

From Tables 7 and 8 (p = 5), the comparison of MAE values shows that the MRE method gives lower MAE than 

Q(50)th at small sample sizes (0.819, 1.332), but Q(50)th is superior at large sample sizes (5.536, 10.325). For 

regression coefficients, MRE is different from the left-tailed mean at all sample sizes, while Q(50)th remains the least 

changed. 

  
               (a)                (b) 

Figure 5. Comparison of MRE and Q(50)th under p=5: (a) MAE, (b) Std. Errors 

From Figure 5 (p = 5), it shows the comparison of MAE values. It was found that both methods gave similar MAE 

values at all sample sizes (similar to the case of p = 2). For the Std. Errors value, the MRE method gave lower values at 

small sample sizes, but when the sample size increased, the values of both methods became similar. 

Based on the simulation results under parameter conditions p=2,3,4,5, the following can be concluded: First, in 

comparison to the mean absolute error (MAE), the MRE method tends to have a smaller MAE for small sample sizes. 

Yet, the Q(50)th quantile regression in all cases has low MAE with any sample size, and it performs very well with small 

samples and has much lower MAE in large samples as well. Secondly, based on the variability of estimates of regression 

coefficients, the MRE method produces estimates to be distant from the mean, the left side of the distribution in small 

samples and the right side in large samples. Contrarily, the Q(50)th approach has very little fluctuation in estimating 

coefficients, which is always very close to the mean in all circumstances. 

• The results show a comparison of the skewness (Sk) and kurtosis (Ku) values of the quantile regression coefficient 

estimates at different percentile positions—Q(20)th, Q(25)th, Q(50)th, Q(75)th, Q(80)th—and the MRE method, 

categorized by parameter values. The findings are summarized as follows: 

(1) Comparison of kurtosis (Ku) and skewness (Sk) values under the parameter p = 2 
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Table 9. Comparison of Ku and Sk values under the parameter p=2 for methods Q(20)th, Q(25)th and Q(50)th 

Methods Q(20)th Q(25)th Q(50)th, 

Sample sizes Ku Sk Ku Sk Ku Sk 

8 -0.828 -0.004 -0.828 -0.004 -0.515 0.564 

15 -0.953 -0.044 -0.813 -0.023 -0.896 0.071 

20 -1.225 -0.035 -1.225 -0.035 -1.234 -0.187 

30 -1.030 -0.114 -1.024 -0.114 -0.916 -0.089 

50 -0.367 0.080 -0.158 0.063 -0.376 -0.023 

100 -0.264 0.178 -0.132 0.219 -0.071 0.276 

Table 10. Comparison of Ku and Sk values under the parameter p=2 for methods Q(75)th and Q(80)th 

Methods Q(75)th Q(80)th MRE 

Sample sizes Ku Sk Ku Sk Ku Sk 

8 -2.201 -0.273 -2.201 -0.273 -1.339 -0.140 

15 -1.341 0.009 -1.341 0.009 -1.393 -0.042 

20 -1.529 -0.221 -1.530 -0.221 -1.528 -0.194 

30 -1.025 -0.040 -0.993 -0.013 -1.001 -0.076 

50 -0.501 -0.204 -0.531 -0.222 -0.591 -0.045 

100 -0.256 0.207 -0.261 0.204 -0.249 0.243 

From Tables 9 and 10, under the parameter value p=2p = 2p=2, the comparison of kurtosis values reveals that both 

the quantile regression estimates and the MRE method generally show decreasing kurtosis as the sample size increases. 

This trend is particularly noticeable at Q(20)th and Q(25)th. However, at Q(50)th, Q(75)th, Q(80)th, and with the MRE 

method, kurtosis values remain relatively high even as the sample size grows, indicating heavier tails. Regarding 

skewness, both methods display values lower than the standard level, and skewness decreases further with larger sample 

sizes. This suggests that the distributions become more centered around the mean, especially at the tails, as sample size 

increases. 

  
       (a)                (b) 

Figure 6. Comparison of MRE and Q(r th ) under p=2: (a) Kurtosis, (b) Skewness 

Figure 6, under the parameter value p = 2, presents a comparison of kurtosis values, showing that Q(20)th and Q(25)th 

exhibit the greatest concentration around the center, indicating lower peakedness and more balanced distributions. In the 

comparison of skewness, the MRE method and Q(80)th display the most pronounced skewness near the center, 

suggesting a stronger shift of the distribution toward one side while still centering around the mean. 

(2) Comparison of kurtosis (Ku) and skewness (Sk) values under the parameter p = 3 

Table 11. Comparison of Ku and Sk values under the parameter p = 3 for methods Q(20)th, Q(25)th and Q(50)th 

Methods Q(20)th Q(25)th Q(50)th 

Sample sizes Ku Sk Ku Sk Ku Sk 

8 -1.206 0.755 -0.915 0.8470 1.231 -0.753 

15 -0.871 0.607 -0.884 0.6026 -0.070 0.712 

20 -0.648 -0.115 -0.426 -0.0992 -0.310 -0.044 

30 -0.991 0.159 -1.333 0.1196 0.312 0.055 

50 -1.121 0.126 -1.047 0.1244 0.178 0.138 

100 -0.689 0.264 -0.721 0.2445 -0.565 0.278 
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Table 12. Comparison of Ku and Sk values under the parameter p=3 for methods Q(75)th and Q(80)th 

Methods Q(75)th Q(80)th MRE 

Sample sizes Ku Sk Ku Sk Ku Sk 

8 1.015 -1.277 0.639 -1.199 -0.337 -0.115 

15 -1.101 -0.113 -1.100 -0.114 -0.802 0.543 

20 -0.486 -0.198 -1.055 -0.125 -1.054 0.064 

30 -1.260 0.001 -1.341 -0.021 -1.310 0.057 

50 -1.003 0.038 -1.003 0.035 -1.035 0.086 

100 -0.386 0.223 -0.453 0.234 -0.679 0.233 

From Tables 11 and 12, under the parameter value p = 3, the comparison of kurtosis values shows that the regression 

coefficient estimates at Q(25)th exhibit a clear decrease in kurtosis as the sample size increases, indicating a move toward 

a more normal distribution. In contrast, the estimates at other quantile positions and the MRE method display fluctuating 

kurtosis values—alternating between high and low depending on the sample size. Regarding skewness, both the quantile 

regression methods and MRE show a decreasing trend as the sample size increases, suggesting that the distributions 

become more symmetric and centered around the mean with larger datasets. 

  
               (a)                (b) 

Figure 7. Comparison of MRE and Q(r th) under p=3: (6.a) Kurtosis, (6.b) Skewness 

Figure 7, under the parameter value p=3, presents a comparison of kurtosis values, showing that Q(50)th and MRE 

have the greatest spread around the center, indicating more balanced distributions with reduced peakedness. In terms of 

skewness, both MRE and Q(50)th exhibit the highest concentration of values near the center, suggesting that the data 

distributions are shifting closer to the mean and becoming more symmetric as sample size increases. 

(3) Comparison of kurtosis (Ku) and skewness (Sk) values under the parameter p = 4 

Table 13. Comparison of Ku and Sk values under the parameter p=4 for methods Q(20)th, Q(25)th and Q(50)th 

Methods Q(20)th Q(25)th Q(50)th, 

Sample sizes Ku Sk Ku Sk Ku Sk 

8 6.811 2.544 4.631 2.098 6.730 2.491 

15 1.135 1.281 1.146 1.284 1.181 -0.283 

20 -0.036 0.754 -0.661 0.417 -0.325 0.109 

30 -1.057 -0.137 -1.059 0.032 -0.618 0.043 

50 -0.715 0.107 -0.628 0.056 -0.316 0.020 

100 -0.221 0.242 -0.246 0.254 -0.274 0.196 

Table 14. Comparison of Ku and Sk values under the parameter p = 4 for methods  Q(75)th and Q(80)th 

Methods Q(75)th Q(80)th MRE 

Sample sizes Ku Sk Ku Sk Ku Sk 

8 6.725 2.489 4.166 -1.980 -0.601 0.564 

15 1.181 -0.283 1.043 -1.272 -0.207 -0.353 

20 -1.713 -0.276 -1.722 -0.269 -1.135 0.023 

30 -0.517 -0.693 -0.562 -0.676 -1.166 -0.149 

50 -0.042 -0.049 -0.098 -0.136 -0.714 0.133 

100 -0.095 0.012 -0.072 -0.085 -0.364 0.132 
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Tables 13 and 14, under the parameter value p = 4, present a comparison of kurtosis values. The results show that 

the regression coefficient estimates across different quantile positions, as well as the MRE method, initially exhibit 

very high kurtosis, which decreases as the sample size increases. This indicates a transition toward more normally 

distributed data with larger sample sizes. Regarding skewness, both methods demonstrate a consistent reduction in 

skewness as the sample size grows, suggesting that the data distributions become more symmetric and centered around 

the mean. 

  
         (a)                 (b) 

Figure 8. Comparison of MRE and Q(r th ) under p = 4: (a) Kurtosis, (b) Skewness 

Figure 8, under the parameter value p = 4, presents a comparison of kurtosis values, showing that Q(75)th and the 

MRE method exhibit the greatest spread around the center, indicating lower peakedness and more balanced distributions. 

In the comparison of skewness, both MRE and Q(75)th show the most pronounced concentration around the center, 

suggesting that the data distributions are shifting closer to the mean and becoming more symmetric with increasing 

sample size. 

(4) Comparison of kurtosis (Ku) and skewness (Sk) values under the parameter p = 5 

Table 15. Comparison of Ku and Sk values under the parameter p=5 for methods Q(20)th, Q(25)th and Q(50)th 

Methods Q(20)th Q(25)th Q(50)th, 

Sample sizes Ku Sk Ku Sk Ku Sk 

8 7.975 2.822 7.970 2.821 7.970 2.821 

15 -0.127 0.750 -0.035 0.065 1.547 0.056 

20 -1.612 0.369 -1.608 0.372 0.197 -0.457 

30 0.224 -0.303 0.160 -0.200 1.960 -0.754 

50 0.153 0.034 0.380 -0.023 0.480 0.058 

100 -0.442 0.184 -0.523 0.190 -0.296 0.228 

Table 16. Comparison of Ku and Sk values under the parameter p=5 for methods Q(75)th and Q(80)th 

Methods Q(75)th Q(80)th MRE 

Sample sizes Ku Sk Ku Sk Ku Sk 

8 7.945 2.815 7.945 2.815 -0.958 0.616 

15 2.007 -1.267 2.007 -1.267 -0.094 -0.426 

20 1.954 -1.244 1.917 -1.237 -0.039 -0.618 

30 1.751 -0.860 1.316 -0.707 -0.192 -0.226 

50 0.451 -0.056 1.440 -0.299 0.194 0.001 

100 -0.196 0.066 -0.160 0.029 -0.466 0.182 

From Tables 15 and 16 under the parameter value p = 5, the results of the comparison of the kurtosis values are 

shown. It was found that the regression coefficient estimates at different positions and the MRE method were very high 

and decreased with increasing body size. As for the consideration of skewness, it was found that both methods had 

decreased skewness as the sample size increased. 
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               (a)                (b) 

Figure 9. Comparison of MRE and Q(r)th under p = 5: (a) Kurtosis, (b) Skewness 

Figure 9, under the parameter value p = 5, presents a comparison of kurtosis values, showing that Q(25)th and the 

MRE method exhibit the widest spread around the center, indicating less peaked and more evenly distributed data. In 

terms of skewness, the MRE method, Q(25)th, and Q(75)th display the most noticeable distortion near the center, 

suggesting that the data are increasingly skewed toward the mean in the tails, resulting in a more centered distribution. 

• An example: Export data to Russia from January 2021 to December 2022. 

The worldwide 2019 coronavirus (COVID-19) pandemic [28], caused by a new strain of coronavirus called Severe 

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), was initially reported on 30 December 2019 by the Hubei 

Province Wuhan Health Office of China. The epidemic resulted in more than 8 million cases worldwide and lasted for 

more than two years, greatly influencing global and Thai economic output. Aside from the pandemic, there has been no 

progress shown in the Russia-Ukraine war since 24 February 2022. As Thailand has always had traditional trade 

transactions with Russia, it is the aim of this study to analyze the monthly volumes of major Thai products during those 

times. The chosen independent variables—rubber; mango, guava, and mangosteen; processed sweet corn; fresh fish; 

processed fish; and pet food—can hold six of the largest export categories from January 2021 to December 2022, with 

24 months of information. No multicollinearity problem was detected between the variables. Data was split into two 

intervals: the first 20 months (January 2021 to August 2022) for model development and the last 4 months (September 

to December 2022) for testing prediction validity. Preliminary visualizations showed extreme product variability. 

Interestingly, demand for products moved in the opposite direction of these crises, i.e., pet food and natural rubber 

exports rose and orders of live and processed fish fell, as shown in Figure 10. 

 

Figure 10. Scatter plots of export products. 

Using Thailand’s export value to Russia as the dependent variable and six key export products—natural rubber, 

mango/guava/mangosteen, processed sweet corn, live fish, processed fish, and pet food—as independent variables 

(treated as fixed parameters), the average estimates from both the MRE method and Q(r)th at the median position were 

evaluated. The comparative results of skewness and kurtosis values based on these estimations are summarized as 

follows: 

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8K
u

rt
o

si
s

Comparison of kurtosis (p=5) 

Q(20)

Q(25)

Q(50)

Q(75)

Q(80)

MRE

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8S
k

e
w

n
e
ss

Comparison of skewness (p=5) 

Q(20)

Q(25)

Q(50)

Q(75)

Q(80)

MRE

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

0 5 10 15 20 25 30

E
x

p
o

rt
 v

a
lu

e

Export products

Scatter plots of export products

natural rubber

Mango/Guava/Mangosteen

processed sweet corn

live fish

processed fish

pet food



Emerging Science Journal | Vol. 10, No. 1 

Page | 489 

Table 17. Comparison of Ku and Sk values Under the parameter p=6 for methods 

Methods Q(20)th Q(25)th Q(50)th, Q(75)th Q(80)th MRE 

Distribution 
Ku Sk Ku Sk Ku Sk Ku Sk Ku Sk Ku Sk 

-0.318 0.749 -0.318 0.749 0.805 0.971 1.329 0.778 1.329 0.778 -0.413 0.014 

Std. Errors 99388.037 99388.037 111,775.437 139184.970 139184.970 77091.199 

MAE 7.398 7.398 7.091 9.914 9.914 8.466 

𝜷̂𝟏 -0.021 -0.021 -0.021 -0.021 -0.021 1934.435 

𝜷̂𝟐 3.038×10-6 3.038×10-6 -2.356×10-5 8.079×10-6 8.079×10-6 0.003 

𝜷̂𝟑 -2.356×10-5 -2.356×10-5 -2.348×10-5 -2.348×10-5 -2.348×10-5 -0.005 

𝜷̂𝟒 2.790×10-5 2.790×10-5 2.920×10-5 2.920×10-5 2.920×10-5 0.005 

𝜷̂𝟓 -2.600×10-5 -2.600×10-5 -2.600×10-5 -2.600×10-5 -2.600×10-5 -0.001 

𝜷̂𝟔
 

9.070×10-7 9.070×10-7 -2.900×10-6 -0.001×10-6 -0.001×10-6 -3.753×10-5 

𝜷̂𝟕 4.836×10-6 4.836×10-6 7.522×10-6 8.815×10-6 8.815×10-6 -0.006 

From Table 17, the comparison of MAE values indicates that Q(50)th yields the lowest MAE at 7.091. In terms of 

kurtosis, values closest to zero—indicating a more normal distribution—are observed for Q(20)th, Q(25)th, Q(50)th, and 

MRE. Regarding skewness, the MRE method produces a value closest to zero, suggesting a more symmetric 

distribution. Additionally, the estimated parameter values were applied to evaluate their predictive accuracy on a 

separate validation dataset covering four months (September to December 2022), allowing for assessment of deviation 

from actual values during this period. 

Table 18. Percentage difference from actual value, September - December 2022 

Methods Q(20)th Q(25)th Q(50)th  Q(75)th Q(80)th MRE 

September 0.310 0.310 0.201 0.055 0.055 0.193 

October 0.153 0.153 0.244 0.402 0.402 1.432 

November 0.583 0.583 0.373 0.223 0.223 0.429 

December 0.303 0.303 0.100 0.476 0.476 0.976 

MAE 0.013 0.013 0.009 0.011 0.011 0.031 

Table 18 presents the differences between the estimated and actual values for both methods. The results show that 

the regression coefficient estimate from Q(50)th provides the closest match to the actual data, followed by Q(75)th and 

Q(25)th. In contrast, the MRE method yields the largest deviations from the real data. These findings suggest that when 

the dataset contains irregularities or deviates from typical patterns, quantile regression—particularly at the median—

offers a more accurate and reliable predictive model compared to traditional methods. 

3-2- Discussion 

This research examined the estimation of regression coefficients by altering the probability density function 

(PDF) using a chosen τ-function with symmetric characteristics. The overall objective was to improve the precision 

and reliability of quantile regression estimates and compare their performance against usual multiple regression 

under both simulated and actual data scenarios [21, 22]. The findings confirm that the method is highly in line with 

recent literary trends calling for kernel-based and non-parametric methods to better quantify quantile regression 

estimation. For instance, Huang & Nguyen [29] proved how the use of kernel methods significantly decreases 

estimation error due to more precise modeling of difficult PDFs, a finding similar to the current study. Moreover, 

quantile regression provides a broader set of information about the data by estimating different points on the 

conditional distribution, in contrast to the usual least squares (OLS) regression, which only estimates the 

conditional mean. The multi-dimensionality can capture more refined knowledge of the relationship between the 

dependent and independent variables along the distribution, especially where data are not normally shaped [30]. 

Our results also validate that quantile regression works particularly well in dealing with skewed data or heavy-

tailed distributions, as also found in earlier research by Chen et al. [31] and Santos et al. [32], who noted its outlier 

resistance and use in high-dimensional data settings. 

Additional evidence that quantitative regression's good points are in the real application of data, considering the 

export figures, is shown at the median level, where it shows lower mean absolute error values than with the MRE 

method. This study is corroborating findings in Tang et al. [33] and Lee & Park [34], which hold that in terms of 

forecasting and decision-making, quantile regression is ahead. Furthermore, for big or heterogeneous samples, quantile 
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regression will, in all circumstances, be better than OLS. As noted by Khaothong et al. [35], median-based quantile 

regression yields more robust conditional distribution estimates when data are highly variable or asymmetric. Perhaps 

the strongest factor for quantile regression reliability in this research was the symmetric PDF adjustment. Koenker [36] 

explicated how such an adjustment, while usually performed via kernel functions, is more versatile in approximating 

the actual shape of the data distribution. Our findings are congruent with Wang et al. [37], who highlight model 

specification and variable selection as key elements in quantile regression for addressing big data at an optimal level. 

The findings of this research indicate the integration of density corrections with robust estimation methods not only 

enhances fit but also sustains stability under changing sample conditions. 

In addition to kernel-based estimation, several other parameter estimation methods were also investigated. The 

research proves the adequacy of methods like maximum likelihood estimation derived from the Fisher information 

matrix [38] and the Minimum Risk Estimation (MRE) method for certain situations. The MRE method, in particular, 

was found to be more suitable for small models or samples with few parameters, according to Nikitina et al. [39] and 

Ferrari & Paterlini [40]. Although MRE yields robust estimates under limited conditions, quantile regression is more 

versatile and precise in a broader range of data conditions, especially when the parameters or data size increases. 

Overall, the results of this current research support and supplement existing research using empirical data to back up 

the usability of quantile regression in dealing with asymmetric, skewed, and high-variance data. By applying 

symmetric τ-function-based PDF adjustments and performance assessment under a variety of conditions, this current 

research adds value to literature that calls for the use of quantile regression as a superior supplement to OLS and as a 

versatile response to existing data issues. 

4- Conclusions 

4-1- Simulation Results and Comparison of MRE and Quantile Regression 

The simulation results indicate very large differences between the Minimum Risk Estimation (MRE) procedure 

and quantile regression according to estimation performance under different conditions. The increase in the number 

of parameters and sample size impacts considerably estimation accuracy first. MRE produced the lowest mean 

absolute error (MAE) for small and medium sample sizes, but quantile regression was superior to MRE for small 

and large sample sizes. This indicates that both methods are better adapted to other scales and the data conditions. 

Secondly, as regards the heteroscedasticity of the regression coefficients, quantile regression proved to be more 

stable since its estimates were closer to the mean and not very sensitive to data fluctuations. Third, in terms of 

distributional properties such as skewness and kurtosis, quantile regression reduced skewness by drawing outlier 

observations to the center and effectively eliminated kurtosis in bigger samples. Such results support that quantile 

regression produces more symmetrically distributed and less dispersed estimates and therefore is a safe alternative 

for heterogeneous data regimes. 

4-2- Application to Real Data 

Using real data from the two years of monthly export records of the six major Thai commodities to Russia exemplifies 

the usefulness of quantile regression. The approach gave the smallest MAE and best estimates between MRE and other 

estimators of quantiles. The results support the relevance of the quantile regression in analyzing asymmetrically or non-

normally distributed data, especially when confronted with disturbance such as the COVID-19 crisis. The case study 

continued with the way external shocks such as the COVID-19 pandemic and the Russia–Ukraine war brought 

monumental volatility to export amounts. For example, the buying of rubber and pet food went up, and that of fresh and 

processed fish went down at some times. Volatility led to the effects of extremely dispersed, skewed, and heteroscedastic 

data. 

Quantile regression in this case was superior to MRE, as it provided more information than the conditional mean. 

Estimating the relationship at different points in the distribution, involving the Q(25)th, Q(50)th, and Q(75)th, provides 

a better insight into independent variables' impact on different segments of the response variable. It is particularly helpful 

during times of crisis, with outliers and extreme values being the norm. On balance, evidence from simulation and real-

data analysis verifies that quantile regression is a better and more stable method for modeling data in non-normal form 

under uncertain conditions. 

5- Declarations  

5-1- Author Contributions 

Conceptualization, P.A. and W.R.; methodology, P.A.; software, P.A.; validation, P.A. and W.R.; formal analysis, 

P.A.; investigation, P.A.; resources, P.A.; data curation, P.A.; writing—original draft preparation, P.A.; writing—review 

and editing, P.A.; visualization, P.A.; supervision, P.A.; project administration, P.A.; funding acquisition, W.R. All 

authors have read and agreed to the published version of the manuscript. 



Emerging Science Journal | Vol. 10, No. 1 

Page | 491 

5-2- Data Availability Statement 

The data presented in this study are available in the article. 

5-3- Funding 

The authors received no financial support for the research, authorship, and/or publication of this article. 

5-4- Institutional Review Board Statement 

Not applicable. 

5-5- Informed Consent Statement 

Not applicable. 

5-6- Conflicts of Interest 

The authors declare that there is no conflict of interest regarding the publication of this manuscript. In addition, the 

ethical issues, including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double 

publication and/or submission, and redundancies have been completely observed by the authors. 

6- References  

[1] Draper, N. R., & Smith, H. (1998). Applied Regression Analysis. John Wiley & Sons, New Jersey, United States. 

[2] Lee, J., & Kim, D. Robust quantile regression under heavy-tailed distributions with kernel-based density estimation. Statistics 

and Its Interface, 17(2), 210–225. 

[3] Koenker, R., & Bassett, G. (1978). Regression Quantiles. Econometrica, 46(1), 33. doi:10.2307/1913643. 

[4] Khaothong, K. (2019). Analysis of failing load and optimization of hot air welding parameters on PVC-acrylic coated polyester 

fabric by Taguchi and ANOVA technique. Engineering Journal, 23(6), 331–344. doi:10.4186/ej.2019.23.6.331. 

[5] Bhattacharyya, H. T., Kleinbaum, D. G., & Kupper, L. L. (1979). Applied Regression Analysis and Other Multivariable Methods. 

Journal of the American Statistical Association, 74(367), 732. doi:10.2307/2287012. 

[6] Robinson, A., Cook, R. D., & Weisberg, S. (1984). Residuals and Influence in Regression. Journal of the Royal Statistical Society. 

Series A (General), Chapman and Hall, Florid, United States. doi:10.2307/2981746. 

[7] Lu, H., Dong, C., & Zhou, J. (2021). A Sequential Shrinkage Estimating Method for Tobit Regression Model. Open Journal of 

Modelling and Simulation, 09(03), 275–280. doi:10.4236/ojmsi.2021.93018. 

[8] Moujahid, A., & Vadillo, F. (2021). A Comparison of Deterministic and Stochastic Susceptible-Infected-Susceptible (SIS) and 

Susceptible-Infected-Recovered (SIR) Models. Open Journal of Modelling and Simulation, 09(03), 246–258. 

doi:10.4236/ojmsi.2021.93016. 

[9] Yu, K., & Moyeed, R. A. (2001). Bayesian quantile regression. Statistics & Probability Letters, 54(4), 437-447. 

doi:10.1016/S0167-7152(01)00124-9. 

[10] Zhang, X., Wang, D., Lian, H., & Li, G. (2023). Nonparametric quantile regression for homogeneity pursuit in panel data models. 

Journal of Business & Economic Statistics, 41(4), 1238-1250. doi:10.1080/07350015.2022.2118125. 

[11] He, X., Ng, P., & Portnoy, S. (1998). Bivariate quantile smoothing splines. Journal of the Royal Statistical Society Series B: 

Statistical Methodology, 60(3), 537-550. doi:10.1111/1467-9868.00138. 

[12] Zhou, X. H., Lin, H., & Johnson, E. (2008). Non-parametric heteroscedastic transformation regression models for skewed data 

with an application to health care costs. Journal of the Royal Statistical Society Series B: Statistical Methodology, 70(5), 1029-

1047. doi:10.1111/j.1467-9868.2008.00669.x. 

[13] Koenker, R., & Xiao, Z. (2006). Quantile autoregression. Journal of the American Statistical Association, 101(475), 980–990. 

doi:10.1198/016214506000000672. 

[14] Furno, M. (2014). Predictions in Quantile Regressions. Open Journal of Statistics, 4(7), 504–517. doi:10.4236/ojs.2014.47048. 

[15] Boz, Ç. (2013). Estimating the New Keynesian Phillips Curve by Quantile Regression Method for Turkey. Modern Economy, 

04(09), 627–632. doi:10.4236/me.2013.49067. 

[16] Horowitz, J. L., & Lee, S. (2005). Nonparametric estimation of an additive quantile regression model. Journal of the American  

Statistical Association, 100(472), 1238–1249. doi:10.1198/016214505000000583. 

[17] Hardle, W., Hall, P., & Ichimura, H. (2007). Optimal Smoothing in Single-Index Models. The Annals of Statistics, 21(1), 157–

178. doi:10.1214/aos/1176349020. 



Emerging Science Journal | Vol. 10, No. 1 

Page | 492 

[18] Hao, L., & Naiman, D. Q. (2007). Quantile Regression. Sage Publication, New Jersey, United States. 

[19] Cui, W., & Wei, M. (2013). Strong Consistency of Kernel Regression Estimate. Open Journal of Statistics, 3(3), 179–182. 

doi:10.4236/ojs.2013.33020. 

[20] Khalifa, E. H., Ramadan, D. A., & El-Desouky, B. S. (2021). Statistical Inference of Truncated Weibull-Rayleigh Distribution: 

Its Properties and Applications. Open Journal of Modelling and Simulation, 9(3), 281–298. doi:10.4236/ojmsi.2021.93019. 

[21] Devroye, L., & Györfi, L. (1985). Density Estimation: The L1 View. John Wiley & Sons, New Jersey, United States. 

[22] Efimov, V. (2023). Quantile loss & quantile regression. Towards Data Science, San Francisco, United States. Available online: 

https://towardsdatascience.com/quantile-loss-and-quantile-regression-b0689c13f54d/ (accessed on December 2025). 

[23] Koenker, R., & d’Orey, V. (1987). Computing Regression Quantiles. Applied Statistics, 36, 383–393. 

[24] Nilbai, T. (2020). Quantile regression. Economics, Ramkhamhaeng University, Bangkok, Thailand. Available online: 

http://www.eco.ru.ac.th/images/gallery/km/KMecon.pdf (accessed on December 2025). 

[25] Fox, J. (2008). Applied Regression Analysis and Generalized Linear Models: Bootstraping Regression Model. Sage 

Publications, New Jersey, United States. 

[26] Rosenblatt, M. (1956). Remarks on Some Nonparametric Estimates of a Density Function. The Annals of Mathematical 

Statistics, 27(3), 832–837. doi:10.1214/aoms/1177728190. 

[27] Parzen, E. (1962). On Estimation of a Probability Density Function and Mode. The Annals of Mathematical Statistics, 33(3), 

1065–1076. doi:10.1214/aoms/1177704472. 

[28] Kanagarathinam, K., Ponkumar, G., & Sendil Kumar, S. (2024). Performance Analysis of Autoregressive Integrated Moving 

Average (ARIMA) and ‘earlyR’ Statistical Models for Predicting Epidemic Outbreaks: A Case Study on COVID-19 Data in 

India. Trends in Sciences, 21(1), 72–46. doi:10.48048/tis.2024.7246. 

[29] Huang, M. L., & Nguyen, C. (2018). A nonparametric approach for quantile regression. Journal of Statistical Distributions and 

Applications, 5(1), 3. doi:10.1186/s40488-018-0084-9. 

[30] Bühlmann, P. (2020). Rejoinder: Invariance, Causality and Robustness. Statistical Science, 35(3), 434–436. doi:10.1214/20-

STS797. 

[31] Chen, J., Wang, T., & Li, Z. Robust quantile regression for high-dimensional data. Statistica Sinica, 31(3), 1459–1482. 

doi:10.5705/ss.202019.0325. 

[32] Santos, R., Pereira, J., & Oliveira, L. Skewed distributions and quantile regression: A simulation study. Statistics & Probability 

Letters, 179, 109348. doi:10.1016/j.spl.2021.109348. 

[33] Tang, Y., Zhu, S., Luo, Y., & Duan, W. (2022). Input servitization, global value chain, and carbon mitigation: An input-output 

perspective of global manufacturing industry. Economic Modelling, 117, 106069. doi:10.1016/j.econmod.2022.106069. 

[34] Lee, Y., & Park, C. Mean regression vs quantile regression: A comparative study. Computational Statistics, 35(4), 1671–1688. 

doi:10.1007/s00180-020-00967-2. 

[35] Khaothong, K., Priyadumkol, J., Chaiworapuek, W., & Kaisinburasak, T. (2022). Optimization of High Frequency Welding 

Parameters of PVC Coating on Polyester Fabric. Trends in Sciences, 19(8), 34–63. doi:10.48048/tis.2022.3463. 

[36] Koenker, R. (2017). Quantile regression. Annual Review of Economics, 9, 155-176. 

[37] Wang, S., Li, F., & Chen, X. Model selection and variable screening for quantile regression in big data. Journal of Big Data,  

11(1), 24. doi:10.1186/s40537-024-00512-y. 

[38] Silverman, B. W. (2018). Density estimation: For statistics and data analysis. Density Estimation: For Statistics and Data 

Analysis. Chapman and Hall, Florid, United States. doi:10.1201/9781315140919. 

[39] Nikitina, L., Paidi, R., & Furuoka, F. (2019). Using bootstrapped quantile regression analysis for small sample research in applied 

linguistics: Some methodological considerations. PloS one, 14(1), e0210668. doi:10.1371/journal.pone.0210668. 

[40] Ferrari, D., & Paterlini, S. (2009). The Maximum L q-Likelihood Method: An Application to Extreme Quantile Estimation in 

Finance. Methodology and Computing in Applied Probability, 11(1), 3-19. doi:10.1007/s11009-007-9063-1. 

https://towardsdatascience.com/quantile-loss-and-quantile-regression-b0689c13f54d/
http://www.eco.ru.ac.th/images/gallery/km/KMecon.pdf

