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Abstract 

The objectives of this research were to develop a model to forecast and estimate the return levels for 

daily maximum PM2.5 concentrations in Thailand, applying Extreme Value Theory (EVT) with the 

Generalized Extreme Value (GEV) distribution under eight models for stationary and non-stationary 
process. This research utilized reanalysis data from the NASA EARTHDATA satellite, represented 

as grid points with a spatial resolution of 50 × 62.5 km, enabling the analysis of daily maximum 

PM2.5 concentrations across 176 grid points from January 1, 2009 to October 31, 2024. The analysis 

revealed that Model 2 (𝜇(𝑡) = 𝛽0 + 𝛽1𝑡where 𝜎and 𝜉are constants) is the most suitable model for 
five grid points, namely Sa Kaeo Province, Uthai Thani Province, Nakhon Ratchasima Province, 

Bueng Kan Province and Mae Hong Son Province, whereas Model 1 (𝜇, 𝜎and 𝜉are constants) is 

suitable for the remaining 171 grid points. Estimating the return levels for return periods of 5, 10, 

25, and 50 years showed that Northern Thailand had the most extreme daily PM2.5 concentrations, 
for all return periods especially Mae Hong Son Province. The results of this analysis can serve as 

valuable information to support decision-making for response planning in high-risk areas, aiding in 

efficient resource allocation and preventive measures. 
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1- Introduction 

The concentration of greenhouse gases in the Earth's atmosphere has risen rapidly, particularly since the Industrial 

Revolution. Over the last 50 years, human activities have driven carbon dioxide levels up from 280 ppm (parts per 

million), a value that had remained stable for millions of years. By 2022, the concentration had reached 421 ppm, 

representing a 50% increase compared to pre-industrial levels. This significant rise has exacerbated global warming, 

causing the climate to increasingly deviate from its original state. Thailand is inevitably affected by global warming. 

Over the past decade, Thailand's overall air quality has steadily deteriorated, with many areas continuing to experience 

air pollutant levels that exceed standard limits. One of the primary pollutants remains “particles measuring 2.5 microns 

or smaller.” The growing environmental and pollution issues, along with the continued rise in greenhouse gas emissions, 

present a significant challenge to achieving sustainable economic growth in the country.  

Many researchers have developed models to forecast PM2.5 concentrations, including Sudumbrekar et al. [1], which 

developed an effective model to forecast PM2.5 in India using the ARIMA model. In 2022, Zhao et al. [2] studied the 

forecasting of Beijing's PM2.5 using a hybrid ARIMA model. Sudha & Suguna [3] presented an ARIMA model for 
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PM2.5 forecasting in Chennai, India. Amelia et al. [4] forecasted PM2.5 pollution in Jakarta using exponential smoothing 

and ARIMA forecasting methods, and Wang et al. [5] established a monitoring and forecasting system for PM2.5 and 

other real-time environmental data in China’s opencast coal mines using ARIMA and Double Exponential Smoothing 

models. In 2023, Duan et al. [6] built an air quality forecasting model using the ARIMA model. In 2024, Hernández et 

al. [7] examined the influence of human activities on urban air quality, and used the ARIMA model to examine the 

impact of COVID-19 isolation measures on PM10 and PM2.5 levels in an upland Latin American city, Bogotá, 

Colombia. Pyae & Kallawicha [8] studied the distribution of air pollutants, including PM2.5, PM10, and O3, using 

multiple linear regression modeling, which also included a calculation of the Air Quality Index (AQI) and the 

development of an ARIMA model to predict the AQI of PM2.5 and PM10 in Myanmar. Gao et al. [9] analyzed and 

predicted the concentrations of air pollutants (PM2.5, PM10, SO2, and CO) and the atmospheric environmental quality 

in Hunan Province, China, using the ARIMA model. Mahawan et al. [10] studied a Situation and temporal behaviors of 

air pollution in Chiang Mai, Thailand by ARIMA model. Sharma et al. [11] presented a model to systematically forecast 

PM2.5 concentrations in India. Abuouelezz, et al. [12] explored PM2.5 and PM10 ML forecasting models in a 

comparative study at six ground stations in Abu Dhabi, United Arab Emirates. Nourmohammad & Rashidi [13] analyzed 

ground data analysis for PM2.5 prediction using predictive modeling techniques.  

Nonetheless, the estimation and forecasting of PM2.5 using the ARIMA model remains limited to short-term 

forecasts. Therefore, spatially accurate forecasting especially, for long-term predictions is both important and 

challenging, enabling relevant agencies to plan for long-term responses.  

Many researchers have applied extreme value theory to develop models for forecasting long-term extreme air 

pollution for example, Pornsopin et al. [14] studied risk analysis of PM2.5 at Khon Kaen city, Thailand. Intarapak and 

Supapakorn [15] investigated the statistical distribution of PM2.5 concentration in Chiang Mai, Thailand. Bodhisuwan 

& Aryuyuen [16] utilized the poisson transmuted Janardan distribution for modelling count data. Aguirre et al. [17] 

developed a novel tree ensemble model to approximate the generalized extreme value distribution parameters of the 

PM2.5 maxima in the Mexico City metropolitan area. Peter et al. [18] studied trends of extreme events and long-term 

health impacts of particulate matter in a southern Indian industrial area. Yang et al. [19] investigated extreme event 

discovery with self-attention for PM2.5 anomaly prediction. Klinjan et al. [20] analyzed extreme value with new 

generalized extreme value distributions for risk analysis on PM2.5 and PM10 in Pathum Thani, Thailand. Vazquez et al. 

[21] studied bivariate analysis of pollutants monthly maxima in Mexico City using extreme value distributions and 

copula. Guayjarernpanishk et al. [22] developed statistical model of air pollution forecasting in a regional context for 

sustainable management. Ghosh [23] assessed air quality extremes via extreme value analysis of metropolitan cities 

across India and the world. Maricq & Bishop [24] conducted an extreme value theory analysis of high emitter trends 

across four US cities from 1995 to 2021. 

From the research mentioned above, the data used for analysis was collected from air pollution quality measurements 

in each country and satellite data. Extreme value theory under a stationary process was applied in the data analysis 

method used in the aforementioned research. In general, when analyzing extreme data, weather data may follow a non-

stationary process, involving other variables such as time or season. Therefore, before analyzing the data to determine 

the model parameters, it is crucial to assess whether the data follows a stationary or non-stationary process. Each process 

requires a different analysis procedure and methods to select the suitable models. Failing to consider the data 

characteristics may result in an inaccurate model parameter estimation, which can negatively impact subsequent 

applications and lead to serious consequences, particularly in data analysis requiring high model accuracy. Considering 

the significance of the aforementioned issues, there is an urgent need for forecasting air pollution-related information. 

Consequently, this study aimed to develop a long-term forecasting model for extreme PM2.5 concentrations using a non-

stationary process for regions in Thailand. Satellite data was utilized to predict potential extreme PM2.5 concentrations, 

providing relevant agencies with valuable insights to enhance their operational efficiency. 

2- Scope of Research 

2-1- Study Area 

Thailand lies between latitudes 5°37′N and 20°27′N and longitudes 97°22′E and 105°37′E. The country is categorized 

into six regions (Figure 1): the northern region (9 provinces in orange), the central region (22 provinces in yellow), the 

northeastern region (20 provinces in pink), the eastern region (7 provinces in purple), the western region (5 provinces in 

green), and the southern region (14 provinces in blue). 

 Northernmost point: Latitude 20°27'30"N, Mae Sai District, Chiang Rai Province. 

 Southernmost point: Latitude 5°37′N, Betong District, Yala Province. 

 Easternmost point: Longitude 105°37'30"E, Phibun Mangsahan District, Ubon Ratchathani Province. 

 Westernmost point: Longitude 97°22'E, Mae Lan Noi District, Mae Hong Son Province. 
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Figure 1. Study area covering the 6 regions of Thailand 

2-2- Data Preparation 

Data obtained from the NASA EARTHDATA satellite (https://giovanni.gsfc.nasa.gov/giovanni/) consisted of grid 

point data with a spatial resolution of 50 x 62.5 km and hourly dust concentration data. In this research, the daily 

maximum PM2.5 concentrations from January 1, 2009 to October 31, 2024, totaling 176 grid points, were used, which 

consisted of 35 grid points in the northern region, 26 in the central region, 53 in the north-eastern region, 12 in the eastern 

region, 17 in the western region, and 33 in the southern region. 

3- Methodology 

3-1- Generalized Extreme Value (GEV) Distribution 

Jenkinson (1955) [25] developed a method for analyzing extreme event known as the Generalized Extreme Value 

(GEV) distribution. The concept behind this method of extreme value analysis involves dividing the data into block time, 

with each block time having an equal duration, such as weekly, monthly, quarterly, or yearly. The maximum or minimum 

value from each block time is then analyzed as follows: 

The concept of a case in which the extreme value used in GEV analysis is the maximum value: 

Let Xi (i = 1, 2, …, n) denote independent and identically distributed random variables with distribution function, 

F(x), and define X(n) = max(X1, X2,…, Xn). In GEV analysis, three parameters are being considered: 𝜇 (location 

parameter), 𝜎 (scale parameter), and 𝜉 (shape parameter). 

Brockett & Galambos (1980) [26] presented the Cumulative Distribution Function (CDF) of the GEV when −∞ <
𝑥 < ∞ as follows: 

𝐺(𝑥; 𝜇, 𝜎, 𝜉) = 𝑒𝑥𝑝 {− [1 + 𝜉 (
𝑥−𝜇

𝜎
)]
−
1

𝜉
} (1) 

As defined on {1 + 𝜉 (
𝑥−𝜇

𝜎
) > 0}, when −∞ < 𝜇, 𝜉 < ∞ and 𝜎 > 0. 

If 𝜉 = 0 or𝜉 → 0, we get 

𝐺(𝑥; 𝜇, 𝜎, 𝜉) = 𝑒𝑥𝑝 {− 𝑒𝑥𝑝 [− (
𝑥−𝜇

𝜎
)]}  (2) 
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Considering Equation 1, in the case where 𝜉 < 0, the Generalized Extreme Value distribution is referred to as the 

"Weibull Distribution". If 𝜉 > 0, it is referred to as the "Fréchet Distribution". Additionally, considering Equation 2, in 

the case where𝜉 → 0, it is called the "Gumbel Distribution". The GEV has the following Probability Distribution 

Function (pdf): 

𝑔(𝑥; 𝜇, 𝜎, 𝜉)   =

{
 

 1
𝜎
[1 + 𝜉 (

𝑥−𝜇

𝜎
)]
−
1

𝜉
−1

𝑒𝑥𝑝 {− [1 + 𝜉 (
𝑥−𝜇

𝜎
)]
−
1

𝜉
} ; 𝜉 ≠ 0

1

𝜎
𝑒𝑥𝑝 (

𝑥−𝜇

𝜎
)
−1

𝑒𝑥𝑝 {− 𝑒𝑥𝑝 [− (
𝑥−𝜇

𝜎
)]} ; 𝜉 = 0

 (3) 

The concept of the case where the extreme values used in GEV analysis are minimum values is considered in contrast 

to the case where the extreme values are maximum values. 

3-2- Extreme Values under a Non-stationary Process 

The analysis of data under a non-stationary process is a comprehensive approach that encompasses all conditions of 

distribution models, including a stationary process. Therefore, extreme values used for analysis should be examined 

under a non-stationary process, such as data related to meteorology, hydrology, finance, insurance, or economics. An 

example of data characteristics under a non-stationary process is illustrated in Figure 2. 

 

Figure 2. Maximum daily exchange rate JPY to Thai Baht between 2009 and 2023 

The GEV distribution model under a non-stationary process, which describes the distribution of Xt at time t (where              

t = 1, 2, ..., m), can be represented as follows: 

𝑋𝑡 ∼ GEV(𝜇(𝑡), 𝜎(𝑡), 𝜉(𝑡))   

Parameters within a non-stationary process include, for example: 

𝑋𝑡 ∼ GEV(𝛽0 + 𝛽1𝑡, 𝜎, 𝜉), 𝑋𝑡 ∼ GEV(𝑒𝑥𝑝( 𝛽0 + 𝛽1𝑡), 𝜎, 𝜉), 𝑋𝑡 ∼ GEV(𝛽0 + 𝛽1𝑡, 𝑒𝑥𝑝( 𝛽0 + 𝛽1𝑡), 𝜉),𝑋𝑡 ∼

GEV(𝜇, 𝜎, 𝛽0 + 𝛽1 𝑒𝑥𝑝( − 𝛽2𝑡)) and 𝑋𝑡 ∼ GEV(𝛽0 + 𝛽1𝑡 + 𝛽2𝑡
2, 𝜎, 𝛽0 + 𝛽1𝑡) where 𝛽0, 𝛽1, 𝛽2 𝜇, 𝜎 and 𝜉 are parameters. 

The possible parameter models are as follows: 

Model 1 : 𝜇, 𝜎and 𝜉 are constants. 

Model 2 : 𝜇(𝑡) = 𝛽0 + 𝛽1𝑡, where 𝜎 and 𝜉 are constants. 

Model 6 :  𝜇(𝑡) = 𝛽0 + 𝛽1𝑡 and 𝜎(𝑡) = 𝑒𝑥𝑝( 𝛽0 + 𝛽1𝑡), where 𝜉 is a constant. 

Model 3 : 𝜇(𝑡) = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡
2, where 𝜎 and 𝜉 are constants. 

Model 4 : 𝜇(𝑡) = 𝛽0 + 𝛽1 𝑒𝑥𝑝( − 𝛽2𝑡), where 𝜎 and 𝜉 are constants. 

Model 5 : 𝜎(𝑡) = 𝑒𝑥𝑝( 𝛽0 + 𝛽1𝑡), where 𝜇 and 𝜉 are constants. 

Model 7 : 𝜇(𝑡) = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡
2 and 𝜎(𝑡) = 𝑒𝑥𝑝( 𝛽0 + 𝛽1𝑡), where 𝜉 is a constant. 

Model 8 : 𝜇(𝑡) = 𝛽0 + 𝛽1 𝑒𝑥𝑝( − 𝛽2𝑡) and 𝜎(𝑡) = 𝑒𝑥𝑝( 𝛽0 + 𝛽1𝑡), where 𝜉 is a constant. 

If the parameter analysis results align with Model 1, the data used for the analysis can be deemed stationary. 

Conversely, if the results correspond to other models, the data can be categorized as non-stationary. 
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3-3- Parameter Estimation 

The process of estimating GEV distribution parameters using the maximum likelihood estimation (MLE) method 

involves the following steps: 

 Build the likelihood function of the GEV probability distribution function, which will give: 

𝐿(𝛽)=∏ 𝑔(𝑥𝑡; 𝜇(𝑡), 𝜎(𝑡), 𝜉(𝑡))
𝑚
𝑡=1 ,  

where 𝛽 is a vector of parameter 𝛽𝑖, and 𝑔(𝑥𝑡; 𝜇(𝑡), 𝜎(𝑡), 𝜉(𝑡))represents the probability distribution function 

of the GEV, with 𝜇(𝑡),𝜎(𝑡) and 𝜉(𝑡)denoting the parameters at 𝑥𝑡. 

 Construct the log-likelihood function of the GEV probability distribution derived in step 1 and Equation 3 for t = 

1, 2, .., m as follows 

2.1. In the case where; 

𝑙(𝛽) = −∑ {𝑙𝑜𝑔 𝜎 (𝑡) + (1 +
1

𝜉(𝑡)
) 𝑙𝑜𝑔 [1 + 𝜉(𝑡) (

𝑥𝑡−𝜇(𝑡)

𝜎(𝑡)
)] + [1 + 𝜉(𝑡) (

𝑥𝑡−𝜇(𝑡)

𝜎(𝑡)
)]
−

1

𝜉(𝑡)
}𝑚

𝑡=1  (4) 

defined on 1 + 𝜉(𝑡) (
𝑥𝑡−𝜇(𝑡)

𝜎(𝑡)
) > 0 

2.2. In the case where 𝜉 = 0 or𝜉 → 0 

𝑙(𝛽) = −∑ {𝑙𝑜𝑔 𝜎 (𝑡) + (
𝑥𝑡−𝜇(𝑡)

𝜎(𝑡)
) + 𝑒𝑥𝑝 [− (

𝑥−𝜇

𝜎
)]}𝑚

𝑡=1  (5) 

An example of the GEV distribution under a non-stationary process: 

When 𝜇(𝑡) = 𝛽0 + 𝛽1 𝑒𝑥𝑝( − 𝛽2𝑡), with 𝜎 and 𝜉 are constants, we get: 

𝑙(𝜇(𝑡), 𝜎, 𝜉) = −∑ {𝑙𝑜𝑔 𝜎 + (1 +
1

𝜉
) 𝑙𝑜𝑔 [1 + 𝜉 (

𝑥𝑡−(𝛽0+𝛽1 𝑒
−𝛽2𝑡)

𝜎
)] + [1 + 𝜉 (

𝑥𝑡−(𝛽0+𝛽1 𝑒𝑥𝑝(−𝛽2𝑡))

𝜎
)]
−
1

𝜉
}𝑚

𝑡=1   

 Calculate a partial derivative of the functions obtained in step 2 to estimate the parameters 𝜇(𝑡), 𝜎(𝑡), and 𝜉(𝑡) 
(𝜇̂(𝑡), 𝜎̂(𝑡), 𝜉(𝑡)) as follows: 

𝜕𝑙

𝜕𝜇(𝑡)
(𝜇(𝑡), 𝜎(𝑡), 𝜉(𝑡)) = 0, 

𝜕𝑙

𝜕𝜎(𝑡)
(𝜇(𝑡), 𝜎(𝑡), 𝜉(𝑡)) = 0  

and 
𝜕𝑙

𝜕𝜉(𝑡)
(𝜇(𝑡), 𝜎(𝑡), 𝜉(𝑡)) = 0 

3-4- Model Selection 

Selecting the most suitable model for the given data under a non-stationary process using the maximum likelihood 

estimation method, as discussed in the previous section, means that if more than one related model is obtained, they are 

referred to as "Nested Models." The statistic used for testing in this case is the Deviance Statistic (D). The concept behind 

the deviance statistic test is based on the following hypotheses: 

H0 :The initial model is appropriate. 

H1 :The model being compared is appropriate. 

Let𝑀0and𝑀1be the initial model and the model being compared, respectively, under the condition 𝑀0 ⊂ 𝑀1. The 

statistic D, defined as follows, is used: 

𝐷(0,1) = 2{𝑙1(𝑀1) − 𝑙0(𝑀0)},  (6) 

where 𝑙0(𝑀0) and 𝑙1(𝑀1) represent the maximum log-likelihood values of 𝑀0 and 𝑀1, in that order. Based on 

Equation 6, the statistic D converges in distribution to a chi-square distribution with n (𝜒𝑛
2) degrees of freedom, where 

n is the difference in the number of parameters between 𝑀1 and 𝑀0.𝑀0is rejected at the level of significance (𝛼) if D > 

𝑐𝛼, where 𝑐𝛼 is the quantile at (1 − 𝛼) of 𝜒𝑛
2. If the null hypothesis is rejected, it indicates that 𝑀1 explains the variability 

in the data better than 𝑀0. The test using statistic D is conducted pairwise, comparing two models at a time. After a 

suitable model is found, it is tested against other models until the most suitable one is determined. 

According to the parameter models in Section 3.2, where 𝑀𝑖 represents the models at i, the following values are 

obtained:𝑀1 ⊂ 𝑀3 ⊂ 𝑀7,𝑀1 ⊂ 𝑀2 ⊂ 𝑀6, 𝑀1 ⊂ 𝑀4 ⊂ 𝑀8and 𝑀1 ⊂ 𝑀5. Figure 3. shows the steps for the sequential 

pairwise comparison, while Figure 4. presents the flowchart detailing the pairwise comparison process for the first case 

(𝑀1 ⊂ 𝑀3 ⊂ 𝑀7.) 
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Figure 3. The steps for the sequential pairwise comparison 

 

Figure 4. Example of the pairwise comparison process for the case 𝑴𝟏 ⊂ 𝑴𝟑 ⊂ 𝑴𝟕 

After determining the best-fit model, it is used to estimate the return level at time T years (𝑅̂𝑇) using the following 

formula: 

𝑅̂𝑇 = {
𝜇̂(𝑡) −

𝜎̂(𝑡)

𝜉̂(𝑡)
{1 − [− 𝑙𝑜𝑔 (1 −

1

𝑇
)]
−𝜉̂(𝑡)

} ;  𝜉 ≠ 0 

𝜇̂(𝑡) − 𝜎̂(𝑡) 𝑙𝑜𝑔 {− 𝑙𝑜𝑔 (1 −
1

𝑇
)} ;             𝜉 = 0 

  (7) 

4- Results and Discussion 

The data used in this study consisted of the daily maximum PM2.5 concentrations from 176 grid points, covering the 

period from January 2009 to October 2024. The statistical values of the top three daily maximum dust concentrations in 

each region of Thailand are shown in Table 1. 

From Table 1, it is evident that points with the maximum PM2.5 concentrations over the past 15 years, which exceed 

50 micrograms per cubic meter and pose health risks, are found in the northern, central, north-eastern, and southern 

regions. In the western and eastern regions, the maximum PM2.5 concentrations were below 50 micrograms per cubic 

meter. The western region recorded the lowest maximum PM2.5 concentrations, ranging between 30.195 and 32.640 

micrograms per cubic meter. The highest maximum PM2.5 concentrations was recorded in the north-eastern region in 

Loei Province in June 2010. The area with the second-highest PM2.5 concentrations was in the central region in Nakhon 

Sawan Province in June 2010. Both grid points exhibited maximum PM2.5 concentrations exceeding 100 micrograms 

per cubic meter. 

In applying extreme value theory for modeling, the Generalized Extreme Value (GEV) distribution is used, setting a 

monthly block time and analyzing daily maximum PM2.5 concentrations for each month. The analysis employed a 

method for calculating extreme values under a non-stationary process across eight models (M1,M2,….,M8), using data 

from 176 grid points. The results indicated that Model 2 (M2) was suitable for 5 grid points, while Model 1 (M1) was 

suitable for the remaining 171 grid points. Table 2 presents the estimated parameters for the suitable model at the grid 

points with the three highest daily maximum PM2.5 concentration values in each region, and Table 3 provides the 

estimated parameter values for Model 2 at all 5 grid points. 
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Table 1. Statistical values of the top two daily maximum PM2.5 concentrations in each region 

Regions 
Lat 

[oN] 

Long 

[oE] 
Provinces 

Average daily 

maximum PM2.5 [
𝝁

𝒎𝟑
] 

Daily maximum 

PM2.5 [
𝝁

𝒎𝟑
] 

Month/Year of daily 

maximum PM2.5 [
𝝁

𝒎𝟑
] 

Northern 

17.50 98.750 Lamphun 9.909 95.315 May 2018 

19.50 97.500 Mae Hong Son 10.648 91.881 June 2012 

18.00 101.250 Uttaradit 9.755 83.557 June 2021 

Central 

15.50 100.000 Nakhon Sawan 8.840 102.820 June 2012 

16.00 100.000 Nakhon Sawan 9.009 88.214 June 2012 

15.00 100.000 Chai Nat 8.262 69.442 August 2018 

Western 

16.00 98.750 Tak 8.375 48.007 May 2023 

16.50 98.750 Tak 9.026 47.483 May 2024 

17.00 98.750 Tak 9.748 45.387 May 2018 

Eastern 

14.00 101.250 Prachinburi 7.275 32.640 June 2022 

14.00 101.875 Prachinburi 7.193 31.097 May 2023 

13.00 101.250 Rayong 6.623 30.195 July 2009 

North-eastern 

17.00 101.875 Loei 10.123 25.126  June 2010 

16.00 104.375 Yasothon 8.414 70.082 May 2019 

15.50 104.375 Yasothon 7.943 62.981 May 2019 

Southern 

7.00 99.375 Satun 5.256 79.483 July 2011 

7.00 100.000 Satun 5.021 71.857 July 2011 

6.50 100.000 Satun 5.193 71.421 July 2011 

Table 2. The suitable model for daily maximum PM2.5 concentrations at the points with the highest recorded PM2.5 

concentrations in each region 

Regions 
Lat 

[oN] 

Long 

[oE] 
Provinces 

Estimated parameter values 

𝝁 𝝈 𝝃 

Northern 

17.50 98.750 Lamphun 5.43794 3.86993 0.43372 

19.50 97.500 Mae Hong Son 5.79684 4.51935 0.39997 

18.00 101.250 Uttaradit 5.44339 3.88786 0.39731 

Central 

15.50 100.000 Nakhon Sawan 4.95374 3.19005 0.42020 

16.00 100.000 Nakhon Sawan 5.25034 3.39209 0.37786 

15.00 100.000 Chai Nat 4.83485 3.11694 0.39271 

Western 

16.00 98.750 Tak 5.08091 3.46251 0.31815 

16.50 98.7500 Tak 5.35282 3.72886 0.34448 

17.00 98.750 Tak 5.68061 4.01496 0.36827 

Eastern 

14.00 101.250 Prachinburi 4.27072 2.99374 0.35536 

14.00 101.875 Prachinburi 4.17133 2.97524 0.36545 

13.00 101.250 Rayong 3.94226 2.76852 0.32392 

Northeastern 

17.00 101.875 Loei 5.34227 3.69467 0.44548 

16.00 104.375 Yasothon 4.62896 3.33144 0.41728 

15.50 104.375 Yasothon 4.47031 3.25083 0.38407 

Southern 

7.00 99.375 Satun 1.86574 1.59438 0.65169 

7.00 100.000 Satun 2.16816 1.84739 0.61591 

6.50 100.000 Satun 2.06116 1.82844 0.66314 
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Table 3. The suitable model for Model 2 

Regions 
Lat 

[oN] 

Long 

[oE] 
Provinces 

Estimated parameter values 

𝜷𝟎 𝜷𝟏 𝝈 𝝃 

Eastern 14.00 103.125 Sa Kaeo 4.07296 0.00003 3.03538 0.38493 

Central 15.50 99.375 Uthai Thani 4.89261 -0.00001 3.14944 0.33314 

North-eastern 15.50 102.50 Nakhon Ratchasima 4.76459 0.00001 3.37142 0.38305 

North-eastern 18.50 103.125 Bueng Kan 5.20203 -0.00003 3.39126 0.28689 

Northern 19.00 98.125 Mae Hong Son 4.91450 0.00427 3.99081 0.41135 

Note: Model 2 is𝜇(𝑡) = 𝛽0 + 𝛽1𝑡, where 𝜎 and 𝜉 are constants. 

Table 2 presents the estimated parameters of the best-fitting model at the grid points with the three highest daily 

maximum PM2.5 concentrations. At all three locations, Model 1 was identified as the most suitable. Model 1 consists 

of three parameters 𝜇, 𝜎and 𝜉, all of which are constants. In contrast, Table 3 shows the estimated parameters of Model 

2, which was determined to be the best-fitting model for 5 out of the 176 grid points. In Model 2 𝜇(𝑡) = 𝛽0 + 𝛽1𝑡, where 

𝜎 and 𝜉 are constants. 

After the suitable model for each grid point was determined, the resulting model was used for return level estimation 

at 5, 10, 25, and 50 years. The return levels of the daily maximum PM2.5 concentrations in areas with the highest 

recorded PM2.5 concentrations in each region, based on Model 1 in Table 2, are shown in Table 4. The return levels for 

Model 2, as presented in Table 3, are displayed in Table 5. 

Table 4. Return levels of daily maximum PM2.5 concentrations in areas with the three highest recorded PM2.5 

concentrations in each region, according to Model 1 in Table 2 

Regions 
Lat 

[oN] 

Long 

[oE] 
Provinces 

Return levels (
𝝁

𝒎𝟑
) 

5 year 10 year 25 year 50 year 

Northern 

17.5 98.750 Lamphun 13.61646 20.19510 32.24072 44.98524 

19.50 97.500 Mae Hong Son 15.08471 22.29142 35.10912 48.30400 

18.00 101.250 Uttaradit 13.41599 19.58458 30.53086 41.77495 

Central 

15.50 100.000 Nakhon Sawan 11.62023 16.90587 26.47192 36.48254 

16.00 100.000 Nakhon Sawan 17.28334 26.33577 35.48866 12.09593 

15.00 100.000 Chai Nat 11.20236 16.10484 24.76997 33.63760 

Western 

16.00 98.750 Tak 16.46634 24.30720 31.85889 11.73674 

16.50 98.7500 Tak 12.67552 18.02893 27.10687 36.03959 

17.00 98.750 Tak 13.71979 19.74927 30.18480 40.65415 

Eastern 

14.00 101.250 Prachinburi 10.20215 14.58948 22.09903 29.55415 

14.00 101.875 Prachinburi 10.11494 14.55925 22.23262 29.91321 

13.00 101.250 Rayong 9.28897 13.11206 19.48154 25.64502 

Northeastern 

17.00 101.875 Loei 13.22715 19.64942 31.52845 44.21714 

16.00 104.375 Yasothon 11.57410 17.06356 26.97353 37.31949 

15.50 104.375 Yasothon 11.06437 16.09454 24.91960 33.88774 

Southern 

7.00 99.375 Satun 6.72407 11.16327 20.67701 32.33961 

7.00 100.000 Satun 6.52492 10.85609 20.14710 31.54667 

6.50 100.000 Satun 6.75903 11.56632 22.29955 35.96659 

Table 5. Return levels of daily maximum PM2.5 concentrations, according to Model 2 in Table 3 

Regions 
Lat 

[oN] 

Long 

[oE] 
Provinces 

Return levels (
𝝁

𝒎𝟑
) 

5 year 10 year 25 year 50 year 

Eastern 14.00 103.125 Sa Kaeo 10.23964 14.94403 23.20360 31.60291 

Central 15.50 99.375 Uthai Thani 11.01954 15.44515 22.87706 30.12285 

Northeastern 15.50 102.50 Nakhon Ratchasima 11.59861 16.80522 25.93177 35.19855 

Northeastern 18.50 103.125 Bueng Kan 11.55263 15.91921 22.96670 29.58340 

Northern 19.00 98.125 Mae Hong Son 14.00467 20.50716 32.18614 44.32038 
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Tables 4 and 5 show the return levels of PM2.5 concentrations over a time period of T years with a probability of 
1/T. For example, a 5-year return level means that within 5 years, PM2.5 concentrations at the predicted level will occur 
at least once with a probability of 1/5, or 0.2. The predicted values for all 176 grid points at the 5 year, 10 year, 25 year, 
and 50 year return levels were used to create contour graphs using GIS Kriging interpolation, with the results presented 
in Figures 5. 

    
(a)                                                                                                    (b) 

   
(c)                                                                                                     (d) 

Figure 5. Estimated values for the return levels in (a) 5, (b) 10, (c) 25 and (d) 50 years of daily maximum PM2.5 concentrations 

Figure 5 shows that the northern region of Thailand has higher PM2.5 concentrations than the other regions, especially 
in Mae Hong Son Province and Lamphun Province. Provinces located to the west of the northeastern and central regions 
have similar PM2.5 concentrations, while the southern region of Thailand has lower PM2.5 concentrations than the other 
regions. 
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5- Conclusion 

In developing the extreme value theory model using the Generalized Extreme Value distribution under a non-

stationary process with 8 models, it is found that Model 2 is the most suitable model for 5 grid points, while the remaining 

171 grid points are best fit by Model 1. The return level of daily maximum PM2.5 concentrations increases with longer 

return periods, which is consistent with the findings of Guayjarernpanishk et al. [22]. The results of the return level 

estimation for the daily maximum PM2.5 concentrations indicate that the northern region of Thailand has higher PM2.5 

concentrations than the other regions, with the values exceeding the WHO recommended air quality guideline of 15 

micrograms per cubic meter [27] for all return periods, except for the 5 year return period, primarily due to factors such 

as wildfires, which are among the most significant contributors. Wildfires can be broadly divided into two types. The 

first type are wildfires that occur naturally. In the northern region, there are deciduous forests, such as dry dipterocarp 

forests and mixed deciduous forests, which cover most of the area. When these forests begin shedding their leaves, they 

create excellent fuel, which can naturally ignite fires. However, natural forest fires are rare, while man-made fires occur 

more frequently. Another issue is the smog that drifts in from the burning of farmlands in neighboring countries. In the 

southern region of Thailand, PM2.5 concentrations are lower than in other regions because the wind direction, especially 

during the southwest and northeast monsoon seasons which help, blow pollution out of the area. Moreover, these winds 

do not carry as much dust from neighboring countries as those in the northern or north-eastern region. The southern 

region has a less dense population and fewer industries that emit dust and pollution compared to other regions, such as 

the northern and north-eastern regions, where burning is used for agriculture, or the central region, where there are many 

industrial estates. 
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