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The objectives of this research were to develop a model to forecast and estimate the return levels for Non-Stationary:
daily maximum PM2.5 concentrations in Thailand, applying Extreme Value Theory (EVT) with the .
Generalized Extreme Value (GEV) distribution under eight models for stationary and non-stationary ~ 7™M2.5 Concentrations.
process. This research utilized reanalysis data from the NASA EARTHDATA satellite, represented

as grid points with a spatial resolution of 50 x 62.5 km, enabling the analysis of daily maximum

PM2.5 concentrations across 176 grid points from January 1, 2009 to October 31, 2024. The analysis

revealed that Model 2 (u(t) = 8, + B,twhere gand &are constants) is the most suitable model for

five grid points, namely Sa Kaeo Province, Uthai Thani Province, Nakhon Ratchasima Province, Article History:
Bueng Kan Province and Mae Hong Son Province, whereas Model 1 (1, cand &are constants) is

suitable for the remaining 171 grid points. Estimating the return levels for return periods of 5, 10, ~Received: 08  April 2025
25, and 50 years _showed thgt Northern Thailand had t_he most extreme dai Iy_ PM2.5 goncentrations, Revised: 09  August 2025
for all return periods especially Mae Hong Son Province. The results of this analysis can serve as

valuable information to support decision-making for response planning in high-risk areas, aiding in ~ Accepted: 16 August 2025

efficient resource allocation and preventive measures. Published: o1 October 2025

1- Introduction

The concentration of greenhouse gases in the Earth's atmosphere has risen rapidly, particularly since the Industrial
Revolution. Over the last 50 years, human activities have driven carbon dioxide levels up from 280 ppm (parts per
million), a value that had remained stable for millions of years. By 2022, the concentration had reached 421 ppm,
representing a 50% increase compared to pre-industrial levels. This significant rise has exacerbated global warming,
causing the climate to increasingly deviate from its original state. Thailand is inevitably affected by global warming.
Over the past decade, Thailand's overall air quality has steadily deteriorated, with many areas continuing to experience
air pollutant levels that exceed standard limits. One of the primary pollutants remains “particles measuring 2.5 microns
or smaller.” The growing environmental and pollution issues, along with the continued rise in greenhouse gas emissions,
present a significant challenge to achieving sustainable economic growth in the country.

Many researchers have developed models to forecast PM2.5 concentrations, including Sudumbrekar et al. [1], which
developed an effective model to forecast PM2.5 in India using the ARIMA model. In 2022, Zhao et al. [2] studied the
forecasting of Beijing's PM2.5 using a hybrid ARIMA model. Sudha & Suguna [3] presented an ARIMA model for
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PM2.5 forecasting in Chennai, India. Amelia et al. [4] forecasted PM2.5 pollution in Jakarta using exponential smoothing
and ARIMA forecasting methods, and Wang et al. [5] established a monitoring and forecasting system for PM2.5 and
other real-time environmental data in China’s opencast coal mines using ARIMA and Double Exponential Smoothing
models. In 2023, Duan et al. [6] built an air quality forecasting model using the ARIMA model. In 2024, Herndndez et
al. [7] examined the influence of human activities on urban air quality, and used the ARIMA model to examine the
impact of COVID-19 isolation measures on PM10 and PM2.5 levels in an upland Latin American city, Bogota,
Colombia. Pyae & Kallawicha [8] studied the distribution of air pollutants, including PM2.5, PM10, and O3, using
multiple linear regression modeling, which also included a calculation of the Air Quality Index (AQI) and the
development of an ARIMA model to predict the AQI of PM2.5 and PM10 in Myanmar. Gao et al. [9] analyzed and
predicted the concentrations of air pollutants (PM2.5, PM10, SO2, and CO) and the atmospheric environmental quality
in Hunan Province, China, using the ARIMA model. Mahawan et al. [10] studied a Situation and temporal behaviors of
air pollution in Chiang Mai, Thailand by ARIMA model. Sharma et al. [11] presented a model to systematically forecast
PM2.5 concentrations in India. Abuouelezz, et al. [12] explored PM2.5 and PM10 ML forecasting models in a
comparative study at six ground stations in Abu Dhabi, United Arab Emirates. Nourmohammad & Rashidi [13] analyzed
ground data analysis for PM2.5 prediction using predictive modeling techniques.

Nonetheless, the estimation and forecasting of PM2.5 using the ARIMA model remains limited to short-term
forecasts. Therefore, spatially accurate forecasting especially, for long-term predictions is both important and
challenging, enabling relevant agencies to plan for long-term responses.

Many researchers have applied extreme value theory to develop models for forecasting long-term extreme air
pollution for example, Pornsopin et al. [14] studied risk analysis of PM2.5 at Khon Kaen city, Thailand. Intarapak and
Supapakorn [15] investigated the statistical distribution of PM2.5 concentration in Chiang Mai, Thailand. Bodhisuwan
& Aryuyuen [16] utilized the poisson transmuted Janardan distribution for modelling count data. Aguirre et al. [17]
developed a novel tree ensemble model to approximate the generalized extreme value distribution parameters of the
PM2.5 maxima in the Mexico City metropolitan area. Peter et al. [18] studied trends of extreme events and long-term
health impacts of particulate matter in a southern Indian industrial area. Yang et al. [19] investigated extreme event
discovery with self-attention for PM2.5 anomaly prediction. Klinjan et al. [20] analyzed extreme value with new
generalized extreme value distributions for risk analysis on PM2.5 and PM10 in Pathum Thani, Thailand. Vazquez et al.
[21] studied bivariate analysis of pollutants monthly maxima in Mexico City using extreme value distributions and
copula. Guayjarernpanishk et al. [22] developed statistical model of air pollution forecasting in a regional context for
sustainable management. Ghosh [23] assessed air quality extremes via extreme value analysis of metropolitan cities
across India and the world. Maricq & Bishop [24] conducted an extreme value theory analysis of high emitter trends
across four US cities from 1995 to 2021.

From the research mentioned above, the data used for analysis was collected from air pollution quality measurements
in each country and satellite data. Extreme value theory under a stationary process was applied in the data analysis
method used in the aforementioned research. In general, when analyzing extreme data, weather data may follow a non-
stationary process, involving other variables such as time or season. Therefore, before analyzing the data to determine
the model parameters, it is crucial to assess whether the data follows a stationary or non-stationary process. Each process
requires a different analysis procedure and methods to select the suitable models. Failing to consider the data
characteristics may result in an inaccurate model parameter estimation, which can negatively impact subsequent
applications and lead to serious consequences, particularly in data analysis requiring high model accuracy. Considering
the significance of the aforementioned issues, there is an urgent need for forecasting air pollution-related information.
Consequently, this study aimed to develop a long-term forecasting model for extreme PM2.5 concentrations using a non-
stationary process for regions in Thailand. Satellite data was utilized to predict potential extreme PM2.5 concentrations,
providing relevant agencies with valuable insights to enhance their operational efficiency.

2- Scope of Research

2-1-Study Area

Thailand lies between latitudes 5°37'N and 20°27'N and longitudes 97°22'E and 105°37'E. The country is categorized
into six regions (Figure 1): the northern region (9 provinces in orange), the central region (22 provinces in yellow), the
northeastern region (20 provinces in pink), the eastern region (7 provinces in purple), the western region (5 provinces in
green), and the southern region (14 provinces in blue).

Northernmost point: Latitude 20°27'30"N, Mae Sai District, Chiang Rai Province.

Southernmost point: Latitude 5°37'N, Betong District, Yala Province.

Easternmost point: Longitude 105°37'30"E, Phibun Mangsahan District, Ubon Ratchathani Province.

Westernmost point: Longitude 97°22'E, Mae Lan Noi District, Mae Hong Son Province.
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Figure 1. Study area covering the 6 regions of Thailand

2-2-Data Preparation

Data obtained from the NASA EARTHDATA satellite (https://giovanni.gsfc.nasa.gov/giovanni/) consisted of grid
point data with a spatial resolution of 50 x 62.5 km and hourly dust concentration data. In this research, the daily
maximum PM2.5 concentrations from January 1, 2009 to October 31, 2024, totaling 176 grid points, were used, which
consisted of 35 grid points in the northern region, 26 in the central region, 53 in the north-eastern region, 12 in the eastern
region, 17 in the western region, and 33 in the southern region.

3- Methodology
3-1-Generalized Extreme Value (GEV) Distribution

Jenkinson (1955) [25] developed a method for analyzing extreme event known as the Generalized Extreme Value
(GEV) distribution. The concept behind this method of extreme value analysis involves dividing the data into block time,
with each block time having an equal duration, such as weekly, monthly, quarterly, or yearly. The maximum or minimum
value from each block time is then analyzed as follows:

The concept of a case in which the extreme value used in GEV analysis is the maximum value:

Let X; (i=1, 2, ..., n) denote independent and identically distributed random variables with distribution function,
F(x), and define Xm = max(Xi, Xa,..., Xn). In GEV analysis, three parameters are being considered: p (location
parameter), o (scale parameter), and & (shape parameter).

Brockett & Galambos (1980) [26] presented the Cumulative Distribution Function (CDF) of the GEV when —wo <
x < oo as follows:

G(x;p,0,8) =exp {— [1 +¢ (X?T“)]_%} @

As defined on {1 +¢ (X?T") > 0}, when —co < y,& < coand g > 0.
If&=0o0r¢§ - 0, we get

G(x;u,0,8) =exp {— exp [— (%)]} )

Page | 2730



Emerging Science Journal | Vol. 9, No. 5

Considering Equation 1, in the case where ¢ < 0, the Generalized Extreme Value distribution is referred to as the
"Weibull Distribution". If & > 0, it is referred to as the "Fréchet Distribution". Additionally, considering Equation 2, in
the case where§ — 0, it is called the "Gumbel Distribution”. The GEV has the following Probability Distribution

Function (pdf):
Ll e G ew{- 146G e =0
NETRORE B
U S (3) enp{—exp[-()]}i¢ = 0

The concept of the case where the extreme values used in GEV analysis are minimum values is considered in contrast
to the case where the extreme values are maximum values.

®)

3-2-Extreme Values under a Non-stationary Process

The analysis of data under a non-stationary process is a comprehensive approach that encompasses all conditions of
distribution models, including a stationary process. Therefore, extreme values used for analysis should be examined
under a non-stationary process, such as data related to meteorology, hydrology, finance, insurance, or economics. An
example of data characteristics under a non-stationary process is illustrated in Figure 2.
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Figure 2. Maximum daily exchange rate JPY to Thai Baht between 2009 and 2023

The GEV distribution model under a non-stationary process, which describes the distribution of X; at time t (where
t=1, 2, ..., m), can be represented as follows:

Xe ~ GEV(u(t), 0(¢),$ (1)
Parameters within a non-stationary process include, for example:

X¢ ~ GEV(B, + B1t,0,¢), X¢ ~ GEV(exp(po + B1t), 0,$), Xi ~ GEV(B, + B1t, exp(Bo + P1t), §).X, ~
GEV(u, 0,8, + By exp( — B,t)) and X, ~ GEV (B, + Bit + Bot?, 0, By + fit) Where By, B1, B, u, o and & are parameters.

The possible parameter models are as follows:

Model 1: u,gand & are constants.

Model 2 u(t) = By + S1t, where o and £ are constants.

Model 6:  u(t) = By + Byt and a(t) = exp( B, + B1t), where £ is a constant.

Model 3:  u(t) = Bo + Bit + B,t?, where o and & are constants.

Model 4:  u(t) = By + B1 exp(— B,t), where o and £ are constants.

Model 5:  a(t) = exp(By + B1t), where u and & are constants.

Model 7:  u(t) = Bo + Bit + B,t? and a(t) = exp( B, + B1t), where & is a constant.
Model 8: u(t) = By + 1 exp(— B,t) and a(t) = exp( By + f1t), where £ is a constant.

If the parameter analysis results align with Model 1, the data used for the analysis can be deemed stationary.
Conversely, if the results correspond to other models, the data can be categorized as non-stationary.
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3-3-Parameter Estimation

The process of estimating GEV distribution parameters using the maximum likelihood estimation (MLE) method
involves the following steps:

o Build the likelihood function of the GEV probability distribution function, which will give:
L(B)=II¢%1 g Cxe; u(8), 0 (6), (1)),

where f is a vector of parameter S;, and g(x;; u(t), a(t), £(t))represents the probability distribution function
of the GEV, with u(t),o(t) and &(t)denoting the parameters at x;.

o Construct the log-likelihood function of the GEV probability distribution derived in step 1 and Equation 3 for t =
1,2, .., mas follows

2.1. In the case where;

(B =-1, {log o @) +(1+5)log [t +¢(0 (52| + [1+¢) (":f‘g”)]_%} (4)
defined on 1 + £(¢t) (xt;(—’i)(t)) >0

2.2. In the case where ¢ =0 or§ - 0

(B = =T {log o (&) + (*552) + exp |- (52)]} 5)

An example of the GEV distribution under a non-stationary process:

When u(t) = By + B1 exp(— B,t), with o and £ are constants, we get:

I(u(t),0,8) ==X, {log o+ (1 + %) log [1 +¢ (x—t_(ﬁ”fl e_ﬁzt))] + [1 +& (x—t_(ﬁ‘)w1 exp(_ﬁzt)))]_%}

o Calculate a partial derivative of the functions obtained in step 2 to estimate the parameters u(t), a(t), and &(t)
(a(6), 8(t), €(t)) as follows:
al
au W(©,0(0),8(1) =0,

al
do(t)

and 52 (u(), 0(8),£(0) = 0

u(@®,0(0),5(®) =0

3-4- Model Selection

Selecting the most suitable model for the given data under a non-stationary process using the maximum likelihood
estimation method, as discussed in the previous section, means that if more than one related model is obtained, they are
referred to as "Nested Models.” The statistic used for testing in this case is the Deviance Statistic (D). The concept behind
the deviance statistic test is based on the following hypotheses:

Ho :The initial model is appropriate.
H; :The model being compared is appropriate.

LetM,andM, be the initial model and the model being compared, respectively, under the condition M, c M;. The
statistic D, defined as follows, is used:

D(0,1) = 2{l;(M,) — ly(Mo)}, (6)

where [,(M,) and l,(M;) represent the maximum log-likelihood values of M, and M,, in that order. Based on
Equation 6, the statistic D converges in distribution to a chi-square distribution with n (x2) degrees of freedom, where
n is the difference in the number of parameters between M, and M,.M,is rejected at the level of significance (a( if D >
g, Where ¢ is the quantile at (1 — a) of y2. If the null hypothesis is rejected, it indicates that M, explains the variability
in the data better than M,. The test using statistic D is conducted pairwise, comparing two models at a time. After a
suitable model is found, it is tested against other models until the most suitable one is determined.

According to the parameter models in Section 3.2, where M; represents the models at i, the following values are
obtained:M, ¢ M; ¢ M, M, ¢ M, € My, M, € M, € Mgand M; c Ms. Figure 3. shows the steps for the sequential
pairwise comparison, while Figure 4. presents the flowchart detailing the pairwise comparison process for the first case
M, © M3 © My(
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Figure 3. The steps for the sequential pairwise comparison
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Figure 4. Example of the pairwise comparison process for the case M, ¢ M3 c M,

After determining the best-fit model, it is used to estimate the return level at time T years (R;) using the following

formula:
a0 - 2201 [1og (1=} £ 0

at) —6(t) log {— log (1 - %)}, &=

=)
3
Il

()

4- Results and Discussion

The data used in this study consisted of the daily maximum PM2.5 concentrations from 176 grid points, covering the
period from January 2009 to October 2024. The statistical values of the top three daily maximum dust concentrations in
each region of Thailand are shown in Table 1.

From Table 1, it is evident that points with the maximum PM2.5 concentrations over the past 15 years, which exceed
50 micrograms per cubic meter and pose health risks, are found in the northern, central, north-eastern, and southern
regions. In the western and eastern regions, the maximum PM2.5 concentrations were below 50 micrograms per cubic
meter. The western region recorded the lowest maximum PM2.5 concentrations, ranging between 30.195 and 32.640
micrograms per cubic meter. The highest maximum PM2.5 concentrations was recorded in the north-eastern region in
Loei Province in June 2010. The area with the second-highest PM2.5 concentrations was in the central region in Nakhon
Sawan Province in June 2010. Both grid points exhibited maximum PM2.5 concentrations exceeding 100 micrograms
per cubic meter.

In applying extreme value theory for modeling, the Generalized Extreme Value (GEV) distribution is used, setting a
monthly block time and analyzing daily maximum PM2.5 concentrations for each month. The analysis employed a
method for calculating extreme values under a non-stationary process across eight models (M1,M.,....,Ms), using data
from 176 grid points. The results indicated that Model 2 (M) was suitable for 5 grid points, while Model 1 (M1) was
suitable for the remaining 171 grid points. Table 2 presents the estimated parameters for the suitable model at the grid
points with the three highest daily maximum PM2.5 concentration values in each region, and Table 3 provides the
estimated parameter values for Model 2 at all 5 grid points.
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Table 1. Statistical values of the top two daily maximum PM2.5 concentrations in each region

Regions [IESE L[glg]g Provinces maxﬁ;/ﬁl;g; l\(/jlz;ilsy " Daily maxizum Mor_1th/Year of daiILy
. [ms] PM2.5 [ms] maximum PM2.5 [m3]
1750  98.750 Lamphun 9.909 95.315 May 20)A
Northern Y4.ev 97.500 Mae Hong Son 10.648 91.881 June 2012
18.00 101.250 Uttaradit 9.755 83.557 June 2021
1550  100.000 Nakhon Sawan 8.840 102.820 June 2012
Central 16.00  100.000 Nakhon Sawan 9.009 88.214 June 2012
15.00 100.000 Chai Nat 8.262 69.442 August 2018
16.00  98.750 Tak 8.375 48.007 May 2023
Western 16.50  98.750 Tak 9.026 47.483 May 2024
17.00  98.750 Tak 9.748 45.387 May 2018
1400 101.250 Prachinburi 7.275 32.640 June 2022
Eastern 14.00 101.875 Prachinburi 7.193 31.097 May 2023
13.00 101.250 Rayong 6.623 30.195 July 2009
17.00 101.875 Loei 10.123 YY1, Yo June 2010
North-eastern ~ 16.00  104.375 Yasothon 8.414 70.082 May 2019
1550 104.375 Yasothon 7.943 62.981 May 2019
700  99.375 Satun 5.256 79.483 July 2011
Southern 7.00  100.000 Satun 5.021 71.857 July 2011
6.50  100.000 Satun 5.193 71.421 July 2011

Table 2. The suitable model for daily maximum PM2.5 concentrations at the points with the highest recorded PM2.5
concentrations in each region

Estimated parameter values

Regions [Igsﬁ I_[é)glg Provinces
u 4 3

17.50 98.750 Lamphun 5.43794 3.86993 0.43372
Northern 14,00 97.500 Mae Hong Son 5.79684 4.51935 0.39997
18.00 101.250 Uttaradit 5.44339 3.88786 0.39731
15.50 100.000 Nakhon Sawan 4.95374 3.19005 0.42020
Central 16.00 100.000 Nakhon Sawan 5.25034 3.39209 0.37786
15.00 100.000 Chai Nat 4.83485 3.11694 0.39271
16.00 98.750 Tak 5.08091 3.46251 0.31815
Western 16.50 98.7500 Tak 5.35282 3.72886 0.34448
17.00 98.750 Tak 5.68061 4.01496 0.36827
14.00 101.250 Prachinburi 4.27072 2.99374 0.35536
Eastern 14.00 101.875 Prachinburi 4.17133 2.97524 0.36545
13.00 101.250 Rayong 3.94226 2.76852 0.32392
17.00 101.875 Loei 5.34227 3.69467 0.44548
Northeastern 16.00 104.375 Yasothon 4.62896 3.33144 0.41728
15.50 104.375 Yasothon 4.47031 3.25083 0.38407
7.00 99.375 Satun 1.86574 1.59438 0.65169
Southern 7.00 100.000 Satun 2.16816 1.84739 0.61591
6.50 100.000 Satun 2.06116 1.82844 0.66314
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Table 3. The suitable model for Model 2

Lat Long Estimated parameter values

Regions [°N] [E] Provinces 2 Py . :
Eastern 14.00 103.125 Sa Kaeo 4.07296  0.00003  3.03538  0.38493
Central 15.50 99.375 Uthai Thani 4.89261 -0.00001 3.14944 0.33314
North-eastern 15.50 102.50 Nakhon Ratchasima 476459  0.00001  3.37142 0.38305
North-eastern 18.50 103.125 Bueng Kan 520203 -0.00003 3.39126  0.28689
Northern 19.00 98.125 Mae Hong Son 491450  0.00427  3.99081 0.41135

Note: Model 2 isu(t) = B, + B1t, where o and ¢ are constants.

Table 2 presents the estimated parameters of the best-fitting model at the grid points with the three highest daily
maximum PM2.5 concentrations. At all three locations, Model 1 was identified as the most suitable. Model 1 consists
of three parameters u, gand &, all of which are constants. In contrast, Table 3 shows the estimated parameters of Model
2, which was determined to be the best-fitting model for 5 out of the 176 grid points. In Model 2 u(t) = B, + B,t, where
o and ¢ are constants.

After the suitable model for each grid point was determined, the resulting model was used for return level estimation
at 5, 10, 25, and 50 years. The return levels of the daily maximum PM2.5 concentrations in areas with the highest
recorded PM2.5 concentrations in each region, based on Model 1 in Table 2, are shown in Table 4. The return levels for
Model 2, as presented in Table 3, are displayed in Table 5.

Table 4. Return levels of daily maximum PM2.5 concentrations in areas with the three highest recorded PM2.5
concentrations in each region, according to Model 1 in Table 2

Return levels (5(

Regions [I;lél; L[(?E]g Provinces
5 year 10 year 25 year 50 year
175 98.750 Lamphun 13.61646 20.19510 32.24072 44.98524
Northern 14,04 97.500 Mae Hong Son 15.08471 2229142 35.10912  48.30400
18.00 101.250 Uttaradit 1341599 19.58458  30.53086  41.77495
15.50 100.000 Nakhon Sawan 11.62023 16.90587 26.47192  36.48254
Central 16.00 100.000 Nakhon Sawan 17.28334  26.33577 35.48866  12.09593
15.00 100.000 Chai Nat 11.20236  16.10484 24.76997  33.63760
16.00 98.750 Tak 16.46634 24.30720 31.85889  11.73674
Western 16.50 98.7500 Tak 12.67552 18.02893 27.10687  36.03959
17.00 98.750 Tak 13.71979  19.74927 30.18480  40.65415
14.00 101.250 Prachinburi 10.20215 14.58948 22.09903  29.55415
Eastern 14.00 101.875 Prachinburi 10.11494 1455925 22.23262  29.91321
13.00 101.250 Rayong 0.28897  13.11206 19.48154  25.64502
17.00 101.875 Loei 13.22715 19.64942 31.52845 44.21714
Northeastern 16.00 104.375 Yasothon 1157410 17.06356 26.97353  37.31949
15.50 104.375 Yasothon 11.06437 16.09454 24.91960 33.88774
7.00 99.375 Satun 6.72407  11.16327 20.67701  32.33961
Southern 7.00 100.000 Satun 6.52492  10.85609 20.14710 31.54667
6.50 100.000 Satun 6.75903  11.56632 22.29955  35.96659

Table 5. Return levels of daily maximum PM2.5 concentrations, according to Model 2 in Table 3

Return levels (£
m

. Lat Long .

Regions N oF Provinces
[N [El 5 year 10 year 25 year 50 year
Eastern 14.00 103.125 Sa Kaeo 10.23964  14.94403 23.20360 31.60291
Central 15.50 99.375 Uthai Thani 11.01954 15.44515 22.87706  30.12285
Northeastern 15.50 102.50 Nakhon Ratchasima  11.59861  16.80522  25.93177  35.19855
Northeastern 18.50 103.125 Bueng Kan 1155263 1591921 22.96670  29.58340
Northern 19.00 98.125 Mae Hong Son 14.00467 20.50716 32.18614 44.32038
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Tables 4 and 5 show the return levels of PM2.5 concentrations over a time period of T years with a probability of
1/T. For example, a 5-year return level means that within 5 years, PM2.5 concentrations at the predicted level will occur
at least once with a probability of 1/5, or 0.2. The predicted values for all 176 grid points at the 5 year, 10 year, 25 year,
and 50 year return levels were used to create contour graphs using GIS Kriging interpolation, with the results presented
in Figures 5.
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Figure 5. Estimated values for the return levels in (a) 5, (b) 10, (c) 25 and (d) 50 years of daily maximum PM2.5 concentrations

Figure 5 shows that the northern region of Thailand has higher PM2.5 concentrations than the other regions, especially
in Mae Hong Son Province and Lamphun Province. Provinces located to the west of the northeastern and central regions
have similar PM2.5 concentrations, while the southern region of Thailand has lower PM2.5 concentrations than the other
regions.
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5- Conclusion

In developing the extreme value theory model using the Generalized Extreme Value distribution under a non-
stationary process with 8 models, it is found that Model 2 is the most suitable model for 5 grid points, while the remaining
171 grid points are best fit by Model 1. The return level of daily maximum PM2.5 concentrations increases with longer
return periods, which is consistent with the findings of Guayjarernpanishk et al. [22]. The results of the return level
estimation for the daily maximum PM2.5 concentrations indicate that the northern region of Thailand has higher PM2.5
concentrations than the other regions, with the values exceeding the WHO recommended air quality guideline of 15
micrograms per cubic meter [27] for all return periods, except for the 5 year return period, primarily due to factors such
as wildfires, which are among the most significant contributors. Wildfires can be broadly divided into two types. The
first type are wildfires that occur naturally. In the northern region, there are deciduous forests, such as dry dipterocarp
forests and mixed deciduous forests, which cover most of the area. When these forests begin shedding their leaves, they
create excellent fuel, which can naturally ignite fires. However, natural forest fires are rare, while man-made fires occur
more frequently. Another issue is the smog that drifts in from the burning of farmlands in neighboring countries. In the
southern region of Thailand, PM2.5 concentrations are lower than in other regions because the wind direction, especially
during the southwest and northeast monsoon seasons which help, blow pollution out of the area. Moreover, these winds
do not carry as much dust from neighboring countries as those in the northern or north-eastern region. The southern
region has a less dense population and fewer industries that emit dust and pollution compared to other regions, such as
the northern and north-eastern regions, where burning is used for agriculture, or the central region, where there are many
industrial estates.
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