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Antenna-in-Package;
Ir) this work, a novel low-profile t.unable ultra-wideband (UWB) K/Ka-band (14-40 GHz) dual  pq Circularly-Polarized Antenna;
circularly polarized magneto-electric antenna element has been designed, analyzed, and validated .
through circuit modeling, simulations, fabrication, and experimental testing for application in 5G/6G ~ Magneto-Electric Dipole (MED);
phased-array antennas. The antenna has compact dimensions of 0.510% 0.5%¢ % 0.0610/0.09%,, which  Phased Array Antennas;
can be further reduced to 0.25Xy% 0.254¢ % 0.05X, when metal-insulator-metal (MIM) and/or gap SRR;
capacitors are employed. The proposed antenna exhibits a high gain of 9 dB, a wide scanning angle )
of £75°, and an efficiency exceeding 85% across the entire operating frequency band. In addition, it Ultrawideband (UWB).
demonstrates high isolation between ports and between co-polarized and cross-polarized radiation
patterns, reaching 25 dB. The resonant frequency of the antenna is tunable, with a variation of up to
97% over the K/Ka-band frequency range. This tuning capability is achieved using MIM capacitors
connected to the vias of the circular patch and/or gap capacitors, which collectively function as split- . . .
fing resonators (SRRs). Fabrication and experimental testing of the antenna confirm good agreement ~ AArticle History:
with the simulated results. The antenna is easily fabricated using glass substrates and standard

epoxy/glass processes with only two layers, making it highly suitable for antenna-in-package Received: 09 April 2025
applications based on glass technology. Since the antenna element is specifically designed for Revised: 11 November 2025
phased-array applications, array configurations were also investigated. Analysis of 512-element

arrays shows that the Sunflower layout provides enhanced gain and overall performance while ~Accepted: 14 November 2025
utilizing more than 50% fewer antenna elements compared to a conventional rectangular array. Published: 01  December 2025

1- Introduction

Innovative wireless technologies have progressed in response to the constraints of earlier wireless communication
systems, characterized by low data rates and connection density [1-4]. Academia and industry must now prioritize
the advancement of next-generation wireless technology. Path loss and the adjustment of transmitter and receiver
antenna beam angles for mobile entities, such as cars, while minimizing latency, present significant communication
challenges. Millimeter wave (mmWave) phased array antennas in satellite mobile communications can satisfy the
increasing demand for enhanced data rates and reduced latency. Low earth orbit (LEO) and geostationary orbit (GEO)
satellites, together with space Internet, are becoming significant, particularly as sixth-generation (6G) systems seek
to integrate satellite internet with 5G wireless terrestrial stations [5-9]. Effective millimeter-wavelength satellite
communications necessitate the enhancement or replacement of existing systems and a transition from the centimeter
band spectrum [10-16].
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Glass substrates are increasingly favored in packaging due to their thermal stability and electrical insulating
properties. Glass technologies are appealing for high-volume, high-performance radio frequency (RF) applications
because of their minimal dielectric losses, smooth surfaces, and dimensional stability [16-19]. Glass substrates are
optimal for photonics, display technologies, and sensors, since their thermal and chemical stability, together with optical
clarity, are essential for superior optical and mechanical performance. Moreover, glass-based antennas are cost-
effective, adaptable in architectural design, and suitable with vehicles and ships. Transparent antennas integrated with
solar cells for satellite communication provide an innovative approach to enhance energy harvesting, guarantee reliable
satellite-to-ground communications, and save payload weight.

Platform independence is essential for antennas on mobile platforms such as automobiles and vessels to function
effectively in various conditions. Compact modules incorporating transceivers and antennas or subarrays are enhanced
by the antenna-in-package (AiP) configuration. RF systems require AiP technology to enhance functional density,
efficiency, and compactness while reducing costs. This technology reduces transmission line losses and structural
complexity and will revolutionize 5G and next mmWave antenna architecture. Low loss glass-based AiP can be
constructed utilizing hybrid substrate technology or flip chip ball grid array (FCBGA) technologies to address heat
dissipation, integration, and chip interconnections, ensuring highly reliable systems [20-22]. FCBGA technology
enhances RF performance and system-level integration in AiP packages, rendering them suitable for 5G/6G
applications, 10T devices, and other high-frequency communication systems. The AiP approach vertically arranges RF
components like as filters, power amplifiers, and antennas in three dimensions, thereby optimizing space and
minimizing system size [23, 24].

The following are the design goals for the Ka-band phased array antenna using AiP modules/elements: a) calculating
the gain of the active phased array antenna based on the characteristics of the antenna elements, such as gain, efficiency,
transmitter power, and link budget analysis [12-15]; b) designing a phased array antenna element using Glass technology
specifications. The array must ensure effective isolation of the antenna elements. The design specifications are as
follows: frequency: Ka; polarization: dual linear/circular (to reduce loss); gain: greater than 2dB; broad scanning angles:
|8] greater than 60°; isolation: greater than 20dB (to be compatible with any array layout).

The design of the antenna element may encompass a wide variety of options, including patch antennas, as referenced
in the literature [25-43]. One of the best antenna candidates that can cover the mentioned specifications and be
implemented on Glass substrates are MED antennas. Nonetheless, previously designed MED antennas suffer from some
problems including: preparing narrow bandwidth [26, 27], are suitable for low frequencies [28-30], are bulky and
spacious with large footprints and needing complex fabrication technologies and exhibit poor cross-polarization
suppression [31-37]. Although previous studies have demonstrated the effective design of these antennas, as noted by
Chaloun et al. [24], and have occasionally incorporated filtering capabilities as seen in Tian .et al [38], or have achieved
compactness as indicated in Yang .et al [39], or utilized differential feeding as described by Yang et al. [40], many of
these designs have been implemented on thick substrates. Furthermore, they often necessitate costly advanced
fabrication techniques such as high-density interconnector (HDI) packaging or fan-out wafer-level packaging
(FOWLP), or they may feature multilayered complex structures, or lack dual polarization [41, 42].

The design of the MED antenna is presented here to satisfy the specifications and limitations for AiP glass-based
packaging, including both electrical and geometric requirements. A small, low-profile antenna exhibiting minimal
volume and broadside radiation, comparable in size to an integrated circuits (IC) with dual feeding, is suitable for AiP
glass-based packaging. Theoretical analysis and calculations for the design of the proposed antenna are initially
provided. Subsequently, the structure undergoes optimization and simulation. The finalized antenna specifications are
confirmed through fabrication and measurement processes.

This paper introduces an innovative, low-profile, easily fabricated, and cost-effective dual-polarized MED antenna,
specifically designed and simulated for satellite mobile communication systems (SATCOM). The antenna utilizes both
Glass and traditional substrates, and its circuit model is presented. Glass substrates (€, ~2.5-10) enable thinner profiles
and some of them low loss tangent as well but require trade-offs in efficiency and frequency bandwidth vs. Rogers
materials [17, 24, 43]. The design methodology can be easily accommodated with this range with minor dimensional
adjustments. The final antenna configuration is validated through simulations conducted using CST Studio Suite, as
well as through fabrication and testing based on available substrates and fabrication technology of multilayered PCBs.
The proposed antenna element is characterized by a more compact and thinner design, offering a broader scanning angle
and wider frequency bandwidth in comparison to prior designs, while also supporting various forms of polarization. Its
structure is well-suited for AiP applications based on Glass technology comprising only two layers. Additionally, array
analyses of the designed antenna demonstrate that the performance of the Sunflower array exceeds that of the
rectangular one.

2- Proposed Antenna Design

This section elucidates the design and analysis of the proposed antenna. The proposed antenna configuration is based
on MED antennas (MEDAS). Consequently, a conventional MEDA can function as a benchmark for analysis and design.
In fact, within the realm of patch antennas, MEDAs are designed using a planar half-wavelength dipole and a shorted
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quarter-wavelength patch antenna, functioning as electric and magnetic dipoles, respectively. MEDA, functioning as a
complementary antenna or Huygens’ source, is distinguished by its elevated gain and extensive bandwidth, resulting
from the concurrent excitation of both electric and magnetic dipoles with similar signal amplitude and phase. The
radiation released by the shorted quarter-wave patch antenna primarily emanates from its open end, functioning as a
magnetic current source.

The structure and modelling of the proposed antenna with its magnetic dipoles (MDs) and folded electric dipoles
(FEDs) are illustrated in Figure 1. To prevent polarization loss, the proposed antenna must also support circular
polarization. To achieve circular polarization and broader scanning angles, a circular patch antenna is initially designed.
Therefore, the antenna can be analyzed as a cavity, and its effective radius can be determined using the following
calculation [25]:

2h
Tupy = r\/l + 2 (1 4 1.77) )

where; h is the thickness of the substrate, €, is the electrical permittivity of the dielectric, and r and r.¢ are the values
of actual radius and effective radius of a circular patch antenna.

Similar to a circular patch antenna or, more specifically, a conventional MEDA, the radiation patterns of the electric
dipole exhibit a "inverted-8" configuration in the E-plane and an omnidirectional pattern in the H-plane, whereas the
magnetic dipole displays a "inverted-8" configuration in the H-plane and an omnidirectional pattern in the E-plane [25,
44, 45]. The presence of a ground plane facilitates reflection, thereby enhancing the antenna’s gain and minimizing
back-lobe radiation.

The proposed MEDA can be effectively analyzed within the framework of Hertzian dipole antennas, as the electric
dipole component is represented as a Hertzian dipole (short current element), while the magnetic dipole component is
depicted as a small loop antenna, reflecting the duality with the Hertzian dipole. An electric Hertzian dipole of length
dy, oriented along the y-axis, can be represented as an electric current I = H,dx, while a magnetic Hertzian dipole of
length dx, aligned along the x-axis, corresponds to a magnetic current, I, = E, dy. Consequently, the antenna has cosine
normalized radiation patterns in planes of any ¢. Hence, the radiation characteristic of the complementary antenna
confirms that this concept can be applied for developing unidirectional antennas. The characteristic of the
complementary antenna supports the feasibility of developing unidirectional antennas based on this concept. Hence, the
electric field in the far-field zone can be expressed as [45]:

E = 12 1(&, cos b sing + Eycosp)e o

While a magnetic Hertzian dipole with a length of dx, placed along the x-axis, is equivalent to a magnetic current,
Im = Eydy. Hence, the electric field in the far-field zone can be expressed as:

—

E= j% (8 sin g + é,cosOcosp)e I T 3)

The far-field electric field is obtained by adding the above equations:

E =j¥ [Egsing(1 + cosB) + éycosp(1 + cosh)]e 7k 4

Consequently, the normalized radiation patterns in planes of any ¢ are the same and can be expressed as:

_ JsinZ p(1+cos 8)2+cosZ(1+cos 6)2 _ (14cos )
2 2

F(6)

®)

when 0 = 180°, F(6) = 0, indicating that there is no back radiation. Hence, the radiation characteristic of the
complementary antenna confirms that this concept can be applied for developing unidirectional antennas.

The impedance characteristic of the designed antenna is investigated by geometry and the equivalent circuit of the
proposed antenna shown in Figure 1. The patch antenna has a fundamental resonant mode which can be represented by
a parallel resonant circuit (resistance R,,, capacitance C,,, and inductance L), whereas the electric dipole has a
fundamental mode which can be represented by a series resonant circuit (resistance R4, capacitance Cq4, and inductance
Lg4). The L-probe feed is modelled by an inductor L¢ and capacitor C¢. Cyig = CvimS + Ceap$, 1S the total capacitance
including parallel capacitors with VIAs and/or grounded inductors and gap capacitances. It can tune or decrease the
resonant frequency of the proposed antenna. When the two circuits are connected in parallel, the input admittance is:

1

Yin = joCyg + |[——F———~
Rd+]<de_(u_Cd>

+ [i + (a)Cm - ﬁ)] (6)

It can be observed that the imaginary part of the input admittance of the complementary antenna can be canceled
out if:
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Cqlq = Cpl, R? = Lq/Cp (7

In order for both equations to be concurrently satisfied, it is essential that the resonant frequencies of the electric
dipole and the patch antenna are equal. Additionally, the input resistance of the electric dipole must be adjusted to a
value that is proportional to the reactive components of both the dipole and the patch antenna. The folded L-shaped
probe/patch greatly influences the impedance matching of the antenna. The height of the magnetic dipole, composed of
a shorted quarter-wave patch antenna, is mostly determined by the magnetic dipole itself.

Port 1

Tuning Cyy S 12

@)

clf : g -l— _l_
Port 1/2 E‘ Cear T Cmim

(©)
Figure 1. Proposed antenna modelling; a) antenna structure, b) modelling VIAs of the proposed antenna [33] and tuning
capacitors, ¢) proposed equivalent circuit model

To provide a significant degree of isolation, VIAs and two orthogonal, folded cross-feeding lines are designed with
differing elevations. The terminals of these lines are linked to a SMA connection to enable the antenna's excitation.
Moreover, the tapered design of the I'-shaped feeding lines introduces adjustable parameters and enhances the
optimization of impedance matching. The VIAs enable the ingress of current and electromagnetic fields into the
antenna. In our design, if we suppose r = 0.25ko, h = 0.05, €, = 3.5, so we have: h/r = 0.2 and rqs = 1.07r. The lowest
resonant frequency for the geometry with the value of r = 2.2mm will be: (f.)TE;~20GHz. However, due to the
supplementary capacitors and the configuration of the proposed antenna, which will be examined in the subsequent
paragraphs, the antenna is capable of resonating at lower frequencies.

The single port excitation, akin to the differential-fed mechanism excites the TE;; mode (fundamental mode) in the
cavity/antenna due to the placement of feeding points along the central axis of the structure, generating surface currents
or electric fields along these lines [19]. The inductance values generated solely by VIAs and the coupling effects can
be computed using [46]:

L =""[In (%) - 0.75] ®)
M =" (%) - 0.75] ©)

where, h is the thickness of the substrate, x; (Figure 1) are the geometrical dimensions of a specific area, s;y are the
distances separating the signal VIAs and grounded VIAs, d is the distance among grounded VIAs and a is the radius of
the VIAs. As can be seen from the circuit model and the formulas, the mutual couplings among VIAs and ports act as
impedance transformers. Also, the MIM capacitors and the capacitances that are created by metal gaps can be calculated
by [45-47]:

i - C — TErW
amkdy AP T n(g/t)

Cvim = (10)
where; S is the overlapping area of a MIM capacitor, d,, is the thickness of the dielectric, k is the electrostatic constant,
| is the total length of each resonator, w is the width of the metallic sheet (here the average widths of the quarter-
patches), g is the gap distance of the Gap capacitor and t is the thickness of metal strip. Also, line inductors (L) and
line inductors including VI1As (L,) are calculated by:

w+t

l
L, =2l [lnm+05+7

(11)
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Ly =2 ™ Ty a?+ 24 (12)

21

MIM capacitors are primarily created between middle and top layer (by radiating patched and feed lines). However,
the gap capacitors are primarily located in the feeding lines. MIM capacitors in comparison with interdigital ones

prepare larger values and have more compact sizes too. The total inductance and capacitance will be a combination of
the series and parallel ones [48]:

1

I =i (13)

For example, for the proposed antenna and h = Ilmm, r~0.15 mm; L; = L = L,/20 = 0.75nH, C; = Cy¢ = 0.3pF:
(f = 30GHz). By tuning the values of (MIM/gap) capacitors and VIAs as inductors, the resonant frequency reaches to
20GHz or even less (14GHz). Briefly, the design procedure of the proposed antenna can be outlined as follows:

a) Calculating the size of the conventional circular patch antenna,

b) Designing matched I"-shaped feeding mechanism,

¢) Obtaining circuit model, tuning of parameters/dimensions using CST Studio Suite to attain a high-performance
antenna,

d) Incorporate MIM capacitors in the antenna structure to make the antenna more compact,

e) Develop a dual-port antenna and implement final improvements, optimizations and adjustments.

Figure 2 illustrates a flowchart summarizing steps (a)—(e).

® Calculating the Dimensions of a Conventional Circular Patch Antenna

®Designing Matched I'-shaped Feeding Mechanism

@ Circuit Model; Tuning with CST Studio Suite

® Incorporate MIM Capacitors in the Antenna Structure to Make the Antenna More Compact

® Develop a Dual-port Antenna and Implement Final Improvements, Optimizations and Adjustments

) oCoC-C > 4

Figure 2. The flowchart of the design
A. Active Impedance and Scan Blindness

Surface waves and mutual coupling may result in scan blindness; yet, these issues can be mitigated with designing
cavity-based low-profile structures, optimal shielding, and grounded VIAs [49, 50]. Hence, it is recommended to utilize
a thin substrate with a lower dielectric constant. For calculating the active element pattern, all feed voltages are set to
zero except for the nth generator, which is set to unity:

R(H’ (p) - Zin(e,q;)—Z{n(Oro) (14)

where; R is reflection coefficient in feed line connected with microstrip dipole, 6 and ¢ are the phased array scan angles.
If R (0y, @) = 1, then 6y, and @y, are the microstrip phased array blindness angles.

The Floquet analysis method is employed to examine and simulate the antenna element inside the array. This
analysis describes fields interacting with periodic structures through Floquet's (or Bloch's) theorem, which states that
fields within a periodic structure are quasi-periodic, indicating they are periodic with respect to a specific phase
difference and attenuation [51]. To avoid the appearance of grating lobes, the distances between antenna elements
must: d < Aq/(1+sin(0)). In large (periodic) arrays, the goal is to solve partial diff erential equations with periodic
boundaries conditions, for instance by finite element method (FEM), the method of moment (MoM) and finite-
diff erence time-domain (FDTD). It is imperative to accurately assess the mutual coupling parameters in phased array

antennas to ensure a thorough and precise analysis. Floquet analysis can be exploited to analyze a finite array
including mutual coupling eff ects.
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3- Simulation and Measured Results

In this section the simulation and measured results are investigated and explained. In order to test the antenna
parameters while establishing a 90-degree phase difference, a four-port hybrid has been designed specifically for the
proposed dual-port antenna [52, 53]. It is widely recognized that within the Ka frequency band, even minor alterations
in physical dimensions or structures (as little as 1mm) can result in significant phase discrepancies, amounting to
approximately 30 degrees. Consequently, the hybrid phase shifter has been integrated with the antenna within a
multilayered antenna configuration (Figure 3). The proposed antenna and its test board, a 90-degree hybrid phase shifter,
were developed and manufactured on a multilayered printed circuit board (PCB) utilizing Rogers (RO4350B) substrate.

Various Glass substrates and electrical permittivity alternatives might be utilized based on the specific application.
The selected substrate for this testing is Rogers, which use epoxy/glass techniques and facilitates the manufacturing of
multilayered PCBs and the technology for Blind VIAs manufacture. Rogers is used to prove the concept with readily
available fabrication, and the design is directly transferable to Glass substrates. The transmission line lengths from the
outputs of the hybrids to the antenna input ports are identical to minimize phase error. Figure 4 illustrates the antenna
configuration integrated with hybrids/phase shifter and the multilayered double-port antenna PCB developed using
Altium Designer.

The antenna underwent testing at the Anhui Engineering Research Centre for Microwave and Communications,
Hefei Normal University, Hefei, China. The network analyzer utilized for assessing the scattering characteristics is the
Agilent PNA-X N5247A, operating within the frequency range of 10 MHz to 67 GHz. The testing was conducted within
specific frequency bandwidths and frequencies due to the hybrid's frequency band, fabrication accuracy, and frequency
shift. The discrepancies noted between the simulation and the measured results can be ascribed to the inadequate
isolation between the ports of the test board or hybrid phase shifter, approximately 10 dB, along with radiation from the
ports and transmission lines that can further deteriorate isolation, and measurement inaccuracies related to the testing
equipment, estimated to be around 2 dB, according to the specifications provided by NSI-MI Technologies and the test
operator's report. Utilizing a high-precision test board or integrated circuits engineered for beamforming, capable of
providing accurate phase settings and phase/amplitude adjustments, can significantly improve measurement quality,
ensuring alignment with simulation outcomes and optimal performance.

Figure 5 illustrates the simulated and measured return loss and linearly polarized realized gain, simulated half power
beamwidths (HPBW) and efficiencies of the antenna. The simulation results indicate that the antenna is ultra-wideband
(UWB), has strong isolation between ports (>25dB), and offers a broad HPBW, as well as excellent gain and efficiency
across its entire operational frequency range. The antenna's average gain is approximately 7dB and it has an ultra-wide
impedance bandwidth of over 50% from 23 to 40 GHz and HPBW=>80°. The low measured isolation values of the ports
are the result of low isolation of hybrid phase shifter and test inaccuracies that were discussed and investigated at the
paragraph three of this section. Figure 6 shows the magnetic fields or the creation of magnetic dipoles. The antenna
height may be further lowered; however, this will result in a constricted operating band that shifts higher.

The antenna excites the TE;; fundamental mode due to the placement of feed lines along the central axes or
diameters of the structure, which generates surface currents and electric fields along these lines. Figure 7 depicts the
electric field vectors and surface currents, signifying the direction of polarization and the excitation of the TE,; mode.
In addition, Figure 8 presents the active parameters of the antenna, which are derived from Floquet analysis. This
illustrates the extensive scanning capabilities of the antenna when it radiates in an array. It also shows that in an array,
because of mutual coupling and impedance changes, the isolations between ports decrease for wide scanning angles.
Mitigation of mutual coupling can be achieved through the enhancement of shielding VIAs, the application of
electromagnetic wave absorbers or metamaterials (metamaterial radomes) and/or the implementation of differential
feeding techniques [54-62]. Figure 9 displays the simulated and measured circularly polarized realized gain, simulated
HPBW and active realized gain. It can be inferred that the performance of the antenna within the array and in circularly-
polarized mode is commendable. Figure 10 presents a comparison of the simulated and measured axial ratios as a
function of frequency, accompanied by axial ratio beam patterns. The results demonstrate that the antenna displays
excellent performance in circularly polarized mode. Analysis of active parameters, axial ratio beam patterns, and
empirical measurements reveals that the antenna accommodates wide scanning angles (8 = £75°). This beneficial trait
is ascribed to the existence of isolation VIAs and the compact, low-profile design of the antenna.
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Figure 3. Four-port 90-degree hybrid phase shifter and its specifications simulated with CST [52, 53]
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@) (b) (c)
Figure 4. A typical designed PCB for the proposed dual-port antenna
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Figure 5. Achieved results of the proposed antenna; a) simulated and measured return loss, b) simulated and measured
linearly-polarized realized gain, c) efficiency
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Figure 6. Magnetic fields in the proposed antenna @ 29GHz for ports 1 (a) and port 2 (b)
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Figure 7. Electric fields in the proposed antenna at port 1 @ 29GHz; a) at XZ plane, b) at YX plane and 0.5mm above the

antenna, c) electric fields in another plate, d) surface current
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Figure 8. Active parameters of the proposed antenna as a function of scan angle; a) impedance @ 27 GHz, b) isolation @ 27
GHz, c¢) impedance @ 31GHz, d) isolation @ 31GHz
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Figure 9. Achieved antenna specifications; a) simulated and measured circularly-polarized realized gain, b) simulated
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Figure 10. Achieved antenna specifications (continued); a, b) simulated axial ratio beam pattern at ¢=0°, 90°, ¢) simulated
and measured axial ratio vs. frequency

Figure 11 depicts the simulated and measured radiation patterns of the antenna in E/H- planes. The proximity of the
simulated and measured values of realized gains demonstrates the antenna's high level of efficiency. At elevated
frequencies (37GHz), higher-order electromagnetic waves (TM,,, ) or modes within the antenna are stimulated, enhancing
radiation scanning performance as the scanning angles increase. This is due to the generation and enhancement of end-
fire radiation rather than broadside radiation [63-66]. The use of gaps and/or MIM capacitors, specifically a 0.03 mm
gap in VIAs linked to the radiating patches, yields a resonance frequency of 16 GHz for the patch. Adjusting this
configuration produces a functional frequency range of 14 GHz to 17 GHz, so encompassing the entire frequency
spectrum from 14 GHz to 40 GHz. Capacitance values ranging from 0.1 pF to 10 pF consistently influence antenna
performance.
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Figure 11. Simulated/measured realized gain radiation pattern; a, b) linearly polarized simulated/measured co-/cross-
polarized, c, d) circularly polarized simulated/measured co-/cross-polarized

Figure 12 presents the realized gain and efficiency of the proposed adjustable MEDA. The efficiency results
demonstrate that the tuning capability does not negatively affect the antenna parameters. By utilizing IC impedance
transformers with appropriate impedance ratios, the performance and frequency bandwidth of the proposed antenna
can be further improved. The designed antenna offers the following specifications: high gain, ultra-wideband (UWB)
performance, high efficiency, wide scanning and tuning capability, and ease of fabrication using conventional PCB
technologies or cost-effective standard epoxy/glass processes with only two layers. It also provides high isolation
between ports and effective shielding, which prevents the formation of surface waves. Table 1 and Figure 12 further
illustrate the differences and advantages of the present work compared with previously reported designs. Compared
to other studies, the proposed design is dual-polarized and easy to fabricate, supports frequency tuning with a wider
frequency bandwidth, exhibits broader scanning angles, and reduces the footprint by more than 30%. The thermal
conductivity of the glass substrate (1.1 W/m-K) is sufficient for typical power levels. Despite the high antenna
efficiency and the absence of a requirement for a cooling system, packaging options such as BGAs and thermal vias

may introduce air gaps that enhance frequency bandwidth and facilitate heat dissipation and cooling for high-power
applications (>10 W).
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Figure 12. Proposed antenna specifications; a) comparison of the proposed antenna with previous designs (refer to Table 1),
b, ¢, d) tuning resonant frequency of the proposed antenna by MIM and/or Gap capacitors

The design parameters of the dual polarized magneto-electric antenna are (mm): thickness: h=0.6 or 1; feed offset
= (-0.93, 0.06); folded dipole dimensions: (2.3x0.35); folded dipole dimensions of slots: (0.1x0.6); inner/outer curve =
0.07/0.15; second feed offset = (0.05, 1); second folded dipole dimensions: (2.34x0.35); second folded dipole
dimensions of slots: (0.15x1.75); inner/outer curve = 0.07/0.15; radius of antenna/isolation VI1As: 0.26/0.18; distances
of antenna/isolation VIAs: 0.55/0.47. In the figures, Az.: Azimuth (or ¢ =0° or E-plane); El.: Elevation (or ¢ =90° or
H-plane); CP: Circularly-Polarized; LP: Linearly-Polarized.

4- Array Analysis

In phased array antenna, the main beam can be controlled by controlling phases of each antenna elements of the
array. Also, the level of the side/minor lobes can be controlled by amplitude tapering across the array. In this
section, rectangular and Sunflower array layouts are analyzed and simulated. Obtaining measurement results for
rectangular and sunflower layouts requires the creation of arrays with a significant number of calibrated feeding
networks and beamformer ICs. The ICs are essential for the calibration and adjustment of the antenna arrays. In
addition, simulations indicate a frequency variance exceeding 0.2GHz, thereby leading to performance alterations
for typical 0.010mm PCB tolerances. Thus, the discussion has solely focused on the simulation results. EM
simulations in CST are based on industry-standard validation methods. Moreover, given all factors, including
electromagnetic boundary conditions and modeling software, are consistent, the comparisons between the arrays
are accurate.

To achieve enhanced and optimal gain in arrays, it is crucial to reduce mutual coupling by augmenting shielding
VIAs and/or utilizing electromagnetic wave absorbers or metamaterials (metamaterial radomes) especially where
the spacings between antenna elements are small. Coupling and surface wave attenuation can be accomplished by
designing low-profile structures and/or utilizing a differential feeding mechanism [54-62]. Increased mutual
coupling coefficients can diminish the overall gain of an array; however, the spacing between the antenna elements
in the Sunflower array exceeds 0.5, hence reducing the mutual coupling values beyond those obtained by Floquet
analysis and simulations (S,~ 0.75,). Parameters such as S, and the minimum distance between antenna elements
require tuning to get optimal gain. Notwithstanding the aforementioned issues, the studies and simulations of the
arrays, employing radiation patterns produced by solvers and Floquet analyses in CST Studio Suite, demonstrate
the enhanced performance and benefits of deploying the Sunflower array created with the proposed antenna
elements.

In a phased array a spatial excitation taper and a progressive phase shift can also be defined for beam scanning
and reducing side lobe levels (SLLs). For example, the non-uniform/Taylor excitation of layout can be
implemented and used. But the non-uniform/Taylor layout or placements of the antenna elements in a Sunflower
array are the same as feeding the antenna elements with Taylor distribution and without attenuation of the
input/output powers of transceivers or function as array thinning in phased array antennas [67, 68]. The formulas
in Figure 13, determines the placements of the antenna elements in the array to decrease side lobe and grating lobe
levels in a Sunflower array layout [69]. S, is used in the general Fermat Spiral; S, = Fs\/(agn); where: Fs is the
scaling factor of the general Fermat spiral, i.e. the radial distance of the spiral at 1 radian, and a; == (3-V5). In
this configuration, other parameters such as the number of elements, angular displacement between elements and
scaling factors can be changed.
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Figure 14 shows that a Sunflower array with only N (number of antenna elements) = 512 can achieve an additional
1 dB antenna gain compared to a rectangular array employing amplitude tapering (Dolph—Chebyshev) with N = 1024
and element spacing of d = 0.5A,. The Sunflower layout dimensions (diameter = 175 mm) are slightly larger than those
of the rectangular layout (L x W = 155 mm x 155 mm), yet it provides better specifications (Figure 15). If the element
spacing in the rectangular layout is increased to d = 0.75L, with N = 1024, the layout dimensions become L x W =230
mm x 230 mm, resulting in a gain increase of 3.5 dB. To clarify, maintaining identical antenna specifications in a
rectangular configuration requires the implementation of excitation tapering, an increased number of antenna elements,
and/or additional spatial allocation. Furthermore, as can be observed, the cross-polarization radiation pattern values are
nearly similar to those of a single antenna element when mutual coupling is negligible or can be minimized using the

techniques reported in the literature.
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Therefore, utilizing a Sunflower layout can result in reduced sidelobe levels and an increased antenna area, or
alternatively, higher array antenna gain and efficiency. The simulation results illustrate that using a Sunflower layout
can provide more than 3 dB gain or at least a 50% reduction in the number of antenna elements. Employing the active
radiation results of the proposed antenna element in the Sunflower array requires approximately 30% fewer antenna
elements to achieve comparable array gain and specifications relative to a rectangular array. This difference is attributed
to array effects and a 0.6 dB decrease in the active gain of the antenna element.

Table 1. Comparison of current work with previous med designs

Ref. Antenna Bandwidth Element Size Peak  Polarization/ Process/ Isolation Between Ports; Nol2 Tunable S A3
Type (GHz) (%) (20)3 Gain (dB)  Dual Port Tech.! Radiation Patterns (%)
[30]  Waveguide 24-27 (12) 3.58x6.75x1.44 10 LP/No 3D Printing 25; 25 MB* No NA
[31] Metal 0.71-1.96 (94) 0.31x0.28%0.04 6.5 LP/No MB SPS; 10 MB No NA
[32] SIwe 3.1-10.6 (110) 2.5x1.5%0.04 10 LP/No PCB SP; 20 2 No NA
[33] Waveguide 50-70 (33) 0.8x0.7xNA 12 LP/No TPGW’ SP; 25 3 No NA
[37] Patch 1.7-2.7 (45) 0.46x0.3x0.06 7.5 LP/No PCB SP; 25 4 No NA
[41] Patch 22.4-29 (25.5) 0.8x0.8x0.07 7 LP/No HDI SP; 20 14 No NA
[42] Patch 25-43 (74) 0.37x0.37x1.12 5 LP/No FOWLP 20; 20 5 No +55°
[70] DR® 2.45-5.3(74) 0.66x0.66x0.17 7 LP/No DR+MS® SP; 30 3 No NA
[71] Stacked 25-30 (18) 0.6x0.6x0.1 6 LP/No PCB NA; NA 7 No NA
[72] SIwW 24.5-27.5 (12) 0.67x0.67x0.2 6 LP/No PCB 20; 35 3 No NA
[73] LW siw 23-33(36) 0.75x0.75x0.28 6 CP/No PCB 0; 10 2 No +40°
[74] Patch 23-35 (42) 0.52x0.52x0.12 5 LP/No PCB SP; 20 1 No +55°
[75] Patch 23.5-35.5 (41) 0.57x0.57x0.24 3 LP/No PCB SP; 30 5 No NA
[76] Patch 17.7-20.2 (13) 0.5%0.5%0.12 3 CP/Yes PCB NA 2 No +55°
14-17
14-40 (97) 0.25%0.25x0.05 9
e patch (11’17-2;) 033033006 o Dualiyes POy Olass! 25,25 2 (i/|7.0(/‘:) +75°
24-39 (48) 0.55%0.55%0.07 ’

29-39 (30)

Tech.': Technology; NoL?: Number of Dielectric Layers; S.A.3: Scanning Angle; MB*: Metal-Based; SP>: Single Port; SIW®: Substrate Integrated Waveguide;
TPGW?: Trapped Printed Gap Waveguide; DR®: Dielectric; MS®: Microstrip; LWC: Leaky Wave; MG'*: Tunable by MIM/Gap Capacitors.

5- Conclusion

This paper proposed the design, analysis, and validation of an innovative small and low-profile UWB dual-port
antenna. The study employs simulations performed using CST Studio Suite software, alongside empirical
measurements and the associated circuit model. The results obtained demonstrate that the antenna element exhibits
high performance, characterized by superior parameters when compared to prior designs. Notably, it achieves a
higher gain, a wider HPBW, and, based on the active parameters, axial ratio beam patterns, and measurements,
facilitates broader scanning angles. The antenna is manufactured utilizing the specifications of glass substrates and
epoxy/glass processes, allowing for easy fabrication requiring only two layers. The current design is characterized
by a reduced size and thickness compared to earlier models, while also providing tuning capabilities of
approximately 97% at the entire frequency range. Additionally, array and Floguet analyses have confirmed its
exceptional performance in array configurations.
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