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institutional, and energy-related factors. This study examines the time-varying impacts of key
determinants of GHG emissions across 29 countries from 1993 to 2018, with an emphasis on the
shadow economy, energy security risks, and geopolitical volatility. The analysis follows a four-step
framework: countries are classified using principal component analysis (PCA) and K-means
clustering, robust covariates are selected via Bayesian Model Averaging (BMA), and their impacts
are estimated with time-varying coefficient panel models. Model robustness is evaluated through
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1- Introduction

Scientific evidence overwhelmingly confirms that climate change, driven predominantly by GHG emissions, poses
profound and escalating threats to ecosystems, economies, and public welfare [1]. According to the IPCC Sixth
Assessment Report [2], emissions continue to rise, primarily due to fossil fuel combustion, industrial processes, and
emissions from land-use change, deforestation, and non-CO; sources (Figure 1). These persistent and nonstationary
trends underscore not only the urgency of mitigating emissions but also the necessity of deepening our understanding of
the economic and structural determinants underpinning emissions growth over time.

Building on existing literature, numerous studies have examined the factors influencing environmental quality and
CO, emissions, including demographic dynamics [3-5], affluence levels [6, 7], technological advancement [8, 9],
energy structures [10, 11], and socio-political conditions [12, 13]. Beyond the commonly examined factors, this paper
focuses on three additional variables—the shadow economy, energy security, and geopolitical risk—whose impacts on
GHG emissions remain relatively underexplored in existing literature.
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Greenhouse gas (GHG) emissions resulting
from human activities continue to increase
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Figure 1. Increased emissions of GHGs

Previous studies often overlook the shadow economy due to severe measurement challenges. Shadow activities—
such as black-market trade, undeclared work, and tax evasion—are intentionally hidden from authorities, making reliable
data collection nearly impossible [14]. Moreover, distinguishing legal from illegal transactions in international data is a
“quantitative nightmare” [15], so researchers mostly avoided these complexities until estimation techniques, such as
those proposed by Medina & Schneider [16]. In this paper, we use the shadow economy derived from the Multiple
Indicators, Multiple Causes (MIMIC) approach [17]. This determinant presents a paradox in environmental economics.
On the one hand, it exacerbates emissions by enabling unmonitored industrial activity, inefficient energy use, and
regulatory evasion. Informal sectors often rely on outdated technologies and bypass emissions standards, thereby
disproportionately contributing to pollution [18, 19]. This challenge is particularly acute in developing economies, where
the informal sector constitutes a substantial share of overall economic activity [20]. Nonetheless, the shadow economy
does not necessarily exert a uniform detrimental effect. Some studies suggest that it may mitigate environmental
pollution [21, 22]. Hence, the impact of the informal economy on GHG emissions remains a matter of debate.

In addition to the hidden economy, energy security risk (ESR) and geopolitical risk (GPR) are critical determinants
of greenhouse gas emissions [23, 24]. However, the relationship between ESR and GHG emissions remains a subject of
ongoing debate, with empirical evidence offering no clear consensus on whether ESR acts as a complement to or a trade-
off against emission-reduction objectives [25, 26]. Several studies report that mitigating ESR can paradoxically lead to
higher GHG emissions, as countries often resort to carbon-intensive energy sources to secure short-term supply stability
[27-29]. Conversely, China’s energy-saving and emission reduction policy illustrates a win—win outcome, improving
energy security while cutting emissions [30]. Hence, the influence of ESR on GHG emissions remains open for further
analysis.

With respect to GPR, although its relationship with GHG emissions has increasingly attracted scholarly attention,
empirical findings remain mixed [31, 32]. Using the method of moments quantile regression (MMQR) and the
augmented mean group (AMG) estimator, [33, 34] reported that GPR escalates emissions by disrupting energy
transitions and prompting governments to revert to fossil fuel consumption, thereby amplifying climate threats. In
contrast, employing wavelet quantile technique, Feng et al. [35] suggested that geopolitical risks can exert a short-term
mitigating effect, either by suppressing economic activity or by slowing energy demand. This divergence highlights the
complex and context-dependent nature of the GPR-GHG nexus [36], underscoring the need for further empirical
investigation.

During the literature review, we also identified a methodological gap. Most previous studies rely on time-invariant
estimation techniques that capture only average effects [37], implicitly assuming that the underlying relationships remain
constant across time. However, several scholars [38, 39] argue that this approach is inappropriate for inherently
time-varying variables, potentially producing biased estimates and failing to reflect actual dynamics.

While previous studies have yielded valuable insights, the evidence remains fragmented. To address these gaps, this
study aims to answer two key research questions: (1) What are the main drivers of GHG emissions? and (2) How do
their effects evolve over time, particularly in the context of structural shocks such as hidden economic activity, energy
insecurity, and geopolitical tensions?

In doing so, this study offers several contributions to existing literature. First, it investigates the causal effects of a
broad set of determinants on GHG emissions, thereby capturing the complexity of environmental pressures beyond
conventional explanatory factors. Second, while most existing empirical evidence is largely static, this study emphasizes
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the importance of accounting for the dynamic nature of these relationships. Third, although some studies have employed
dynamic approaches—such as linear/ nonlinear autoregressive distributed lag (ARDL/NARDL) or rolling-window
quantile ARDL models [37, 40, 41]—these techniques are typically limited to distinguishing between short- and long-
run effects, without fully capturing how the influence of key drivers evolves over time. To overcome these limitations,
this study employs a time-varying parameter framework, offering a more flexible and realistic assessment of how GHG
emissions respond to structural economic and political shocks over time.

The structure of this paper is as follows: Section 1 introduces the research context and objectives. Section 2 outlines
the relevant theoretical foundations. Section 3 describes the dataset and details the country classification through
clustering analysis. Section 4 outlines the methodological framework. Section 5 presents the empirical results and
discusses the key findings. Finally, Section 6 concludes with policy implications and offers directions for future research.

2- Theoretical Framework

Understanding the determinants of GHG emissions requires the conceptual frameworks that can accommodate both
environmental and socio-economic factors. In line with most existing research [42-44], this study draws primarily on
two complementary concepts: (1) the Stochastic Impacts by Regression on Population, Affluence and Technology
(STIRPAT) model, and (2) the Environmental Kuznets Curve (EKC) hypothesis. While the former offers a flexible
structure for quantifying the elasticities of multiple socio-economic and structural drivers, the latter captures the potential
non-linear dynamics of income—environment interactions. Together, these frameworks enable the present study to
capture both the direct and evolving impacts of conventional and unconventional determinants over time, providing a
richer understanding of the economic and structural processes that shape emissions trajectories.

2-1-The STIRPAT Model

The STIRPAT model, as extended by Dietz & Roza [45, 46], is an econometric reformulation of the IPAT identity
proposed by Ehrlich & Holdren [3], which expresses environmental impact (1) as the multiplicative product of population
(P), affluence—or economic activity per person—(A), and technology (T). While the original IPAT equation is
deterministic, the extended STIRPAT model introduces stochasticity and allows for flexible estimation through
logarithmic transformation:

Iy = aitﬁflA?tzTi?3 it 1)
where; I, P, A, T are the same variables as described in the IPAT identity for country i at time t. a represents the country-
specific effect, by, b,, and b5 are elasticities to be estimated. e is the error term. Taking the natural logarithm of both
sides of Equation 1 yields the following expression:

Inl;; = a;; + byInP;; + byInA;; + b3InT; + ey, (2

This formulation enables empirical testing of the magnitude and significance of the three main factors above, while
accommodating additional explanatory variables beyond the original IPAT factors [47, 48].

In this study, the STIRPAT framework serves as the conceptual foundation for identifying and interpreting the causal
drivers of GHG emissions. While retaining its core focus on demographic, economic, and technological factors, the
framework is expanded to encompass a broad spectrum of determinants that capture the multi-dimensional nature of
environmental pressures. These include demographic factors (total population, urban population), environmental
resources (forest land, natural resource rents), structural economic measures (GDP/GDP?, industry/agricultural value-
added, and shadow economy), social development indicators (human development index), political and institutional
indicators (democracy, corruption, and geopolitical risk index), global integration metrics (globalization index, trade
openness, import/export trade), market-related factors (oil prices, energy security risk), energy-related variables
(renewable energy consumption, energy intensity), and technological innovation (environmental patents). This enriched
specification allows for a more comprehensive assessment of the diverse and evolving forces shaping GHG emissions.

2-2- The EKC Hypothesis

The EKC hypothesis, originating from the work of Grossman & Krueger [49], posits a non-linear relationship between
environmental degradation and economic growth. Specifically, it suggests that environmental pressure increases during
the early stages of economic development, reaches a turning point, and subsequently declines as economies achieve
higher-income levels and adopt cleaner technologies. This inverted-U pattern is commonly tested by including both
income and income-squared terms (often GDP and GDP?) in regression analysis. Empirical evidence for the EKC
remains mixed, varying with the pollutant examined, the control variables included, and the estimation techniques
applied [50-52]. In the context of GHG emissions, the EKC framework provides a basis for the investigation of whether
economic expansion can eventually coincide with environmental sustainability or whether emissions continue to rise
regardless of income growth. This approach offers insights that can guide well-targeted policy interventions that balance
economic growth and environmental sustainability.
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3- Data

This study utilizes a balanced panel dataset covering 29 countries spanning 1993-2018, constructed by merging
multiple internationally recognized sources to ensure both cross-country comparability and temporal consistency. All
explanatory variables are lagged by one year for several purposes. First, lagging mitigates mitigate simultaneity and
reverse-causality concerns, ensuring that predictors reflect prior-year conditions rather than being contaminated by
contemporaneous feedback from emissions. Second, this design reflects the inherent inertia in environmental and
macroeconomic systems—driven by technological adaptation lags, infrastructure lock-in, and gradual policy effects—
where changes in drivers often materialize with a delay. Third, applying a uniform one-period lag across all predictors
facilitates comparability of coefficient trajectories and reduces the risk of overfitting, particularly in annual datasets with
relatively short time spans. Combined with the time-varying parameter (TVP) framework, this setup enables the model
to capture both the delayed transmission of effects and their evolving magnitude over time, without inflating complexity
or compromising interpretability. The selection of sample countries is guided by several considerations. First, we include
as many countries as possible from those that report the geopolitical risk index. Second, the sample is further constrained
by the availability of data for other explanatory variables. Accordingly, the final country selection maximizes data
coverage across all variables of interest and is based on annual observations. Lastly, to enable the semiparametric
estimation procedure central to this study, a balanced panel is required. These criteria result in a panel dataset comprising
29 countries, which are subsequently divided into two clusters. Further details are provided in subsection 3.2.

3-1-Variable Descriptions

The study encompasses the potential variables, each of which is crucial for analyzing the determinants of GHG
emissions. These variables cover economic, environmental, and policy-related sectors that collectively shape emission
patterns over time. Given the complexity of emissions dynamics, incorporating a diverse set of explanatory variables
allows for a more comprehensive assessment of their relative influences. Moreover, including both macroeconomic
indicators and sector-specific measures ensures that the analysis captures cross-sectional variations in emission
determinants. To facilitate a structured analysis, Table 1 provides a detailed description of these variables, including
their symbols, measurement methods, and data sources. All variables are transformed using natural logarithms.

Table 1. Variables and their descriptions

Variable name Symbol Measurement Source

EDGAR Community

Greenhouse gas emissions GHG  GHG per capita (tCOzeq/cap/yr) GHG Database

MIMIC estimates of informal output (% of official GDP) (higher values indicate larger informal

Shadow economy INF sector, generally undesirable due to reduced tax revenue and regulatory oversight)

Elgin et al. [17]
The index is calculated by counting the number of articles related to adverse geopolitical events in

Geopolitical risk GPR  each newspaper for each month (a share of the total number of news articles) (higher values indicate Caldara & lacoviello

greater geopolitical instability, generally undesirable for economic stability) (53]
Energy security risk ESR ;rl]t;g:1;ti{;)en:elr;ﬂc:/ejng;s?rr;%rlgyfsfgﬁ;irtgyrsif:bi(l?ti)?;er values indicate higher vulnerability in energy GlolazlmEurlzrgy
Agriculture value added AGR  Agriculture, forestry, and fishing value added (% of GDP) WDI
Corruption index COR  Political corruption index (higher values indicate greater political corruption, generally undesirable) OowID
Democracy index DEM Liberal democracy index (higher values indicate stronger democratic institutions, generally desirable) OowID
Energy intensity El The amount of energy consumed per unit of GDP produced (MJ per 2015 USD PPP) SDG 7.3, IEA
Export trade EXP  Exports of goods and services (% of GDP) WDI
Forest area FRS  Forest land square (sg. km) WDI
Gross domestic product GDP  GDP per capita, PPP (current international $) WDI
Squared GDP GDP? :atils”;r:cllgj;:r?ﬂt%r:()r}eélijg]e environmental Kuznets curve hypothesis and calculated by the squared
Globalization index GLO  KOF globalization index Eco}r?(?n:icS\IArllisstsitute
Human _development HDI An average achievement in three dimensions: human development life expectancy, education, and UNDP
index GNI indices
Import trade IMP  Imports of goods and services (% of GDP) WDI
Industry value added IND Industry (including construction) value added (% of GDP) WDI
Oil price OIL  World Brent Qil price (US per barrel) BP
Population POP  Total population WDI
Patents PAT  Environment-related technologies (% of inventions) OECD
Renewable energy REC  The share of renewable energy in total final energy consumption (%) WDI
consumption
Natural resources rents REN  The sum of oil rents, natural gas rents, coal rents, mineral rents, and forest rents (% of GDP) WDI
Trade openness TRA  The sum of imports and exports (% of GDP) WDI
Urban population URB  Urban population (% of total population) WDI

Note: All variables are transformed into their natural logarithmic form.
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The descriptive statistics for all variables are presented in Table 2. This table provides an overview of the mean,
standard deviation, minimum, and maximum values for each variable, providing insights into the data across the sample
of countries.

Table 2. Summary statistics of variables

Variable Mean S.D. Min Max
GHG 2.076 0.636 0.540 3.360
GPR -2.539 1.282 -5.630 1.470
ESR 6.904 0.240 6.340 8.130
COR -1.943 1.678 -6.210 -0.030
DEM -0.765 0.828 -3.240 -0.110

El 1517 0.392 0.530 2.840
FRS 11.75 2.149 6.11 15.91
GDP 9.724 0.825 7.220 11.130
GDP? 95.24 15.66 52.14 123.88
GLO 4.243 0.191 3.430 4.510
HDI -0.249 0.149 -0.810 -0.040
OIL 3.723 0.695 2.540 4.720
POP 17.52 1.309 15.28 21.06
INF 3.123 0.456 2.100 4.090
AGR 1.3261 0.940 -0.610 3.400
EXP 3.437 0.529 1.910 4.790
IMP 3.409 0.483 1.940 4.610
IND 3.358 0.253 2.850 4.200
PAT 3.211 0.904 0 4.610
REC 2.295 1.498 -4.610 4.260
REN 0.023 2.116 -6.960 4.010
TRA 4121 0.497 2.750 5.400
URB 4.219 0.306 3.060 4.580

Note: All variables are transformed into their natural logarithmic form.
3-2-Clustering-Based Country Grouping

Instead of relying on conventional income classifications from the World Bank, countries were grouped using an
unsupervised learning technique that combines Principal Component Analysis (PCA) and K-means clustering. The
clustering was performed on lagged averages of the core variables listed in Table 1. This data-driven approach facilitates
structural grouping based on latent similarities across economic, social, and energy-related indicators.

The PCA and K-means (with C clusters, where C=2) procedure identified two structurally coherent clusters as shown
in Figure 2:
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Figure 2. Country Clustering Using K-means (based on PCA projection of lagged economic indicators)
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Cluster 1: Lower-income Group (Primarily Emerging and Developing Economies) consists of Argentina
(ARG), Brazil (BRA), Chile (CHL), China (CHN), Colombia (COL), Egypt (EGY), Indonesia (IDN), India (IND),
Mexico (MEX), Russia (RUS), Saudi Arabia (SAU), Thailand (THA), Tunisia (TUN), Turkey (TUR), Ukraine
(UKR), Vietnam (VNM), and South Africa (ZAF). These nations tend to exhibit relatively lower HDI, ESR, and
limited adoption of REC technologies. They are generally characterized by ongoing industrialization, urbanization,
or transitional economic development. Elevated emissions levels may result from high EI or dependence on fossil
fuels.

Cluster 2: Higher-income Group (Advanced Economies and High Performers) includes Australia (AUS),
Switzerland (CHE), Germany (DEU), Denmark (DNK), Finland (FIN), France (FRA), United Kingdom (GBR), Italy
(ITA), Korea (KOR), Netherlands (NLD), Norway (NOR), and Sweden (SWE). This cluster comprises primarily
Organisation for Economic Cooperation and Development (OECD) or high-income countries. These nations are
typically distinguished by better governance indicators (e.g., COR, DEM), more efficient energy intensity (El), and
lower natural resource rents (REN). They also exhibit more advanced institutional capacity, greater reliance on
technological innovation, and more diversified economic structures.

This grouping strategy reflects underlying development and policy structures more accurately than static income
classifications and supports heterogeneity-aware modeling. Specifically, while countries in Cluster 2 appear to be more
homogeneous in terms of advanced infrastructure and environmental policy implementation, Cluster 1 represents a more
heterogeneous mix of nations undergoing rapid industrialization or development challenges.

4- Methodology

Recognizing empirical uncertainty in covariate relevance and the evolving nature of environmental-economic
relationships, we first apply the BMA approach for systematic variable selection. We then employ time-varying
parameter (TVP) estimation in a panel data context to capture how explanatory effects evolve over time. To ensure
model adaptability across country heterogeneity, both Fixed Effects (FE) and Random Effects (RE) versions of the
TVP estimators are used, providing a flexible estimation framework. Model performance is evaluated through cross-
validation and simulation-based validation techniques. Figure 3 illustrates the methodological steps undertaken in
this study.

Covariate selection Robustness Check

Crossvalidation
»Simulation

*tvFE
*tvRE

Figure 3. The process of the methodology

4-1-Covariate Selection Using Bayesian Model Averaging (BMA)

After establishing the clusters and data structure in Section 3, we proceed to identify statistically relevant variables
using the Bayesian Model Averaging (BMA). Model uncertainty is a pervasive challenge in empirical studies on
environmental determinants of GHG emissions, as different econometric specifications can lead to divergent results.
Traditional model selection methods, such as stepwise regression or information-criteria-based approaches, are prone to
overfitting and estimation instability [54]. To address this issue, BMA is employed to systematically evaluate multiple
competing models, assigning weights based on posterior probabilities rather than relying on a single best model [55, 56].
This technique is particularly advantageous in environmental economics because it mitigates omitted variable bias and
prevents over-reliance on specific model assumptions [57]. In addition, BMA helps reduce the impact of
multicollinearity among explanatory variables by averaging over models that may exclude highly correlated predictors.
Instead of forcing all variables into a single specification—which can inflate standard errors and distort coefficient
estimates—BMA implicitly down-weights redundant predictors that offer little marginal explanatory power. This results
in more stable and interpretable inference, as reflected in the posterior inclusion probabilities (PIP), which quantify the
likelihood that a given variable significantly contributes to explaining GHG emissions. The posterior model probability
(PMP) for a model M, given data y and covariates X, is computed as:
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P(Mp)'P(y|Mp'X)
d
221 P(My). P(y|Mg, X)

where, P(Mp) is the prior probability assigned to the model M,,, P(y|M,, X) is the marginal likelihood of the data given
the model M,, d is the total number of predictors.

P(Myly, X) = ©)

A key consideration in BMA is the selection of prior distributions. In line with best practices, this study employs three
distinct priors—random, fixed, and uniform priors—to ensure the robustness in the variable selection process [58]. The
rationale for this multi-prior approach is as follows:

e Random Priors: These allow for greater flexibility by dynamically assigning probabilities based on the data
structure, making them particularly useful when prior knowledge about model specifications is limited.

e Fixed Priors: These introduce structure by incorporating theoretical justifications and empirical evidence,
ensuring that key variables (e.g., economic growth and energy consumption) remain consistently included.

e Uniform Priors: These assume equal probability across all models, which reducing bias in variable selection by
preventing excessive reliance on any single specification.

Following the empirical-Bayes approach, predictors with a PIP greater than 0.5 are retained for further analysis [59].
These selected variables form the basis for estimating time-varying coefficients in the subsequent modeling stage.

The use of BMA in this study is justified not only by its statistical rigor in handling model uncertainty but also by its
alignment with the research objective of identifying structurally significant and consistently influential predictors of
GHG emissions. While subsequent estimation is performed using frequentist time-varying models, BMA serves as an
objective screening tool, narrowing the explanatory space and minimizing risks of overfitting or omitted variable bias.
This modular integration leverages the strengths of both Bayesian variable selection and flexible frequentist estimation.

4-2-Time-Varying Parameter (TVP) Coefficient Models

Traditional econometric models—such as fixed-effects and random-effects panel estimators—assume time-invariant
coefficients—implying that the relationship between explanatory variables and the dependent variable is constant over
time. However, empirical evidence increasingly suggests that the economic and institutional drivers of GHG emissions
evolve due to changing policies, technological shifts, and macro-structural transitions [60]. To capture these non-
stationary dynamics, this study adopts a flexible non-static approach by employing TVP models.

Formally, the TVP structure is rooted in the varying coefficient model [61]:
Y=XBR)+¢ 4)

where, X' = (X3, ..., X4)" is the transpose of regressor vector with dimension d; 8 = (8, (Ry), ..., Ba(R4)) is the vector
of coefficient functions varying with an effect-modifying variable R; and € is a mean-zero error term with constant
variance. In this study, R corresponds to time, thereby allowing coefficients to evolve temporally. To estimate these
time-varying coefficients, we minimize the expected squared error conditional on time:

minE[{Y — X'B(R)IR}*|R = t] (®)
The solution is the conditional expectation-based estimator:
B(®) = EXX'|t) T E(X'Y|t) (6)

Extending this to a panel framework where heterogeneity exists across both individuals (i) and time (t), the TVP
panel model is specified as follows:

Yie = Xi:B(2e) + a; + uy (7

where, {(Y;t, X;:)|i = 1,...,N,t = 1,..., T} are observed data. Each regressor is modeled as an integrated process X;; =
Xi -1 + vy, satisfying regularity conditions. Here, §(.) Captures the unknown coefficient functions, z, is the smoothing
variable, and «; represents individual fixed-effects. For notational convenience, the relevant expectation terms are
denoted as follows: S; ;(z;) = E(XX'|t) is the weighted sum of the regressors; Ty s(z;) = E(X'Y|t) is the weighted sum
of the regressors and the response variable. In which, s denotes the polynomial order used in the local linear
approximation (s = 0,1,2).
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The kernel-weighted estimator becomes:
B(Zt) = Sr_i (z)Trs(2e) (8)

Both FE and RE specifications rely on this local smoothing framework [62, 63], differing in how they treat the
unobserved heterogeneity a;. While time-varying Fixed Effects (tvFE) estimator removes unit-specific means via kernel-
based de-meaning techniques, time-varying Random Effects (tvRE) estimator incorporates unit-specific variances via
an inverse covariance weighting matrix.

a) Time-Varying Fixed Effects Estimator (tvFE)

Identification requires the constraint ¥ ¥, a; = 0. The kernel-weighted estimation proceeds as:

ST,S(Zt) = XTWb,tX(Z —z)* 9
TT,S(Zt) = XTWb,tY(Z —7)° (10)

where, W, . = D] Kj; . D, is a kernel weighted matrix combining de-meaning with kernel weighting matrix according to
bandwidth (b); D, = Iyy — D(DTKg,tD)'lDTK,;t and D = (=1y_1,Iy-)" ® 11; Kj, = Iy Q diag{K,(z, —
z¢), v, Ky (zr — z,)}; (Z — z,)® is the polynomial term that provides local weighting via a Taylor expansion centered at
z;, controlling for temporal distance in estimation.

b) Time-Varying Random Effects Estimator (tvRE)

The tvRE formulation adjusts for unit-level variance using:
Srs(z) = XKy "2 Ky X (Z = 2)° (11)
Tre(ze) = XKy 257 Ky 2Y (Z = 2,)° (12)

where, X, denotes the estimated covariance matrix of the random effects, and K;‘lt/ 2 applies kernel-based temporal
weights, ensuring local smoothing.

This study combines BMA with time-varying panel estimation (tvRE/tvFE) to capture evolving relationships between
covariates and emissions. By allowing for both cross-country differences and within-country changes over time, the
approach offers a flexible means of understanding how emission drivers shift across structural contexts. The bandwidth
parameter for kernel smoothing, which controls the degree of temporal flexibility in the TVP models—was selected
using grouped cross-validation to strike a good balance between bias and variance. While alternative clustering methods,
such as hierarchical clustering, were considered, they were ultimately excluded from the final framework due to their
limited capacity to handle time-varying relationships in high-dimensional panel data. Cross-validation therefore served
both as a tuning method for bandwidth selection and as a tool for validating overall model robustness, leading into the
next step of model performance evaluation.

4-3- Model Validation: Cross-Validation and Simulation

To evaluate performance and generalizability [64-66], we perform grouped 5-fold cross-validation using each
country as the grouping unit to the preserve panel structure. Both MSE and MAE are computed to compare model
types (static vs dynamic; Bayesian vs Frequentist), and this same cross-validation framework is applied to select the
optimal bandwidth parameter for kernel smoothing in TVP estimation. Although an exhaustive grid search was not
performed, several candidate bandwidths were tested to balance over-smoothing against responsiveness to temporal
variation. While this cross-validation approach provides a solid empirical basis, it may still be insufficient for robust
model validation [67]. Therefore, we additionally implement a Monte Carlo simulation procedure to assess whether
estimated coefficients can accurately recover the true data-generating process. This entails testing parameter recovery
using RMSE and correlation metrics on synthetic datasets. In terms of clustering design, although hierarchical
clustering was initially considered, it was ultimately discarded due to its rigid structure, which does not align well with
the overlapping and evolving emissions patterns observed across countries. As a result, both validation strategies
confirm the superior out-of-sample performance of the tvRE model, particularly in capturing dynamic relationships
over time, as discussed in subsection 5.3.
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5- Estimation Results and Discussion
5-1-Covariate Selection

To evaluate the effectiveness of prior specifications in the BMA approach, we compare three types: fixed, random,
and uniform priors. Among them, the random one consistently delivered the most stable and balanced variable selection
performance across both country groups. Specifically, it selected the largest number of variables (15) in both groups,
indicating a robust capacity to capture underlying structural relationships without overfitting. In contrast, the fixed and
uniform priors selected fewer variables, with tendencies toward underfitting (fixed) or overfitting (uniform).

Based on the Posterior Model Size Distributions (Figure 4), the Random prior exhibits posterior model sizes that are
neither too sparse nor overly dense, with means around 12-14 independent variables in both Higher- and Lower-income
countries, respectively. These means are reasonable and reflect a balance between model complexity and parsimony. In
contrast, the fixed and uniform priors both result in overly parsimonious models (means near 10-12 variables),
potentially omitting influential covariates. Among the three types, the Random prior demonstrates the best behavior: its
posterior aligns well with the empirical signal while preserving flexibility across income groups. Overall, the comparison
confirms that the BMA results are only moderately sensitive to prior choice—while different priors naturally shift the
prior model size distributions by design, the posterior distributions remain centered around a similar range. This indicates
that the variable selection process is largely data-driven and robust to prior specification.

The PIP distributions (Figure 5) further underscore the advantage of employing the random prior. Variables selected
under this prior tend to cluster around the conventional decision threshold of 0.5, reflecting a more data-driven and
adaptive model structure. The key strength of the random prior lies in its endogenous control of model complexity:
selection emerges from patterns in the data rather than being dictated by fixed structural assumptions. This flexibility is
especially valuable in high-dimensional panel settings involving intertwined socio-economic, environmental, and
institutional variables—contexts where structural heterogeneity and interaction effects are both expected and
informative. In detail, Figure 5 reveals both overlaps and divergences in the set of influential variables between the
higher- and lower-income country groups. Several predictors, such as GDP, GDP?, HDI, and INF, consistently exceed
the 0.5 threshold in both groups, indicating their fundamental importance in explaining GHG emissions across diverse
economic contexts. To examine the EKC hypothesis, GDP?is included to capture potential non-linearities; however, its
coefficient remains near zero, suggesting minimal impact on the overall modeling outcome.

While several key features are common to both groups, group-specific patterns also exist. In the Higher-income group,
variables like REC, ESR, and COR attain relatively high PIP values, reflecting a stronger role of energy transition,
institutional integrity, and security-related risk mitigation in these countries. This aligns with expectations, given the
advanced infrastructure and policy maturity in these economies. In contrast, the Lower-income group shows higher PIPs
for variables such as IND, FRS, and URB, suggesting that industrial expansion, natural land-use patterns, and rapid
urbanization remain dominant drivers in shaping emission patterns. Notably, REN and GPR appear less prominent,
highlighting structural constraints in diversifying energy sources and responding to geopolitical risk management in
developing countries.

Overall, these differences reinforce the need for differentiated modeling strategies and policy interventions. The
random prior helps reveal these nuanced patterns by selectively emphasizing variables whose inclusion is statistically
and theoretically supported within each group context. Considering all visual and quantitative indicators (Figure 5 and
6), the random prior emerges as the most robust choice for this study. It offers the best trade-off between parsimony and
generalizability, capturing both well-supported and structurally meaningful variables across income groups.
Accordingly, random prior is used as the basis for subsequent time-varying panel model estimation.

A notable feature of the proposed modeling framework is that all explanatory variables are included in their first-
lagged form. This specification is theoretically motivated by the annual frequency of the data and the empirical context,
where delayed responses to macroeconomic and policy shocks—such as those from international climate agreements—
are more plausibly captured by a one-year lag rather than contemporaneous values. By uniformly applying a lag of one
year to all predictors, the model accounts for inertia, adjustment periods, and policy implementation lags that typically
characterize emissions—driver relationships in both high- and low-income contexts. This approach also helps mitigate
simultaneity bias and potential endogeneity, since current emissions are less likely to directly influence explanatory
variables from the previous year. Moreover, because variable selection is already addressed through BMA, which filters
out irrelevant or collinear predictors via posterior inclusion probabilities, combining lagged variables with the time-
varying coefficient framework preserves parsimony while enhancing interpretability. The resulting estimation strategy
therefore captures both temporal evolution in effects and the realistic delayed impacts of drivers, providing a robust and
policy-relevant view of emissions dynamics.
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Figure 4. Posterior Model Size Distributions under Different Priors

Note: The dashed red line represents the prior distribution of model size (i.e., beliefs about model complexity before
observing the data), while the solid blue line shows the posterior distribution derived from the data. A well-performing
prior yields a posterior that is data-driven yet avoids extremes—striking a balance between underfitting and overfitting.
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are selected. All variables are transformed into their natural logarithmic form.

5-2- Estimate the Time-Varying Coefficients

Figure 5. Posterior Inclusion Probabilities (PIPs) by Prior Type for Each Country Group

Table 3 reports the means and interquartile ranges (min—-max) of time-varying coefficients estimated from the random
effects specification. These summaries reflect not only the average magnitude of influence across time but also the extent
of their dynamic variability. The results underscore several key patterns and provide new insights into group-specific
emissions behavior.

Table 3. Time-Varying Coefficients and Model Diagnostics from tvRE Model

Higher-income Group

Lower-income Group

Variable
Min Q1 Mean  Median Q3 Max Min Q1 Mean  Median Q3 Max
GDP -1.9844 -0.8922 0.6565  0.4821  2.0065 29133 06188 0.6754 0.9772 0.8400 1.2977  1.4863
GDP? -0.1163 -0.0957 -0.0480 -0.0639 0.0118 0.0932 -0.0382 -0.0347 -0.0150 -0.0153 -0.0076  0.0160
INF -0.3650 -0.2023 -0.0664 -0.1244  0.0161  0.0952 — — — — — —
HDI -0.2793 -0.1724 1.0876  0.3410 3.0871 85370 -0.1866 1.2241 14544 17022 19318 2.0515
ESR -1.1872 -0.3880 -0.3856 -0.3472 -0.2708 -0.1524 -0.2443 -0.1982 -1.424 -0.1699 -0.1326 -0.0791
COR 0.1274 01724 01982 0.1928 0.2347  0.2707 — — — — — —

REC -0.1708 -0.0571 -0.0078 -0.0215 0.0432 0.0432 -0.0827 -0.0269 -0.0127 -0.0270 -0.0042 0.0181

El 0.0069 0.0858 0.0952 0.1081  0.2417 0.2147 -0.6956 0.8653 0.8884  0.8884  0.9585 0.9918

GLO -3.7862 -0.5513 -0.0480 -0.0626 0.0118 1.7497 -1.7266 -1.4503 -1.0753 -1.1716 -0.5069 -0.3908

DEM -0.3229 -0.1106 0.1099  0.1099  0.2304 0.3405 -0.0016 0.0081 0.0299  0.0278  0.0511  0.0634

OIL -0.2561 -0.1981 -0.0728 -0.0726  0.0528 0.2175 -0.3056 -0.0502 -0.0243 -0.0289 -0.0121  0.0417

IND — — — — — — -0.3649 -0.3314 -0.2435 -0.2678 -0.1625 -0.0375

FRS — — — — — — -0.0274 -0.0167 0.0022 -0.0084 0.0181  0.0292
Pseudo-R? 0.9772 0.9909
RMSE (Min) 0.0396 0.0632
RMSE (Max) 0.1669 0.1255

Mean Stability Score 1.66 2.47
Note: “—” indicates the variable was not included or not estimated for the specified group. Data are presented in natural logarithms.
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In the Higher-income group, variables such as GDP and HDI exhibit relatively high positive means and wide
interquartile ranges; however, their effects on GHG emissions vary in sign across quantiles, suggesting that their
influence is time-dependent and potentially nonlinear. Additionally, other factors (except COR and El) also display sign
reversals in their time-varying coefficients. Notably, COR and EI show consistently positive effects on environmental
degradation.

For the Lower-income group, the robust determinants include GDP, HDI, El, and GLO. Similar to the Higher-income
group, this confirms the strong link between economic growth, affluence, and emissions. Interestingly, GLO exhibits
consistently negative associations, suggesting that globalization may facilitate the transfer of cleaner technologies in
developing countries. Meanwhile, the use of renewables (REC) is associated with negative coefficients, indicating its
potential role in reducing GHG emissions, although the effects are not statistically significant. The differences between
two groups reveal a central insight that emission drivers are not uniform across the development spectrum, and thus
modeling approaches must respect such heterogeneity.

A key quantitative highlight is the higher pseudo-R? for the Lower-income group (0.9909 vs. 0.9772 for the Higher-
income group). This implies that the model explains variation in GHG emissions more thoroughly in developing
economies, likely because emissions are governed by more deterministic, observable variables. In contrast, advanced
economies may involve more diffuse, lagged, or policy-dependent mechanisms that are harder to fully capture within
the model. From a methodological standpoint, the application of time-varying coefficients across grouped panels
provides novel empirical clarity into how the importance of different predictors evolves, both temporally and structurally.
Unlike static panel models, this approach uncovers fluctuations and structural breaks in covariate influence that align
with real-world policy events and economic cycles. The filtering of coefficients based on interquartile range and mean
magnitude ensures interpretability and guards against overfitting. These elements collectively provide a more granular,
dynamic, and policy-relevant understanding of emissions behavior across diverse national contexts.

The Root Mean Square Error (RMSE) distribution reveals that the models perform with relatively low prediction
error over time. The Higher-income group’s result shows a wider RMSE range (0.0396 to 0.1669), suggesting greater
year-on-year variability in model fit—likely reflecting more complex dynamics and policy heterogeneity. In contrast,
the Lower-income group demonstrates tighter RMSE bounds (0.0632 to 0.1255), which may imply more stable or
deterministic emission pathways in developing economies. Additionally, the mean Stability Score (calculated as the
inverse of relative variability of coefficients) is substantially higher for the developing countries (2.47) than for the
advanced countries (1.66). This aligns with the estimated coefficients, which show less fluctuation and fewer sign
reversals in the Lower-income group.

5-3-Robustness Check
5-3-1- Cross-Validation and Model Performance Comparison

To robustly evaluate model performance, we conducted grouped 5-fold cross-validation across five panel model
frameworks: traditional static estimators (Frequentist RE and FE), Bayesian static models, and the time-varying
specifications (tvRE, tvFE). Country-level grouping was applied to preserve panel structure and independence between
folds.

Table 4. Cross-Validation Performance Comparison Across Panel Models

Model Type Group MSE MAE Time-Varying
tvRE Higher-income 0.6458 0.5732 Yes
tvFE Higher-income 6.8515 2.1257 Yes

Bayesian RE (Static) Higher-income 11.8352 3.4368 No
Bayesian FE (Static) Higher-income 52.4425 7.2401 No
RE (Static) Higher-income 0.7498 0.6485 No

FE (Static) Higher-income 12.3038 2.7994 No
tvRE Lower-income 0.1071 0.2519 Yes

tvFE Lower-income 0.2741 0.3200 Yes
Bayesian RE (Static) Lower-income 22.1316 4.7032 No
Bayesian FE (Static) Lower-income 20.1332 4.4857 No
RE (Static) Lower-income 0.1161 0.3839 No

FE (Static) Lower-income 0.4614 0.5211 No

Table 4 illustrates the predictive superiority of the tvRE model across both income groups. For the Higher-income
group, tvRE achieves the lowest MSE (0.6458) and MAE (0.5732), outperforming all static and time-invariant models.
A similar trend is observed in the Lower-income group, where tvRE yields the best performance with an MSE of 0.1071
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and MAE of 0.2519. Compared to these dynamic models, static estimators—regardless of estimation paradigm—exhibit
considerably higher prediction errors. Even the tvFE model underperforms relative to tvRE, likely due to its more
restrictive ability to capture unobserved heterogeneity.

5-3-2- Simulation-Based Validation of Estimated Coefficients

While cross-validation emphasizes predictive power, it does not fully capture how well models recover the underlying
data-generating structure. To complement this, we implemented a Monte Carlo simulation-based validation procedure
to assess the structural reliability of estimated coefficient paths under each model. Using the actual panel data as a
foundation, we generated 1,000 synthetic datasets per model and group. Each dataset was simulated by applying the
model’s estimated coefficients to the original predictors, followed by the addition of Gaussian noise. This setup preserved
the original model structure while introducing stochastic variation to test its robustness.

For each synthetic dataset, the model was re-estimated, and the recovered coefficients were compared to the original
ones. Two key metrics were used: (1) Average Correlation between estimated and true parameter values specified in the
data-generating process to assess directional accuracy, and (2) Average RMSE to evaluate estimation precision. Table 5
reaffirms the robustness of the tvRE model, which consistently recovers coefficient structures with high fidelity across
income groups. In the Higher-income group tvRE achieves an average correlation of 0.9782 and a low RMSE of
0.3354—-clearly outperforming static and frequentist models. The Lower-income group exhibits slightly tighter
performance across models, yet tvRE remains among the top in both correlation and error metrics.

Table 5. Simulation-Based Validation: Coefficient Recovery across Model Specifications

Model Type Group Avg Correlation Avg RMSE
tvRE Higher-income 0.9782 0.3354
tvFE Higher-income 0.9346 0.3354
Bayesian RE (Static) Higher-income 0.9746 0.3336
Bayesian FE (Static) Higher-income 0.9746 0.3336
RE (Static) Higher-income 0.9517 1.137
FE (Static) Higher-income 0.9235 0.5527
tvRE Lower-income 0.9898 0.0988
tvFE Lower-income 0.9331 0.0988
Bayesian RE (Static) Lower-income 0.9874 0.1129
Bayesian FE (Static) Lower-income 0.9869 0.1129
RE (Static) Lower-income 0.9932 0.0999
FE (Static) Lower-income 0.9698 0.1987

To complement the summary statistics in Table 5, Figure 6 shows the full distribution of simulation-based metrics.
The left panel (a) illustrates that tvRE consistently achieves the highest correlation across simulations with the narrowest
interquartile range. In the right panel (b), tvRE also yields the lowest RMSE with minimal variation, further reinforcing
its structural stability and estimation precision compared to tvFE, static Bayesian, and frequentist alternatives. In short,
tvRE consistently outperforms all other models in both correlation and RMSE.
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Figure 6. Distribution of simulation-based coefficient recovery metrics across model types

Page | 218



Emerging Science Journal | Vol. 10, No. 1

Taken together, the results from cross-validation and simulation studies consistently support the tvRE model as the
most robust and methodologically defensible framework. It delivers superior out-of-sample accuracy, strong parameter
recovery, and adaptability to dynamic causal mechanisms, making it an ideal tool for policy-oriented GHG modeling
across diverse time and national contexts.

5-3-3- Discussion

This section interprets the temporal patterns of key coefficients from the tvRE model for both income groups. Figures
7 and 9 depict non-zero and fluctuating coefficients for selected drivers of GHG emissions, highlighting how the
magnitude and direction of effects evolve alongside global policy events. Variables shown in these figures are selected
using a filtering function that retains only those with either a high average effect (absolute mean > 0.3) or substantial
temporal variability (standard deviation > 0.15). This selection strategy ensures attention on both experimental (policy-
relevant) and control (structural) variables with meaningful time-varying influence. Variables omitted typically exhibit
low magnitude and stability over time, with beta coefficients remaining close to zero—indicating minimal dynamic
impact and limited policy relevance within this framework.

5-3-3-1- Structural Drivers and Constraints of GHG Emissions in the Higher-Income Countries

In wealthier nations, several predictors exhibit consistent positive effects on emissions (Figure 7). GDP remains a
major driver, especially after the enforcement of the Kyoto Protocol in 2005, aligning with the EKC perspective linking
income growth to environmental pressure. However, in our time-varying framework, the quadratic GDP term is excluded
from the figure, as its estimated coefficient remains close to zero throughout the sample period. This suggests that any
EKC-like curvature is weak or already captured within the temporal dynamics of the linear term, in line with recent
evidence that EKC patterns are heterogeneous and highly context-dependent [68]. Other development-related predictors
such as HDI and URB also show sustained positive effects. The plateauing of URB after 2012 parallels findings from
Chinese cities where urban development’s environmental impacts stabilize once regulatory frameworks mature [69].
ESR displays a mild but persistent positive trend, implying that energy vulnerability can increase emissions—particularly
during periods of global energy instability—which is consistent with literature on renewable transitions and structural
risk [70].
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value) or a large degree of fluctuation over time (standard deviation > 0.15). All series are in natural logs.

Figure 7. Time-Varying Coefficient Trajectories for Higher-income Group (tvRE)

The coefficient paths further indicate that EI remains persistently negative—especially after 2005—highlighting
structural decoupling through improved energy efficiency and technology transitions in high-income economies. This
aligns with [71] which documents China’s decline in energy intensity as a key driver of reduced emissions during
industrial transitions. The shadow economy (INF) also turns increasingly negative after 2010, suggesting that reductions
in informality may enhance emissions monitoring and regulatory compliance. While larger shadow economies can
elevate ecological footprints, they may also understate emissions due to reporting gaps, pointing to governance-
dependent effects [72].

To provide a more detailed view of the three focal variables of this study—INF, GPR, and ESR—TFigure 8 traces their
individual coefficient trajectories. Among them, GPR does not meet the inclusion threshold for the main figure, whereas
INF and ESR are retained in the baseline specification. INF shows a steadily strengthening negative effect after 2005,
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consistent with improved regulatory capacity and monitoring. GPR remains flat and close to zero across the sample,
suggesting limited systemic influence on emissions for this income group. In contrast, ESR shows a mild positive effect
before 2005 but declines sharply thereafter, implying that energy-related vulnerabilities may have initially driven carbon-
intensive responses, which were later mitigated as energy systems stabilized. The inclusion of this figure therefore helps
contextualize why these variables were filtered out, while still demonstrating that they exhibit interpretable, if modest,
temporal shifts.
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Figure 8. The isolate the trajectories of INF, GPR, and ESR for the Higher-income Group
5-3-3-2- Structural Drivers and Constraints of GHG Emissions in the Lower-Income Countries

For the Lower-income group, GDP and HDI stand out as significant emission drivers, particularly between 2000 and
2010 during periods of rapid infrastructure expansion and economic growth (Figure 9). After 2015, the influence of GDP
flattens and gradually declines, plausibly reflecting greater engagement with global climate commitments and
incremental gains in economic efficiency. The quadratic GDP term is excluded from the final specification, as its time-
varying coefficient remains close to zero throughout the sample. This suggests that nonlinear EKC dynamics are better
captured through evolving effects of GDP over time rather than a fixed second-order term, consistent with evidence that
EKC relationships vary across structural and institutional settings [68]. The persistently positive role of HDI underscores
the emissions—development trade-off inherent in expanding human welfare within resource- and capacity-constrained
contexts. The limited or insignificant effects of renewable energy and energy security variables in this group align with
the structural and technological constraints faced by developing nations, particularly in accessing clean technologies and
implementing effective policies [70]. Another city-level analysis—such as [69], further illustrates how spatial and
sectoral heterogeneity in development pathways can yield divergent emission outcomes, underscoring the need for
localized, group-specific strategies.
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Note: Vertical dashed lines mark major global climate events (e.g., Kyoto, Paris). Variables shown in the figure are
selected using a filtering function that retains only those with either a high average effect (mean > 0.3 in absolute
value) or a large degree of fluctuation over time (standard deviation > 0.15). All series are in natural logs.

Figure 9. Time-Varying Coefficient Trajectories for the Lower-income Group (tvRE)
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Energy intensity also maintains a negative association with emissions, albeit with lower magnitude and variability
compared to Higher-income counterparts. This indicates that efficiency gains materialize more slowly where
infrastructure and financing remain limited. Alam et al. [73] confirmed that in fast-developing economies, reductions in
energy intensity can curb emissions, though the strength of this relationship depends on institutional quality and
investment capacity. By contrast, INF shows inconsistent influence across countries, reflecting how informality’s
environmental impact depends on governance thresholds and data reliability. Similarly, the coefficient for ESR remains
largely neutral, consistent with expectations that such concerns are less systematically measured or prioritized in
developing economies due to data gaps and structural limitations.

In particular, for the Lower-income group, variables such as INF, GPR, and ESR are excluded from Figure 9 because
their estimated time-varying parameters remain close to zero and display limited fluctuation across the study period.
This pattern suggests that these variables exert neither any strong nor dynamic influence on emissions in these settings.
In practical terms, their muted behavior may reflect structural limitations—such as data reporting gaps, institutional
inertia, or lower policy responsiveness—that dampen the explanatory power of such variables. Their exclusion does not
imply irrelevance in a broader context, but rather that within this specific empirical framework and sample, their
contribution to explaining temporal emissions dynamics is negligible.

5-3-3-3- Shifting Influences and Global Events

The coefficient trajectories from our time-varying panel model exhibit distinct inflection points around three major
global events, underlining the responsiveness of emissions drivers to policy, economic, and security shifts.

After the Kyoto Protocol's enforcement in 2005, coefficients on GDP accelerate markedly in the Higher-income
group—an effect that may reflect rebound dynamics, where efficiency improvements are offset by increased economic
activity. This pattern aligns with [68], which reports a robust N-shaped EKC across 214 countries, where the quadratic
GDP effect turns negative but is often outweighed by stronger linear and cubic components.

During the Global Financial Crisis of 2008, GLO declined sharply in Lower-income countries, suggesting heightened
vulnerability to capital and trade shocks. Guan et al. [71] documented how structural transformations in global energy
and industrial systems during crises can significantly realign emissions trajectories, particularly in export-dependent
economies.

Following the Paris Agreement in 2015, the effects of development-related variables—GDP, HDI, and URB—
tend to stabilize or decline. This may reflect the early impacts of international climate commitments. Supporting
this view, Wang & Cao [69] observed that urban development’s effect on air pollution in China began to decelerate
under more stringent environmental regulation. However, the more muted response in lower-income countries is
consistent with findings from [72, 73], arguing that weak institutions and limited energy transition capacity dampen
policy effectiveness in such contexts. Notably, ESR remains either weakly positive or neutral throughout. This
suggests that energy security concerns can undermine decarbonization by pushing countries toward carbon-intensive
fallback options. As lyke [27] confirmed that climate-induced volatility can heighten ESR and disincentivize clean
energy investment, Cevik [25] framed this as a critical policy trade-off between energy reliability and environmental
sustainability.

5-3-3-4- Policy Implications and Sustainable Development Goals Alignment

These dynamic patterns carry several important policy implications. For advanced economies, climate strategies
should extend beyond improvements in energy efficiency to tackle lifestyle-related emissions, promote circular economy
models, and strengthen governance over informal and unregulated pollutant sources. For emerging economies, priority
should be placed on investments in clean infrastructure, policies that encourage the formalization of economic activity,
and expanded access to green technologies to prevent long-term carbon lock-in.

These recommendations align closely with the Sustainable Development Goals (SDGs), particularly SDG 13 (Climate
Action), SDG 8 (Decent Work and Economic Growth), SDG 11 (Sustainable Cities and Communities), and SDG 16
(Peace, Justice and Strong Institutions). Furthermore, the Principles for Sustainable Insurance (PSI) framework indicates
pronounced temporal shifts in core drivers such as HDI and GLO among Higher-income countries, reflecting their
evolving roles in shaping emissions dynamics. By contrast, Lower-income economies display consistently lower PSI
performance, suggesting slower responsiveness to global climate objectives. This newly developed index offers a basis
for differentiated policy design, enabling targeted interventions that account for both structural flexibility and time-
varying adaptive capacity.
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6- Conclusion

This study investigates the dynamic determinants of GHG emissions across 29 countries from 1993 to 2018, with
particular attention to underrepresented yet structurally important drivers—namely the shadow economy, energy security
risks, and geopolitical volatility. The empirical design follows a four-step framework in which countries are classified
using principal component analysis and K-means clustering, robust covariates are selected through Bayesian Model
Averaging, and their impacts are estimated using time-varying coefficient panel models, with robustness confirmed via
grouped cross-validation. Results indicate the superior performance of the time-varying random effects specification and
reveal distinct inflection points in the coefficient trajectories around three major global events. Following the Kyoto
Protocol’s enforcement in 2005, the influence of GDP on emissions accelerates markedly in the Higher-income
countries, potentially reflecting rebound effects where efficiency gains are offset by expanded economic activity. During
the 2008 Global Financial Crisis, the contribution of geopolitical and openness-related factors declines sharply in Lower-
income economies, underscoring their vulnerability to capital and trade shocks. After the Paris Agreement in 2015, the
effects of development-related variables—GDP, human development, and urbanization—tend to stabilize or decline,
suggesting early impacts of international climate commitments, albeit with weaker responses in less developed contexts.
Across the entire period, energy security risk remains either weakly positive or neutral, implying that concerns over
energy reliability can undermine decarbonization by encouraging reliance on carbon-intensive fallback options.
Collectively, these findings highlight the complex, event-sensitive, and often asymmetric nature of emissions drivers,
highlighting the need for policy frameworks that integrate economic, environmental, and energy security considerations
in a coherent and adaptive manner.

The findings point to a set of differentiated policy priorities. In the Higher-income economies, effective climate
strategies should go beyond incremental energy efficiency gains to address consumption-driven emissions, embed
circular economy principles, and enhance governance over informal or unregulated pollution sources. In emerging
economies, policy efforts need to prioritize large-scale investment in clean infrastructure, promote the formalization of
economic activity, and expand access to affordable green technologies to avoid long-term carbon lock-in. These priorities
are relevant to the SDGs, particularly those relating to climate action, sustainable economic growth, urban resilience,
and institutional capacity. Future research could extend this work along three main directions. First, broadening the
geographical scope to include additional countries or regions would yield a more comprehensive understanding of cross-
country heterogeneity in emissions drivers. Second, incorporating sector-specific emissions data could uncover industry-
level pathways and inform more targeted mitigation strategies. Third, a notable limitation of the present study is its
temporal coverage, restricted to 1993-2018 due to the availability and consistency of cross-country data. Updating the
dataset to include more recent years would enable for the assessment of emerging global challenges, such as the impacts
of post-2018 climate agreements, changes in energy market structures, the COVID-19 pandemic, trade wars, and shifting
geopolitical dynamics, thereby enhancing the relevance and timeliness of the analysis. Taken together, these policy
recommendations and further research directions underscore the importance of integrated, context-specific, and adaptive
strategies for managing GHG emissions in an increasingly dynamic and interconnected global environment.
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