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Abstract 

Understanding the key drivers of greenhouse gas (GHG) emissions is crucial for designing effective 

and adaptable climate policies, particularly given the complex interplay among structural, 

institutional, and energy-related factors. This study examines the time-varying impacts of key 

determinants of GHG emissions across 29 countries from 1993 to 2018, with an emphasis on the 

shadow economy, energy security risks, and geopolitical volatility. The analysis follows a four-step 

framework: countries are classified using principal component analysis (PCA) and K-means 

clustering, robust covariates are selected via Bayesian Model Averaging (BMA), and their impacts 

are estimated with time-varying coefficient panel models. Model robustness is evaluated through 

grouped cross-validation, confirming the superior performance of the time-varying random effects 

(tvRE) specification. The results reveal that the shadow economy and energy security risk exert more 

dynamic and substantial impacts in the Higher-income group, while their effects are comparatively 

muted in the Lower-income group. Geopolitical risk, however, shows limited explanatory power for 

emissions in both contexts. This study provides a novel empirical framework for capturing the 

dynamic influences of emissions drivers and contributes actionable insights toward achieving 

sustainable development goals. 
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1- Introduction 

Scientific evidence overwhelmingly confirms that climate change, driven predominantly by GHG emissions, poses 

profound and escalating threats to ecosystems, economies, and public welfare [1]. According to the IPCC Sixth 

Assessment Report [2], emissions continue to rise, primarily due to fossil fuel combustion, industrial processes, and 

emissions from land-use change, deforestation, and non-CO2 sources (Figure 1). These persistent and nonstationary 

trends underscore not only the urgency of mitigating emissions but also the necessity of deepening our understanding of 

the economic and structural determinants underpinning emissions growth over time. 

 Building on existing literature, numerous studies have examined the factors influencing environmental quality and 

CO₂  emissions, including demographic dynamics [3-5], affluence levels [6, 7], technological advancement [8, 9], 

energy structures [10, 11], and socio-political conditions [12, 13]. Beyond the commonly examined factors, this paper 

focuses on three additional variables—the shadow economy, energy security, and geopolitical risk—whose impacts on 

GHG emissions remain relatively underexplored in existing literature.  
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Figure 1. Increased emissions of GHGs 

Previous studies often overlook the shadow economy due to severe measurement challenges. Shadow activities—

such as black-market trade, undeclared work, and tax evasion—are intentionally hidden from authorities, making reliable 

data collection nearly impossible [14]. Moreover, distinguishing legal from illegal transactions in international data is a 

“quantitative nightmare” [15], so researchers mostly avoided these complexities until estimation techniques, such as 

those proposed by Medina & Schneider [16]. In this paper, we use the shadow economy derived from the Multiple 

Indicators, Multiple Causes (MIMIC) approach [17]. This determinant presents a paradox in environmental economics. 

On the one hand, it exacerbates emissions by enabling unmonitored industrial activity, inefficient energy use, and 

regulatory evasion. Informal sectors often rely on outdated technologies and bypass emissions standards, thereby 

disproportionately contributing to pollution [18, 19]. This challenge is particularly acute in developing economies, where 

the informal sector constitutes a substantial share of overall economic activity [20]. Nonetheless, the shadow economy 

does not necessarily exert a uniform detrimental effect. Some studies suggest that it may mitigate environmental 

pollution [21, 22]. Hence, the impact of the informal economy on GHG emissions remains a matter of debate.  

In addition to the hidden economy, energy security risk (ESR) and geopolitical risk (GPR) are critical determinants 

of greenhouse gas emissions [23, 24]. However, the relationship between ESR and GHG emissions remains a subject of 

ongoing debate, with empirical evidence offering no clear consensus on whether ESR acts as a complement to or a trade-

off against emission-reduction objectives [25, 26]. Several studies report that mitigating ESR can paradoxically lead to 

higher GHG emissions, as countries often resort to carbon-intensive energy sources to secure short-term supply stability 

[27-29]. Conversely, China’s energy-saving and emission reduction policy illustrates a win–win outcome, improving 

energy security while cutting emissions [30]. Hence, the influence of ESR on GHG emissions remains open for further 

analysis.  

With respect to GPR, although its relationship with GHG emissions has increasingly attracted scholarly attention, 

empirical findings remain mixed [31, 32]. Using the method of moments quantile regression (MMQR) and the 

augmented mean group (AMG) estimator, [33, 34] reported that GPR escalates emissions by disrupting energy 

transitions and prompting governments to revert to fossil fuel consumption, thereby amplifying climate threats. In 

contrast, employing wavelet quantile technique, Feng et al. [35] suggested that geopolitical risks can exert a short-term 

mitigating effect, either by suppressing economic activity or by slowing energy demand. This divergence highlights the 

complex and context-dependent nature of the GPR–GHG nexus [36], underscoring the need for further empirical 

investigation. 

During the literature review, we also identified a methodological gap. Most previous studies rely on time-invariant 

estimation techniques that capture only average effects [37], implicitly assuming that the underlying relationships remain 

constant across time. However, several scholars [38, 39] argue that this approach is inappropriate for inherently 

time-varying variables, potentially producing biased estimates and failing to reflect actual dynamics. 

While previous studies have yielded valuable insights, the evidence remains fragmented. To address these gaps, this 

study aims to answer two key research questions: (1) What are the main drivers of GHG emissions? and (2) How do 

their effects evolve over time, particularly in the context of structural shocks such as hidden economic activity, energy 

insecurity, and geopolitical tensions? 

In doing so, this study offers several contributions to existing literature. First, it investigates the causal effects of a 

broad set of determinants on GHG emissions, thereby capturing the complexity of environmental pressures beyond 

conventional explanatory factors. Second, while most existing empirical evidence is largely static, this study emphasizes 
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the importance of accounting for the dynamic nature of these relationships. Third, although some studies have employed 

dynamic approaches—such as linear/ nonlinear autoregressive distributed lag (ARDL/NARDL) or rolling-window 

quantile ARDL models [37, 40, 41]—these techniques are typically limited to distinguishing between short- and long-

run effects, without fully capturing how the influence of key drivers evolves over time. To overcome these limitations, 

this study employs a time-varying parameter framework, offering a more flexible and realistic assessment of how GHG 

emissions respond to structural economic and political shocks over time.  

The structure of this paper is as follows: Section 1 introduces the research context and objectives. Section 2 outlines 

the relevant theoretical foundations. Section 3 describes the dataset and details the country classification through 

clustering analysis. Section 4 outlines the methodological framework. Section 5 presents the empirical results and 

discusses the key findings. Finally, Section 6 concludes with policy implications and offers directions for future research. 

2- Theoretical Framework 

Understanding the determinants of GHG emissions requires the conceptual frameworks that can accommodate both 

environmental and socio-economic factors. In line with most existing research [42-44], this study draws primarily on 

two complementary concepts: (1) the Stochastic Impacts by Regression on Population, Affluence and Technology 

(STIRPAT) model, and (2) the Environmental Kuznets Curve (EKC) hypothesis. While the former offers a flexible 

structure for quantifying the elasticities of multiple socio-economic and structural drivers, the latter captures the potential 

non-linear dynamics of income–environment interactions. Together, these frameworks enable the present study to 

capture both the direct and evolving impacts of conventional and unconventional determinants over time, providing a 

richer understanding of the economic and structural processes that shape emissions trajectories. 

2-1- The STIRPAT Model  

The STIRPAT model, as extended by Dietz & Roza [45, 46], is an econometric reformulation of the IPAT identity 

proposed by Ehrlich & Holdren [3], which expresses environmental impact (I) as the multiplicative product of population 

(P), affluence—or economic activity per person—(A), and technology (T). While the original IPAT equation is 

deterministic, the extended STIRPAT model introduces stochasticity and allows for flexible estimation through 

logarithmic transformation:  

𝐼𝑖𝑡 = 𝑎𝑖𝑡𝑃𝑖𝑡
𝑏1𝐴𝑖𝑡

𝑏2𝑇𝑖𝑡
𝑏3𝑒𝑖𝑡 (1) 

where; 𝐼, 𝑃, 𝐴, 𝑇 are the same variables as described in the IPAT identity for country 𝑖 at time 𝑡. 𝑎 represents the country-

specific effect, 𝑏1, 𝑏2, and 𝑏3 are elasticities to be estimated. 𝑒 is the error term. Taking the natural logarithm of both 

sides of Equation 1 yields the following expression: 

𝑙𝑛𝐼𝑖𝑡 = 𝑎𝑖𝑡 + 𝑏1𝑙𝑛𝑃𝑖𝑡 + 𝑏2𝑙𝑛𝐴𝑖𝑡 + 𝑏3𝑙𝑛𝑇𝑖𝑡 + 𝑒𝑖𝑡 (2) 

This formulation enables empirical testing of the magnitude and significance of the three main factors above, while 

accommodating additional explanatory variables beyond the original IPAT factors [47, 48]. 

In this study, the STIRPAT framework serves as the conceptual foundation for identifying and interpreting the causal 

drivers of GHG emissions. While retaining its core focus on demographic, economic, and technological factors, the 

framework is expanded to encompass a broad spectrum of determinants that capture the multi-dimensional nature of 

environmental pressures. These include demographic factors (total population, urban population), environmental 

resources (forest land, natural resource rents), structural economic measures (GDP/GDP2, industry/agricultural value-

added, and shadow economy), social development indicators (human development index), political and institutional 

indicators (democracy, corruption, and geopolitical risk index), global integration metrics (globalization index, trade 

openness, import/export trade), market-related factors (oil prices, energy security risk), energy-related variables 

(renewable energy consumption, energy intensity), and technological innovation (environmental patents). This enriched 

specification allows for a more comprehensive assessment of the diverse and evolving forces shaping GHG emissions. 

2-2- The EKC Hypothesis 

The EKC hypothesis, originating from the work of Grossman & Krueger [49], posits a non-linear relationship between 

environmental degradation and economic growth. Specifically, it suggests that environmental pressure increases during 

the early stages of economic development, reaches a turning point, and subsequently declines as economies achieve 

higher-income levels and adopt cleaner technologies. This inverted-U pattern is commonly tested by including both 

income and income-squared terms (often GDP and GDP2) in regression analysis. Empirical evidence for the EKC 

remains mixed, varying with the pollutant examined, the control variables included, and the estimation techniques 

applied [50-52]. In the context of GHG emissions, the EKC framework provides a basis for the investigation of whether 

economic expansion can eventually coincide with environmental sustainability or whether emissions continue to rise 

regardless of income growth. This approach offers insights that can guide well-targeted policy interventions that balance 

economic growth and environmental sustainability. 
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3- Data 

This study utilizes a balanced panel dataset covering 29 countries spanning 1993-2018, constructed by merging 
multiple internationally recognized sources to ensure both cross-country comparability and temporal consistency. All 
explanatory variables are lagged by one year for several purposes. First, lagging mitigates mitigate simultaneity and 

reverse-causality concerns, ensuring that predictors reflect prior-year conditions rather than being contaminated by 
contemporaneous feedback from emissions. Second, this design reflects the inherent inertia in environmental and 
macroeconomic systems—driven by technological adaptation lags, infrastructure lock-in, and gradual policy effects—
where changes in drivers often materialize with a delay. Third, applying a uniform one-period lag across all predictors 
facilitates comparability of coefficient trajectories and reduces the risk of overfitting, particularly in annual datasets with 
relatively short time spans. Combined with the time-varying parameter (TVP) framework, this setup enables the model 

to capture both the delayed transmission of effects and their evolving magnitude over time, without inflating complexity 
or compromising interpretability. The selection of sample countries is guided by several considerations. First, we include 
as many countries as possible from those that report the geopolitical risk index. Second, the sample is further constrained 
by the availability of data for other explanatory variables. Accordingly, the final country selection maximizes data 
coverage across all variables of interest and is based on annual observations. Lastly, to enable the semiparametric 
estimation procedure central to this study, a balanced panel is required. These criteria result in a panel dataset comprising 

29 countries, which are subsequently divided into two clusters. Further details are provided in subsection 3.2. 

3-1- Variable Descriptions 

The study encompasses the potential variables, each of which is crucial for analyzing the determinants of GHG 
emissions. These variables cover economic, environmental, and policy-related sectors that collectively shape emission 
patterns over time. Given the complexity of emissions dynamics, incorporating a diverse set of explanatory variables 
allows for a more comprehensive assessment of their relative influences. Moreover, including both macroeconomic 
indicators and sector-specific measures ensures that the analysis captures cross-sectional variations in emission 

determinants. To facilitate a structured analysis, Table 1 provides a detailed description of these variables, including 
their symbols, measurement methods, and data sources. All variables are transformed using natural logarithms. 

Table 1. Variables and their descriptions 

Variable name Symbol Measurement Source 

Greenhouse gas emissions GHG GHG per capita (tCO2eq/cap/yr) 
EDGAR Community 

GHG Database 

Shadow economy INF 
MIMIC estimates of informal output (% of official GDP) (higher values indicate larger informal 

sector, generally undesirable due to reduced tax revenue and regulatory oversight) 
Elgin et al. [17] 

Geopolitical risk GPR 
The index is calculated by counting the number of articles related to adverse geopolitical events in 

each newspaper for each month (a share of the total number of news articles) (higher values indicate 

greater geopolitical instability, generally undesirable for economic stability) 

Caldara & Iacoviello 

[53] 

Energy security risk ESR 
International index of energy security risk (higher values indicate higher vulnerability in energy 

supply, generally undesirable for energy stability) 

Global Energy 

Institute 

Agriculture value added AGR Agriculture, forestry, and fishing value added (% of GDP) WDI 

Corruption index COR Political corruption index (higher values indicate greater political corruption, generally undesirable) OWID 

Democracy index DEM Liberal democracy index (higher values indicate stronger democratic institutions, generally desirable) OWID 

Energy intensity EI The amount of energy consumed per unit of GDP produced (MJ per 2015 USD PPP) SDG 7.3, IEA 

Export trade EXP Exports of goods and services (% of GDP) WDI 

Forest area FRS Forest land square (sq. km) WDI 

Gross domestic product GDP GDP per capita, PPP (current international $) WDI 

Squared GDP GDP2 
It is included to check the environmental Kuznets curve hypothesis and calculated by the squared 

natural logarithm of GDP 
 

Globalization index GLO KOF globalization index 
KOF Swiss 

Economic Institute 

Human development 

index 
HDI 

An average achievement in three dimensions: human development life expectancy, education, and 

GNI indices 
UNDP 

Import trade IMP Imports of goods and services (% of GDP) WDI 

Industry value added IND Industry (including construction) value added (% of GDP) WDI 

Oil price OIL World Brent Oil price (US per barrel) BP 

Population POP Total population WDI 

Patents PAT Environment-related technologies (% of inventions) OECD 

Renewable energy 

consumption 
REC The share of renewable energy in total final energy consumption (%) WDI 

Natural resources rents REN The sum of oil rents, natural gas rents, coal rents, mineral rents, and forest rents (% of GDP) WDI 

Trade openness TRA The sum of imports and exports (% of GDP) WDI 

Urban population URB Urban population (% of total population) WDI 

 Note: All variables are transformed into their natural logarithmic form. 
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The descriptive statistics for all variables are presented in Table 2. This table provides an overview of the mean, 

standard deviation, minimum, and maximum values for each variable, providing insights into the data across the sample 

of countries. 

Table 2. Summary statistics of variables 

Variable Mean S.D. Min Max 

GHG 2.076 0.636 0.540 3.360 

GPR -2.539 1.282 -5.630 1.470 

ESR 6.904 0.240 6.340 8.130 

COR -1.943 1.678 -6.210 -0.030 

DEM -0.765 0.828 -3.240 -0.110 

EI 1.517 0.392 0.530 2.840 

FRS 11.75 2.149 6.11 15.91 

GDP 9.724 0.825 7.220 11.130 

GDP2 95.24 15.66 52.14 123.88 

GLO 4.243 0.191 3.430 4.510 

HDI -0.249 0.149 -0.810 -0.040 

OIL 3.723 0.695 2.540 4.720 

POP 17.52 1.309 15.28 21.06 

INF 3.123 0.456 2.100 4.090 

AGR 1.3261 0.940 -0.610 3.400 

EXP 3.437 0.529 1.910 4.790 

IMP 3.409 0.483 1.940 4.610 

IND 3.358 0.253 2.850 4.200 

PAT 3.211 0.904 0 4.610 

REC 2.295 1.498 -4.610 4.260 

REN 0.023 2.116 -6.960 4.010 

TRA 4.121 0.497 2.750 5.400 

URB 4.219 0.306 3.060 4.580 

Note: All variables are transformed into their natural logarithmic form. 

3-2- Clustering-Based Country Grouping 

Instead of relying on conventional income classifications from the World Bank, countries were grouped using an 

unsupervised learning technique that combines Principal Component Analysis (PCA) and K-means clustering. The 

clustering was performed on lagged averages of the core variables listed in Table 1. This data-driven approach facilitates 

structural grouping based on latent similarities across economic, social, and energy-related indicators. 

The PCA and K-means (with C clusters, where C=2) procedure identified two structurally coherent clusters as shown 

in Figure 2: 

 

Figure 2. Country Clustering Using K-means (based on PCA projection of lagged economic indicators) 
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Cluster 1: Lower-income Group (Primarily Emerging and Developing Economies) consists of Argentina 

(ARG), Brazil (BRA), Chile (CHL), China (CHN), Colombia (COL), Egypt (EGY), Indonesia (IDN), India (IND), 

Mexico (MEX), Russia (RUS), Saudi Arabia (SAU), Thailand (THA), Tunisia (TUN), Turkey (TUR), Ukraine 

(UKR), Vietnam (VNM), and South Africa (ZAF). These nations tend to exhibit relatively lower HDI, ESR, and 

limited adoption of REC technologies. They are generally characterized by ongoing industrialization, urbanization, 

or transitional economic development. Elevated emissions levels may result from high EI or dependence on fossil 

fuels. 

Cluster 2: Higher-income Group (Advanced Economies and High Performers) includes Australia (AUS), 

Switzerland (CHE), Germany (DEU), Denmark (DNK), Finland (FIN), France (FRA), United Kingdom (GBR), Italy 

(ITA), Korea (KOR), Netherlands (NLD), Norway (NOR), and Sweden (SWE). This cluster comprises primarily 

Organisation for Economic Cooperation and Development (OECD) or high-income countries. These nations are 

typically distinguished by better governance indicators (e.g., COR, DEM), more efficient energy intensity (EI), and 

lower natural resource rents (REN). They also exhibit more advanced institutional capacity, greater reliance on 

technological innovation, and more diversified economic structures.  

This grouping strategy reflects underlying development and policy structures more accurately than static income 

classifications and supports heterogeneity-aware modeling. Specifically, while countries in Cluster 2 appear to be more 

homogeneous in terms of advanced infrastructure and environmental policy implementation, Cluster 1 represents a more 

heterogeneous mix of nations undergoing rapid industrialization or development challenges. 

4- Methodology 

Recognizing empirical uncertainty in covariate relevance and the evolving nature of environmental-economic 

relationships, we first apply the BMA approach for systematic variable selection. We then employ time-varying 

parameter (TVP) estimation in a panel data context to capture how explanatory effects evolve over time. To ensure 

model adaptability across country heterogeneity, both Fixed Effects (FE) and Random Effects (RE) versions of the 

TVP estimators are used, providing a flexible estimation framework. Model performance is evaluated through cross-

validation and simulation-based validation techniques. Figure 3 illustrates the methodological steps undertaken in 

this study. 

 

Figure 3. The process of the methodology 

4-1- Covariate Selection Using Bayesian Model Averaging (BMA) 

After establishing the clusters and data structure in Section 3, we proceed to identify statistically relevant variables 

using the Bayesian Model Averaging (BMA). Model uncertainty is a pervasive challenge in empirical studies on 

environmental determinants of GHG emissions, as different econometric specifications can lead to divergent results. 

Traditional model selection methods, such as stepwise regression or information-criteria-based approaches, are prone to 

overfitting and estimation instability [54]. To address this issue, BMA is employed to systematically evaluate multiple 

competing models, assigning weights based on posterior probabilities rather than relying on a single best model [55, 56]. 

This technique is particularly advantageous in environmental economics because it mitigates omitted variable bias and 

prevents over-reliance on specific model assumptions [57]. In addition, BMA helps reduce the impact of 

multicollinearity among explanatory variables by averaging over models that may exclude highly correlated predictors. 

Instead of forcing all variables into a single specification—which can inflate standard errors and distort coefficient 

estimates—BMA implicitly down-weights redundant predictors that offer little marginal explanatory power. This results 

in more stable and interpretable inference, as reflected in the posterior inclusion probabilities (PIP), which quantify the 

likelihood that a given variable significantly contributes to explaining GHG emissions. The posterior model probability 

(PMP) for a model 𝑀𝑝, given data 𝑦 and covariates 𝑋, is computed as: 

Covariate selection

•BMA

TVP estimation

•tvFE

•tvRE

Robustness Check

•Cross-validation

•Simulation
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𝑃(𝑀𝑝|𝑦, 𝑋) =
𝑃(𝑀𝑝). 𝑃(𝑦|𝑀𝑝, 𝑋)

∑ 𝑃(𝑀𝑞). 𝑃(𝑦|𝑀𝑞 , 𝑋)2𝑑

𝑞=1

 (3) 

where, 𝑃(𝑀𝑝) is the prior probability assigned to the model 𝑀𝑝, 𝑃(𝑦|𝑀𝑝, 𝑋) is the marginal likelihood of the data given 

the model 𝑀𝑝, 𝑑 is the total number of predictors. 

A key consideration in BMA is the selection of prior distributions. In line with best practices, this study employs three 

distinct priors—random, fixed, and uniform priors—to ensure the robustness in the variable selection process [58]. The 

rationale for this multi-prior approach is as follows: 

 Random Priors: These allow for greater flexibility by dynamically assigning probabilities based on the data 

structure, making them particularly useful when prior knowledge about model specifications is limited. 

 Fixed Priors: These introduce structure by incorporating theoretical justifications and empirical evidence, 

ensuring that key variables (e.g., economic growth and energy consumption) remain consistently included. 

 Uniform Priors: These assume equal probability across all models, which reducing bias in variable selection by 

preventing excessive reliance on any single specification. 

Following the empirical-Bayes approach, predictors with a PIP greater than 0.5 are retained for further analysis [59]. 

These selected variables form the basis for estimating time-varying coefficients in the subsequent modeling stage. 

The use of BMA in this study is justified not only by its statistical rigor in handling model uncertainty but also by its 

alignment with the research objective of identifying structurally significant and consistently influential predictors of 

GHG emissions. While subsequent estimation is performed using frequentist time-varying models, BMA serves as an 

objective screening tool, narrowing the explanatory space and minimizing risks of overfitting or omitted variable bias. 

This modular integration leverages the strengths of both Bayesian variable selection and flexible frequentist estimation. 

4-2- Time-Varying Parameter (TVP) Coefficient Models 

Traditional econometric models—such as fixed-effects and random-effects panel estimators—assume time-invariant 

coefficients—implying that the relationship between explanatory variables and the dependent variable is constant over 

time. However, empirical evidence increasingly suggests that the economic and institutional drivers of GHG emissions 

evolve due to changing policies, technological shifts, and macro-structural transitions [60]. To capture these non-

stationary dynamics, this study adopts a flexible non-static approach by employing TVP models. 

Formally, the TVP structure is rooted in the varying coefficient model [61]: 

𝑌 = 𝑿′𝜷(𝑅) + 𝜀 (4) 

where, Χ′ = (𝑋1, … , 𝑋𝑑)′ is the transpose of regressor vector with dimension 𝑑; 𝛽 = (𝛽1(𝑅1), … , 𝛽𝑑(𝑅𝑑)) is the vector 

of coefficient functions varying with an effect-modifying variable 𝑅; and 𝜀 is a mean-zero error term with constant 

variance. In this study, 𝑅 corresponds to time, thereby allowing coefficients to evolve temporally. To estimate these 

time-varying coefficients, we minimize the expected squared error conditional on time: 

𝑚𝑖𝑛𝐸[{𝑌 − 𝑋′𝛽(𝑅)|𝑅}2|𝑅 = 𝑡] (5) 

The solution is the conditional expectation-based estimator: 

𝛽̂(𝑡) = 𝐸(XΧ′|𝑡)−1𝐸(Χ′𝑌|𝑡) (6) 

Extending this to a panel framework where heterogeneity exists across both individuals (𝑖) and time (𝑡), the TVP 

panel model is specified as follows: 

𝑌𝑖𝑡 = Χ𝑖𝑡
′ 𝛽(𝑧𝑡) + 𝛼𝑖 + 𝑢𝑖𝑡 (7) 

where, {(𝑌𝑖𝑡 , Χ𝑖𝑡)|𝑖 = 1, … , 𝑁, 𝑡 = 1, … , 𝑇} are observed data. Each regressor is modeled as an integrated process 𝑋𝑖𝑡 =
𝑋𝑖,𝑡−1 + 𝜈𝑖𝑡 , satisfying regularity conditions. Here, 𝛽(. ) Captures the unknown coefficient functions, 𝑧𝑡 is the smoothing 

variable, and 𝛼𝑖 represents individual fixed-effects. For notational convenience, the relevant expectation terms are 

denoted as follows: 𝑆𝑇,𝑠(𝑧𝑡) = 𝐸(ΧΧ′|𝑡) is the weighted sum of the regressors; 𝑇𝑇,𝑠(𝑧𝑡) = 𝐸(Χ′𝑌|𝑡) is the weighted sum 

of the regressors and the response variable. In which, 𝑠 denotes the polynomial order used in the local linear 

approximation (𝑠 = 0,1,2). 
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The kernel-weighted estimator becomes: 

𝛽̂(𝑧𝑡) = 𝑆𝑇,𝑠
−1(𝑧𝑡)𝑇𝑇,𝑠(𝑧𝑡) (8) 

Both FE and RE specifications rely on this local smoothing framework [62, 63], differing in how they treat the 

unobserved heterogeneity 𝛼𝑖. While time-varying Fixed Effects (tvFE) estimator removes unit-specific means via kernel-

based de-meaning techniques, time-varying Random Effects (tvRE) estimator incorporates unit-specific variances via 

an inverse covariance weighting matrix. 

a) Time-Varying Fixed Effects Estimator (tvFE) 

Identification requires the constraint ∑ 𝛼𝑖
𝑁
𝑖=1 = 0. The kernel-weighted estimation proceeds as: 

𝑆𝑇,𝑠(𝑧𝑡) = 𝑋𝑇𝑊𝑏,𝑡𝑋(𝑍 − 𝑧𝑡)𝑠 

𝑇𝑇,𝑠(𝑧𝑡) = 𝑋𝑇𝑊𝑏,𝑡𝑌(𝑍 − 𝑧𝑡)𝑠 

(9) 

(10) 

where, 𝑊𝑏,𝑡 = 𝐷𝑡
𝑇𝐾𝑏,𝑡

∗ 𝐷𝑡, is a kernel weighted matrix combining de-meaning with kernel weighting matrix according to 

bandwidth (𝑏); 𝐷𝑡 = 𝐼𝑁𝑇 − 𝐷(𝐷𝑇𝐾𝑏,𝑡
∗ 𝐷)

−1
𝐷𝑇𝐾𝑏,𝑡

∗  and 𝐷 = (−1𝑁−1, 𝐼𝑁−1)𝑇 ⊗ 1𝑇; 𝐾𝑏,𝑡
∗ = 𝐼𝑁 ⊗ 𝑑𝑖𝑎𝑔{𝐾𝑏(𝑧1 −

𝑧𝑡), … , 𝐾𝑏(𝑧𝑇 − 𝑧𝑡)}; (𝑍 − 𝑧𝑡)𝑠 is the polynomial term that provides local weighting via a Taylor expansion centered at 

𝑧𝑡, controlling for temporal distance in estimation. 

b) Time-Varying Random Effects Estimator (tvRE) 

The tvRE formulation adjusts for unit-level variance using: 

𝑆𝑇,𝑠(𝑧𝑡) = 𝑋𝑇𝐾𝑏,𝑡
∗1/2

Σ𝑡
−1𝐾𝑏,𝑡

∗1/2
𝑋(𝑍 − 𝑧𝑡)𝑠 

𝑇𝑇,𝑠(𝑧𝑡) = 𝑋𝑇𝐾𝑏,𝑡
∗1/2

Σ𝑡
−1𝐾𝑏,𝑡

∗1/2
𝑌(𝑍 − 𝑧𝑡)𝑠 

(11) 

(12) 

where, Σ𝑡 denotes the estimated covariance matrix of the random effects, and 𝐾𝑏,𝑡
∗1/2

 applies kernel-based temporal 

weights, ensuring local smoothing. 

This study combines BMA with time-varying panel estimation (tvRE/tvFE) to capture evolving relationships between 

covariates and emissions. By allowing for both cross-country differences and within-country changes over time, the 

approach offers a flexible means of understanding how emission drivers shift across structural contexts. The bandwidth 

parameter for kernel smoothing, which controls the degree of temporal flexibility in the TVP models—was selected 

using grouped cross-validation to strike a good balance between bias and variance. While alternative clustering methods, 

such as hierarchical clustering, were considered, they were ultimately excluded from the final framework due to their 

limited capacity to handle time-varying relationships in high-dimensional panel data. Cross-validation therefore served 

both as a tuning method for bandwidth selection and as a tool for validating overall model robustness, leading into the 

next step of model performance evaluation. 

4-3- Model Validation: Cross-Validation and Simulation 

To evaluate performance and generalizability [64-66], we perform grouped 5-fold cross-validation using each 

country as the grouping unit to the preserve panel structure. Both MSE and MAE are computed to compare model 

types (static vs dynamic; Bayesian vs Frequentist), and this same cross-validation framework is applied to select the 

optimal bandwidth parameter for kernel smoothing in TVP estimation. Although an exhaustive grid search was not 

performed, several candidate bandwidths were tested to balance over-smoothing against responsiveness to temporal 

variation. While this cross-validation approach provides a solid empirical basis, it may still be insufficient for robust 

model validation [67]. Therefore, we additionally implement a Monte Carlo simulation procedure to assess whether 

estimated coefficients can accurately recover the true data-generating process. This entails testing parameter recovery 

using RMSE and correlation metrics on synthetic datasets. In terms of clustering design, although hierarchical 

clustering was initially considered, it was ultimately discarded due to its rigid structure, which does not align well with 

the overlapping and evolving emissions patterns observed across countries. As a result, both validation strategies 

confirm the superior out-of-sample performance of the tvRE model, particularly in capturing dynamic relationships 

over time, as discussed in subsection 5.3. 
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5- Estimation Results and Discussion  

5-1- Covariate Selection 

To evaluate the effectiveness of prior specifications in the BMA approach, we compare three types: fixed, random, 

and uniform priors. Among them, the random one consistently delivered the most stable and balanced variable selection 

performance across both country groups. Specifically, it selected the largest number of variables (15) in both groups, 

indicating a robust capacity to capture underlying structural relationships without overfitting. In contrast, the fixed and 

uniform priors selected fewer variables, with tendencies toward underfitting (fixed) or overfitting (uniform). 

Based on the Posterior Model Size Distributions (Figure 4), the Random prior exhibits posterior model sizes that are 

neither too sparse nor overly dense, with means around 12-14 independent variables in both Higher- and Lower-income 

countries, respectively. These means are reasonable and reflect a balance between model complexity and parsimony. In 

contrast, the fixed and uniform priors both result in overly parsimonious models (means near 10–12 variables), 

potentially omitting influential covariates. Among the three types, the Random prior demonstrates the best behavior: its 

posterior aligns well with the empirical signal while preserving flexibility across income groups. Overall, the comparison 

confirms that the BMA results are only moderately sensitive to prior choice—while different priors naturally shift the 

prior model size distributions by design, the posterior distributions remain centered around a similar range. This indicates 

that the variable selection process is largely data-driven and robust to prior specification. 

The PIP distributions (Figure 5) further underscore the advantage of employing the random prior. Variables selected 

under this prior tend to cluster around the conventional decision threshold of 0.5, reflecting a more data-driven and 

adaptive model structure. The key strength of the random prior lies in its endogenous control of model complexity: 

selection emerges from patterns in the data rather than being dictated by fixed structural assumptions. This flexibility is 

especially valuable in high-dimensional panel settings involving intertwined socio-economic, environmental, and 

institutional variables—contexts where structural heterogeneity and interaction effects are both expected and 

informative. In detail, Figure 5 reveals both overlaps and divergences in the set of influential variables between the 

higher- and lower-income country groups. Several predictors, such as GDP, GDP2, HDI, and INF, consistently exceed 

the 0.5 threshold in both groups, indicating their fundamental importance in explaining GHG emissions across diverse 

economic contexts. To examine the EKC hypothesis, GDP2 is included to capture potential non-linearities; however, its 

coefficient remains near zero, suggesting minimal impact on the overall modeling outcome. 

While several key features are common to both groups, group-specific patterns also exist. In the Higher-income group, 

variables like REC, ESR, and COR attain relatively high PIP values, reflecting a stronger role of energy transition, 

institutional integrity, and security-related risk mitigation in these countries. This aligns with expectations, given the 

advanced infrastructure and policy maturity in these economies. In contrast, the Lower-income group shows higher PIPs 

for variables such as IND, FRS, and URB, suggesting that industrial expansion, natural land-use patterns, and rapid 

urbanization remain dominant drivers in shaping emission patterns. Notably, REN and GPR appear less prominent, 

highlighting structural constraints in diversifying energy sources and responding to geopolitical risk management in 

developing countries.  

Overall, these differences reinforce the need for differentiated modeling strategies and policy interventions. The 

random prior helps reveal these nuanced patterns by selectively emphasizing variables whose inclusion is statistically 

and theoretically supported within each group context. Considering all visual and quantitative indicators (Figure 5 and 

6), the random prior emerges as the most robust choice for this study. It offers the best trade-off between parsimony and 

generalizability, capturing both well-supported and structurally meaningful variables across income groups. 

Accordingly, random prior is used as the basis for subsequent time-varying panel model estimation. 

A notable feature of the proposed modeling framework is that all explanatory variables are included in their first-

lagged form. This specification is theoretically motivated by the annual frequency of the data and the empirical context, 

where delayed responses to macroeconomic and policy shocks—such as those from international climate agreements—

are more plausibly captured by a one-year lag rather than contemporaneous values. By uniformly applying a lag of one 

year to all predictors, the model accounts for inertia, adjustment periods, and policy implementation lags that typically 

characterize emissions–driver relationships in both high- and low-income contexts. This approach also helps mitigate 

simultaneity bias and potential endogeneity, since current emissions are less likely to directly influence explanatory 

variables from the previous year. Moreover, because variable selection is already addressed through BMA, which filters 

out irrelevant or collinear predictors via posterior inclusion probabilities, combining lagged variables with the time-

varying coefficient framework preserves parsimony while enhancing interpretability. The resulting estimation strategy 

therefore captures both temporal evolution in effects and the realistic delayed impacts of drivers, providing a robust and 

policy-relevant view of emissions dynamics. 
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Figure 4. Posterior Model Size Distributions under Different Priors 

Note: The dashed red line represents the prior distribution of model size (i.e., beliefs about model complexity before 

observing the data), while the solid blue line shows the posterior distribution derived from the data. A well-performing 

prior yields a posterior that is data-driven yet avoids extremes—striking a balance between underfitting and overfitting.  
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Probability 
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Note: The vertical dashed line indicates the threshold PIP = 0.5. Only variables with PIP>0.5 under the Random prior 

are selected. All variables are transformed into their natural logarithmic form.  

Figure 5. Posterior Inclusion Probabilities (PIPs) by Prior Type for Each Country Group 

5-2- Estimate the Time-Varying Coefficients 

Table 3 reports the means and interquartile ranges (min–max) of time-varying coefficients estimated from the random 

effects specification. These summaries reflect not only the average magnitude of influence across time but also the extent 

of their dynamic variability. The results underscore several key patterns and provide new insights into group-specific 

emissions behavior. 

Table 3. Time-Varying Coefficients and Model Diagnostics from tvRE Model 

Variable 
Higher-income Group Lower-income Group 

Min Q1 Mean Median Q3 Max Min Q1 Mean Median Q3 Max 

GDP -1.9844 -0.8922 0.6565 0.4821 2.0065 2.9133 0.6188 0.6754 0.9772 0.8400 1.2977 1.4863 

GDP² -0.1163 -0.0957 -0.0480 -0.0639 0.0118 0.0932 -0.0382 -0.0347 -0.0150 -0.0153 -0.0076 0.0160 

INF -0.3650 -0.2023 -0.0664 -0.1244 0.0161 0.0952 — — — — — — 

HDI -0.2793 -0.1724 1.0876 0.3410 3.0871 8.5370 -0.1866 1.2241 1.4544 1.7022 1.9318 2.0515 

ESR -1.1872 -0.3880 -0.3856 -0.3472 -0.2708 -0.1524 -0.2443 -0.1982 -1.424 -0.1699 -0.1326 -0.0791 

COR 0.1274 0.1724 0.1982 0.1928 0.2347 0.2707 — — — — — — 

REC -0.1708 -0.0571 -0.0078 -0.0215 0.0432 0.0432 -0.0827 -0.0269 -0.0127 -0.0270 -0.0042 0.0181 

EI 0.0069 0.0858 0.0952 0.1081 0.2417 0.2147 -0.6956 0.8653 0.8884 0.8884 0.9585 0.9918 

GLO -3.7862 -0.5513 -0.0480 -0.0626 0.0118 1.7497 -1.7266 -1.4503 -1.0753 -1.1716 -0.5069 -0.3908 

DEM -0.3229 -0.1106 0.1099 0.1099 0.2304 0.3405 -0.0016 0.0081 0.0299 0.0278 0.0511 0.0634 

OIL -0.2561 -0.1981 -0.0728 -0.0726 0.0528 0.2175 -0.3056 -0.0502 -0.0243 -0.0289 -0.0121 0.0417 

IND — — — — — — -0.3649 -0.3314 -0.2435 -0.2678 -0.1625 -0.0375 

FRS — — — — — — -0.0274 -0.0167 0.0022 -0.0084 0.0181 0.0292 

Pseudo-R2 0.9772 0.9909 

RMSE (Min) 0.0396 0.0632 

RMSE (Max) 0.1669 0.1255 

Mean Stability Score 1.66 2.47 

Note: “—” indicates the variable was not included or not estimated for the specified group. Data are presented in natural logarithms. 
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In the Higher-income group, variables such as GDP and HDI exhibit relatively high positive means and wide 

interquartile ranges; however, their effects on GHG emissions vary in sign across quantiles, suggesting that their 

influence is time-dependent and potentially nonlinear. Additionally, other factors (except COR and EI) also display sign 

reversals in their time-varying coefficients. Notably, COR and EI show consistently positive effects on environmental 

degradation. 

For the Lower-income group, the robust determinants include GDP, HDI, EI, and GLO. Similar to the Higher-income 

group, this confirms the strong link between economic growth, affluence, and emissions. Interestingly, GLO exhibits 

consistently negative associations, suggesting that globalization may facilitate the transfer of cleaner technologies in 

developing countries. Meanwhile, the use of renewables (REC) is associated with negative coefficients, indicating its 

potential role in reducing GHG emissions, although the effects are not statistically significant. The differences between 

two groups reveal a central insight that emission drivers are not uniform across the development spectrum, and thus 

modeling approaches must respect such heterogeneity.  

A key quantitative highlight is the higher pseudo-R2 for the Lower-income group (0.9909 vs. 0.9772 for the Higher-

income group). This implies that the model explains variation in GHG emissions more thoroughly in developing 

economies, likely because emissions are governed by more deterministic, observable variables. In contrast, advanced 

economies may involve more diffuse, lagged, or policy-dependent mechanisms that are harder to fully capture within 

the model. From a methodological standpoint, the application of time-varying coefficients across grouped panels 

provides novel empirical clarity into how the importance of different predictors evolves, both temporally and structurally. 

Unlike static panel models, this approach uncovers fluctuations and structural breaks in covariate influence that align 

with real-world policy events and economic cycles. The filtering of coefficients based on interquartile range and mean 

magnitude ensures interpretability and guards against overfitting. These elements collectively provide a more granular, 

dynamic, and policy-relevant understanding of emissions behavior across diverse national contexts.  

The Root Mean Square Error (RMSE) distribution reveals that the models perform with relatively low prediction 

error over time. The Higher-income group’s result shows a wider RMSE range (0.0396 to 0.1669), suggesting greater 

year-on-year variability in model fit—likely reflecting more complex dynamics and policy heterogeneity. In contrast, 

the Lower-income group demonstrates tighter RMSE bounds (0.0632 to 0.1255), which may imply more stable or 

deterministic emission pathways in developing economies. Additionally, the mean Stability Score (calculated as the 

inverse of relative variability of coefficients) is substantially higher for the developing countries (2.47) than for the 

advanced countries (1.66). This aligns with the estimated coefficients, which show less fluctuation and fewer sign 

reversals in the Lower-income group.  

5-3- Robustness Check 

5-3-1- Cross-Validation and Model Performance Comparison 

To robustly evaluate model performance, we conducted grouped 5-fold cross-validation across five panel model 

frameworks: traditional static estimators (Frequentist RE and FE), Bayesian static models, and the time-varying 

specifications (tvRE, tvFE). Country-level grouping was applied to preserve panel structure and independence between 

folds.  

Table 4. Cross-Validation Performance Comparison Across Panel Models 

Model Type Group MSE MAE Time-Varying 

tvRE Higher-income 0.6458 0.5732 Yes 

tvFE Higher-income 6.8515 2.1257 Yes 

Bayesian RE (Static) Higher-income 11.8352 3.4368 No 

Bayesian FE (Static) Higher-income 52.4425 7.2401 No 

RE (Static) Higher-income 0.7498 0.6485 No 

FE (Static) Higher-income 12.3038 2.7994 No 

tvRE Lower-income 0.1071 0.2519 Yes 

tvFE Lower-income 0.2741 0.3200 Yes 

Bayesian RE (Static) Lower-income 22.1316 4.7032 No 

Bayesian FE (Static) Lower-income 20.1332 4.4857 No 

RE (Static) Lower-income 0.1161 0.3839 No 

FE (Static) Lower-income 0.4614 0.5211 No 

Table 4 illustrates the predictive superiority of the tvRE model across both income groups. For the Higher-income 

group, tvRE achieves the lowest MSE (0.6458) and MAE (0.5732), outperforming all static and time-invariant models. 

A similar trend is observed in the Lower-income group, where tvRE yields the best performance with an MSE of 0.1071 
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and MAE of 0.2519. Compared to these dynamic models, static estimators—regardless of estimation paradigm—exhibit 

considerably higher prediction errors. Even the tvFE model underperforms relative to tvRE, likely due to its more 

restrictive ability to capture unobserved heterogeneity.  

5-3-2- Simulation-Based Validation of Estimated Coefficients 

While cross-validation emphasizes predictive power, it does not fully capture how well models recover the underlying 

data-generating structure. To complement this, we implemented a Monte Carlo simulation-based validation procedure 

to assess the structural reliability of estimated coefficient paths under each model. Using the actual panel data as a 

foundation, we generated 1,000 synthetic datasets per model and group. Each dataset was simulated by applying the 

model’s estimated coefficients to the original predictors, followed by the addition of Gaussian noise. This setup preserved 

the original model structure while introducing stochastic variation to test its robustness.  

For each synthetic dataset, the model was re-estimated, and the recovered coefficients were compared to the original 

ones. Two key metrics were used: (1) Average Correlation between estimated and true parameter values specified in the 

data-generating process to assess directional accuracy, and (2) Average RMSE to evaluate estimation precision. Table 5 

reaffirms the robustness of the tvRE model, which consistently recovers coefficient structures with high fidelity across 

income groups. In the Higher-income group tvRE achieves an average correlation of 0.9782 and a low RMSE of 

0.3354—clearly outperforming static and frequentist models. The Lower-income group exhibits slightly tighter 

performance across models, yet tvRE remains among the top in both correlation and error metrics.  

Table 5. Simulation-Based Validation: Coefficient Recovery across Model Specifications 

Model Type Group Avg Correlation Avg RMSE 

tvRE Higher-income 0.9782 0.3354 

tvFE Higher-income 0.9346 0.3354 

Bayesian RE (Static) Higher-income 0.9746 0.3336 

Bayesian FE (Static) Higher-income 0.9746 0.3336 

RE (Static) Higher-income 0.9517 1.137 

FE (Static) Higher-income 0.9235 0.5527 

tvRE Lower-income 0.9898 0.0988 

tvFE Lower-income 0.9331 0.0988 

Bayesian RE (Static) Lower-income 0.9874 0.1129 

Bayesian FE (Static) Lower-income 0.9869 0.1129 

RE (Static) Lower-income 0.9932 0.0999 

FE (Static) Lower-income 0.9698 0.1987 

To complement the summary statistics in Table 5, Figure 6 shows the full distribution of simulation-based metrics. 

The left panel (a) illustrates that tvRE consistently achieves the highest correlation across simulations with the narrowest 

interquartile range. In the right panel (b), tvRE also yields the lowest RMSE with minimal variation, further reinforcing 

its structural stability and estimation precision compared to tvFE, static Bayesian, and frequentist alternatives. In short, 

tvRE consistently outperforms all other models in both correlation and RMSE. 

 

Figure 6. Distribution of simulation-based coefficient recovery metrics across model types 
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Taken together, the results from cross-validation and simulation studies consistently support the tvRE model as the 
most robust and methodologically defensible framework. It delivers superior out-of-sample accuracy, strong parameter 
recovery, and adaptability to dynamic causal mechanisms, making it an ideal tool for policy-oriented GHG modeling 

across diverse time and national contexts. 

5-3-3- Discussion 

This section interprets the temporal patterns of key coefficients from the tvRE model for both income groups. Figures 
7 and 9 depict non-zero and fluctuating coefficients for selected drivers of GHG emissions, highlighting how the 
magnitude and direction of effects evolve alongside global policy events. Variables shown in these figures are selected 
using a filtering function that retains only those with either a high average effect (absolute mean > 0.3) or substantial 
temporal variability (standard deviation > 0.15). This selection strategy ensures attention on both experimental (policy-

relevant) and control (structural) variables with meaningful time-varying influence. Variables omitted typically exhibit 
low magnitude and stability over time, with beta coefficients remaining close to zero—indicating minimal dynamic 
impact and limited policy relevance within this framework. 

5-3-3-1- Structural Drivers and Constraints of GHG Emissions in the Higher-Income Countries 

In wealthier nations, several predictors exhibit consistent positive effects on emissions (Figure 7). GDP remains a 
major driver, especially after the enforcement of the Kyoto Protocol in 2005, aligning with the EKC perspective linking 
income growth to environmental pressure. However, in our time-varying framework, the quadratic GDP term is excluded 

from the figure, as its estimated coefficient remains close to zero throughout the sample period. This suggests that any 
EKC-like curvature is weak or already captured within the temporal dynamics of the linear term, in line with recent 
evidence that EKC patterns are heterogeneous and highly context-dependent [68]. Other development-related predictors 
such as HDI and URB also show sustained positive effects. The plateauing of URB after 2012 parallels findings from 
Chinese cities where urban development’s environmental impacts stabilize once regulatory frameworks mature [69]. 
ESR displays a mild but persistent positive trend, implying that energy vulnerability can increase emissions—particularly 

during periods of global energy instability—which is consistent with literature on renewable transitions and structural 
risk [70]. 

 
Note: Vertical dashed lines mark major global climate events (e.g., Kyoto, Paris). Variables shown in the figure are 

selected using a filtering function that retains only those with either a high average effect (mean > 0.3 in absolute 

value) or a large degree of fluctuation over time (standard deviation > 0.15). All series are in natural logs. 

Figure 7. Time-Varying Coefficient Trajectories for Higher-income Group (tvRE) 

The coefficient paths further indicate that EI remains persistently negative—especially after 2005—highlighting 

structural decoupling through improved energy efficiency and technology transitions in high-income economies. This 
aligns with [71] which documents China’s decline in energy intensity as a key driver of reduced emissions during 
industrial transitions. The shadow economy (INF) also turns increasingly negative after 2010, suggesting that reductions 
in informality may enhance emissions monitoring and regulatory compliance. While larger shadow economies can 
elevate ecological footprints, they may also understate emissions due to reporting gaps, pointing to governance-
dependent effects [72]. 

To provide a more detailed view of the three focal variables of this study—INF, GPR, and ESR—Figure 8 traces their 
individual coefficient trajectories. Among them, GPR does not meet the inclusion threshold for the main figure, whereas 
INF and ESR are retained in the baseline specification. INF shows a steadily strengthening negative effect after 2005, 
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consistent with improved regulatory capacity and monitoring. GPR remains flat and close to zero across the sample, 
suggesting limited systemic influence on emissions for this income group. In contrast, ESR shows a mild positive effect 
before 2005 but declines sharply thereafter, implying that energy-related vulnerabilities may have initially driven carbon-

intensive responses, which were later mitigated as energy systems stabilized. The inclusion of this figure therefore helps 
contextualize why these variables were filtered out, while still demonstrating that they exhibit interpretable, if modest, 
temporal shifts. 

 
Note: All series are in natural logs. 

Figure 8. The isolate the trajectories of INF, GPR, and ESR for the Higher-income Group 

5-3-3-2- Structural Drivers and Constraints of GHG Emissions in the Lower-Income Countries 

For the Lower-income group, GDP and HDI stand out as significant emission drivers, particularly between 2000 and 
2010 during periods of rapid infrastructure expansion and economic growth (Figure 9). After 2015, the influence of GDP 
flattens and gradually declines, plausibly reflecting greater engagement with global climate commitments and 
incremental gains in economic efficiency. The quadratic GDP term is excluded from the final specification, as its time-
varying coefficient remains close to zero throughout the sample. This suggests that nonlinear EKC dynamics are better 
captured through evolving effects of GDP over time rather than a fixed second-order term, consistent with evidence that 
EKC relationships vary across structural and institutional settings [68]. The persistently positive role of HDI underscores 
the emissions–development trade-off inherent in expanding human welfare within resource- and capacity-constrained 
contexts. The limited or insignificant effects of renewable energy and energy security variables in this group align with 
the structural and technological constraints faced by developing nations, particularly in accessing clean technologies and 
implementing effective policies [70]. Another city-level analysis—such as [69], further illustrates how spatial and 
sectoral heterogeneity in development pathways can yield divergent emission outcomes, underscoring the need for 
localized, group-specific strategies. 

 
Note: Vertical dashed lines mark major global climate events (e.g., Kyoto, Paris). Variables shown in the figure are 

selected using a filtering function that retains only those with either a high average effect (mean > 0.3 in absolute 

value) or a large degree of fluctuation over time (standard deviation > 0.15). All series are in natural logs. 

Figure 9. Time-Varying Coefficient Trajectories for the Lower-income Group (tvRE) 
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Energy intensity also maintains a negative association with emissions, albeit with lower magnitude and variability 

compared to Higher-income counterparts. This indicates that efficiency gains materialize more slowly where 

infrastructure and financing remain limited. Alam et al. [73] confirmed that in fast-developing economies, reductions in 

energy intensity can curb emissions, though the strength of this relationship depends on institutional quality and 

investment capacity. By contrast, INF shows inconsistent influence across countries, reflecting how informality’s 

environmental impact depends on governance thresholds and data reliability. Similarly, the coefficient for ESR remains 

largely neutral, consistent with expectations that such concerns are less systematically measured or prioritized in 

developing economies due to data gaps and structural limitations. 

In particular, for the Lower-income group, variables such as INF, GPR, and ESR are excluded from Figure 9 because 

their estimated time-varying parameters remain close to zero and display limited fluctuation across the study period. 

This pattern suggests that these variables exert neither any strong nor dynamic influence on emissions in these settings. 

In practical terms, their muted behavior may reflect structural limitations—such as data reporting gaps, institutional 

inertia, or lower policy responsiveness—that dampen the explanatory power of such variables. Their exclusion does not 

imply irrelevance in a broader context, but rather that within this specific empirical framework and sample, their 

contribution to explaining temporal emissions dynamics is negligible. 

5-3-3-3- Shifting Influences and Global Events 

The coefficient trajectories from our time-varying panel model exhibit distinct inflection points around three major 

global events, underlining the responsiveness of emissions drivers to policy, economic, and security shifts. 

After the Kyoto Protocol's enforcement in 2005, coefficients on GDP accelerate markedly in the Higher-income 

group—an effect that may reflect rebound dynamics, where efficiency improvements are offset by increased economic 

activity. This pattern aligns with [68], which reports a robust N-shaped EKC across 214 countries, where the quadratic 

GDP effect turns negative but is often outweighed by stronger linear and cubic components. 

During the Global Financial Crisis of 2008, GLO declined sharply in Lower-income countries, suggesting heightened 

vulnerability to capital and trade shocks. Guan et al. [71] documented how structural transformations in global energy 

and industrial systems during crises can significantly realign emissions trajectories, particularly in export-dependent 

economies. 

Following the Paris Agreement in 2015, the effects of development-related variables—GDP, HDI, and URB—

tend to stabilize or decline. This may reflect the early impacts of international climate commitments. Supporting 

this view, Wang & Cao [69] observed that urban development’s effect on air pollution in China began to decelerate 

under more stringent environmental regulation. However, the more muted response in lower-income countries is 

consistent with findings from [72, 73], arguing that weak institutions and limited energy transition capacity dampen 

policy effectiveness in such contexts. Notably, ESR remains either weakly positive or neutral throughout. This 

suggests that energy security concerns can undermine decarbonization by pushing countries toward carbon-intensive 

fallback options. As Iyke [27] confirmed that climate-induced volatility can heighten ESR and disincentivize clean 

energy investment, Cevik [25] framed this as a critical policy trade-off between energy reliability and environmental 

sustainability. 

5-3-3-4- Policy Implications and Sustainable Development Goals Alignment 

These dynamic patterns carry several important policy implications. For advanced economies, climate strategies 

should extend beyond improvements in energy efficiency to tackle lifestyle-related emissions, promote circular economy 

models, and strengthen governance over informal and unregulated pollutant sources. For emerging economies, priority 

should be placed on investments in clean infrastructure, policies that encourage the formalization of economic activity, 

and expanded access to green technologies to prevent long-term carbon lock-in. 

These recommendations align closely with the Sustainable Development Goals (SDGs), particularly SDG 13 (Climate 

Action), SDG 8 (Decent Work and Economic Growth), SDG 11 (Sustainable Cities and Communities), and SDG 16 

(Peace, Justice and Strong Institutions). Furthermore, the Principles for Sustainable Insurance (PSI) framework indicates 

pronounced temporal shifts in core drivers such as HDI and GLO among Higher-income countries, reflecting their 

evolving roles in shaping emissions dynamics. By contrast, Lower-income economies display consistently lower PSI 

performance, suggesting slower responsiveness to global climate objectives. This newly developed index offers a basis 

for differentiated policy design, enabling targeted interventions that account for both structural flexibility and time-

varying adaptive capacity. 
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6- Conclusion 

This study investigates the dynamic determinants of GHG emissions across 29 countries from 1993 to 2018, with 

particular attention to underrepresented yet structurally important drivers—namely the shadow economy, energy security 

risks, and geopolitical volatility. The empirical design follows a four-step framework in which countries are classified 

using principal component analysis and K-means clustering, robust covariates are selected through Bayesian Model 

Averaging, and their impacts are estimated using time-varying coefficient panel models, with robustness confirmed via 

grouped cross-validation. Results indicate the superior performance of the time-varying random effects specification and 

reveal distinct inflection points in the coefficient trajectories around three major global events. Following the Kyoto 

Protocol’s enforcement in 2005, the influence of GDP on emissions accelerates markedly in the Higher-income 

countries, potentially reflecting rebound effects where efficiency gains are offset by expanded economic activity. During 

the 2008 Global Financial Crisis, the contribution of geopolitical and openness-related factors declines sharply in Lower-

income economies, underscoring their vulnerability to capital and trade shocks. After the Paris Agreement in 2015, the 

effects of development-related variables—GDP, human development, and urbanization—tend to stabilize or decline, 

suggesting early impacts of international climate commitments, albeit with weaker responses in less developed contexts. 

Across the entire period, energy security risk remains either weakly positive or neutral, implying that concerns over 

energy reliability can undermine decarbonization by encouraging reliance on carbon-intensive fallback options. 

Collectively, these findings highlight the complex, event-sensitive, and often asymmetric nature of emissions drivers, 

highlighting the need for policy frameworks that integrate economic, environmental, and energy security considerations 

in a coherent and adaptive manner. 

The findings point to a set of differentiated policy priorities. In the Higher-income economies, effective climate 

strategies should go beyond incremental energy efficiency gains to address consumption-driven emissions, embed 

circular economy principles, and enhance governance over informal or unregulated pollution sources. In emerging 

economies, policy efforts need to prioritize large-scale investment in clean infrastructure, promote the formalization of 

economic activity, and expand access to affordable green technologies to avoid long-term carbon lock-in. These priorities 

are relevant to the SDGs, particularly those relating to climate action, sustainable economic growth, urban resilience, 

and institutional capacity. Future research could extend this work along three main directions. First, broadening the 

geographical scope to include additional countries or regions would yield a more comprehensive understanding of cross-

country heterogeneity in emissions drivers. Second, incorporating sector-specific emissions data could uncover industry-

level pathways and inform more targeted mitigation strategies. Third, a notable limitation of the present study is its 

temporal coverage, restricted to 1993–2018 due to the availability and consistency of cross-country data. Updating the 

dataset to include more recent years would enable for the assessment of emerging global challenges, such as the impacts 

of post-2018 climate agreements, changes in energy market structures, the COVID-19 pandemic, trade wars, and shifting 

geopolitical dynamics, thereby enhancing the relevance and timeliness of the analysis. Taken together, these policy 

recommendations and further research directions underscore the importance of integrated, context-specific, and adaptive 

strategies for managing GHG emissions in an increasingly dynamic and interconnected global environment. 
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