
 Available online at www.ijournalse.org 

Emerging Science Journal 
(ISSN: 2610-9182) 

Vol. 9, No. 5, October, 2025 

 

 

Page | 2687 

 

Real-Time FPGA-Based ADAS Solution for Driver Drowsiness 

Detection and Autonomous Stopping 

 

Abedalmuhdi Almomany 1* , Zaid Marouf 2, Amin Jarrah 2 , Muhammad Sutcu 3  

1 Electrical & Computer Engineering Department, Gulf University for Science & Technology, Mishref 32093, Kuwait. 

2 Department of Computer Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, Jordan. 

3 Department of Engineering Management, Gulf University for Science & Technology, Mishref 32093, Kuwait. 

 
 

Abstract 

This study addresses driver drowsiness, a leading cause of traffic accidents, by developing a 

real-time Advanced Driver Assistance System that integrates biometric detection and 
autonomous vehicle control. The objective of this study is to enhance road safety through the 

early detection of drowsiness and automated intervention. The proposed system detects signs of 

drowsiness by monitoring facial and ocular features using a real-time video stream. Once a 
predefined threshold is exceeded, an audible alert is triggered. If the driver remains 

unresponsive, the system gradually reduces the vehicle’s speed and initiates an automated stop 

procedure. Methodologically, the system employs OpenCV for image processing and a 
convolutional neural network for lane detection and vehicle control. It is implemented on a high-

performance hardware platform using field-programmable gate arrays programmed via Vivado 

High-Level Synthesis to ensure low-latency operation. The results confirm the system’s real-
time capability, accuracy in drowsiness detection, and effective vehicle control under drowsy 

driving conditions. The system’s novelty lies in its combination of biometric monitoring, deep 

learning, and hardware acceleration to provide faster and more reliable intervention than 
existing Advanced Driver Assistance System technologies. This integration sets a new 

benchmark for proactive road safety measures. 

Keywords:  

Driver Drowsiness Detection;  

Advanced Driver Assistance Systems (ADAS);  

Real-Time Biometric Monitoring;  

Convolutional Neural Networks (CNNs);  

FPGA Implementation. 

 

 

Article History: 

Received: 02 April 2025 

Revised: 14 September 2025 

Accepted: 19 September 2025 

Published: 01 October 2025 
 

 
 

1- Introduction 

Accidents resulting from driver drowsiness, fatigue, and falling asleep at the wheel pose a significant threat to road 

safety. Drowsiness impairs a driver’s ability to react swiftly, reduces their attention span, and compromises their 

decision-making skills [1], increasing the risk of accidents. Several factors contribute to driver drowsiness and fatigue, 

including sleep deprivation; untreated sleep disorders such as sleep apnea; extended working hours; driving during 

nighttime or mid-afternoon when the body naturally tends to feel sleepy; and the use of sedating medications, substances, 

or alcohol. Drivers experiencing drowsiness often display warning signs such as frequent yawning, difficulty focusing 

and keeping their eyes open, lane drifting, missing traffic signs or exits, and feeling restless or irritable. Fatigue 

significantly degrades driving performance by reducing alertness, concentration, and reaction time, which diminishes 

the driver’s situational awareness, judgment, and decision-making speed. The likelihood of making mistakes while 

driving significantly increases as driver fatigue intensifies. Certain groups, such as commercial drivers (e.g., truck and 

bus drivers) with long working hours, night shift workers, individuals with untreated sleep disorders, and drivers facing 

                                                           
* CONTACT: momany.a@gust.edu.kw 

DOI: http://dx.doi.org/10.28991/ESJ-2025-09-05-023 

© 2025 by the authors. Licensee ESJ, Italy. This is an open access article under the terms and conditions of the Creative 
Commons Attribution (CC-BY) license (https://creativecommons.org/licenses/by/4.0/). 

http://www.ijournalse.org/
http://dx.doi.org/10.28991/ESJ-2025-09-05-023
http://dx.doi.org/10.28991/ESJ-2025-09-05-023
https://orcid.org/0000-0002-5922-6106
https://orcid.org/0000-0001-8039-190X
https://orcid.org/0000-0002-8523-9103


Emerging Science Journal | Vol. 9, No. 5 

Page | 2688 

chronic sleep deprivation, are particularly vulnerable to driving accidents caused by drowsiness [2]. According to the 

National Highway Traffic Safety Administration (NHTSA), in 2021—the most recent year for which data is available—

driver fatigue was responsible for 58,000 accidents, resulting in 684 fatalities and 40,000 injuries [3]. 

Statistics underscore the need for systems that can detect driver fatigue and alert the driver or, when necessary, control 

the vehicle to prevent accidents. Figure 1 illustrates drowsy driving accident statistics in the United States from 2017-

2021 [3]. 

 

Figure 1. Drowsy Driving Accident Statistics in the USA [3] 

Technological advancements have enabled the integration of various technologies to enhance the driving experience 

and improve driver and passenger safety. Despite ongoing research on driver drowsiness detection, existing solutions 

still face several challenges. Many rely on wearable devices, which are impractical for everyday use, as they require the 

driver to wear specialized equipment. Additionally, several existing systems suffer from delayed response times [4], 

which creates a problem in scenarios where the driver falls asleep and immediate intervention is necessary. To address 

these issues, this study proposes a real-time, smart system that leverages multiple open-source tools, deep learning 

models, and real-time hardware acceleration through FPGA deployment. The system monitors facial and ocular features 

to detect drowsiness, triggers alerts, and, if necessary, initiates a safe stop sequence that requires no external input from 

the driver.  

The OpenCV library was employed to detect and analyze the driver’s facial features, leveraging the Viola-Jones 

algorithm to identify signs of drowsiness, such as partially closed eyes or significant head tilts. Upon detecting 

drowsiness, the system triggers an audio alert to wake the driver [5]. In addition, the system uses a camera to capture 

real-time images of the road. These images were analyzed using a convolutional neural network (CNN), which generates 

control signals to ensure that the vehicle remains within its lane during safe stops. The entire system was implemented 

on the FPGA platform from the Zynq UltraScale+ family, specifically the XCZU7EV-1FFVC1156I model, using the 

Vivado High-Level Synthesis (HLS) tool. This facilitated efficient and high-speed processing. Together, these 

components provide a comprehensive integrated solution for enhancing driver safety and mitigating the risks associated 

with drowsy driving. 

1-1- FPGA 

An FPGA is a programmable integrated circuit that allows users to reconfigure its hardware functionality multiple 

times [6]. An FPGA comprises a fixed set of resources capable of implementing both complex and simple low-level 

functions, including lookup tables (LUTs), flip-flops, digital signal processors (DSPs), and RAM blocks [7-9]. FPGAs 

also feature multiple input/output (I/O) ports for interfacing with external devices. One of their advantages is that they 

can bypass the instruction fetch and decode overhead typical of traditional processors with stored memory instruction 

sets. This capability facilitates the development of optimized data paths and control circuitry tailored to specific 

applications. The distributed placement of LUTs within the FPGA fabric makes FPGAs highly suitable for parallel 

pipelined computations [10]. For example, the body of a loop can be divided into smaller, executable sections, with each 

91000 90000

84000

53000

58000

50000

45000

50000

31000

40000

795 800 697 633 684

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

2017 2018 2019 2020 2021

accidents injuries fatalities



Emerging Science Journal | Vol. 9, No. 5 

Page | 2689 

section mapped to a distinct stage of the FPGA’s computational logic. As such, custom-designed pipelines can be created 

to closely align with the specific low-level architecture of a given application. Energy efficiency is another key benefit 

of FPGAs, particularly in mobile computing devices and high-performance scientific applications in which power 

consumption is often a limiting factor. FPGAs are employed to reduce energy usage by offering a high degree of 

customization. Their programmability enables the execution of specific functions and algorithms, which often 

significantly improves execution times in many applications.  

However, FPGA platforms have some limitations. For instance, the design configuration and synthesis processes can 

be time-consuming, and FPGAs typically operate at lower clock frequencies than modern CPU platforms. These factors 

must be considered when evaluating the suitability of FPGAs for specific applications [10]. 

1-2- Vivado 

Vivado High-Level Synthesis (HLS) is an advanced design tool that facilitates the creation of hardware architectures 

using high-level programming languages, such as C, C++, and SystemC. This tool translates high-level algorithm 

descriptions into register-transfer level (RTL) code, which is suitable for execution on FPGA devices through High-

Level Synthesis. Simulations can be performed using C or RTL with the same testbench file to validate the high-level 

and low-level code. The Vivado HLS workflow is illustrated in Figure 2 [9]. 

 

Figure 2. Vivado HLS Workflow [16] 

The Vivado HLS enhances the design process by offering various optimization techniques, such as loop unrolling, 

local memory utilization, and resolving dependencies, which help create more efficient designs. These optimizations 

improve clock cycle time and execution throughput. Designers can apply directives to different code components, 

including arrays, loops, and functions [8]. Using Vivado HLS significantly reduces the design time and effort, enabling 

designers to focus on algorithm development rather than hardware-level details [6]. Furthermore, Vivado HLS allows 

users to explore alternative design architectures and optimizations using a range of synthesis options [9]. Incorporating 

Vivado HLS into a system allows users to expedite the development of an autonomous driving system designed to detect 

driver drowsiness while achieving greater design flexibility and enhanced efficiency [10]. 

1-3- Convolutional Neural Network (CNN) 

Neural networks (NNs) are of significant interest in the fields of artificial intelligence (AI) and machine learning 

(ML) owing to their ability to learn complex patterns and generate accurate predictions [12]. A neural network comprises 

computational models inspired by the human brain and consists of interconnected nodes that process and transmit 



Emerging Science Journal | Vol. 9, No. 5 

Page | 2690 

information. A neural network’s hidden layer(s) performs advanced computations to extract meaningful features from 

input data [13], which are critical for producing accurate predictions. Finally, the output layer integrates the refined 

information from the hidden layer(s) to generate the network’s final prediction. 

In this study, we employed a specific type of neural network known as a convolutional neural network (CNN), which 

has significantly advanced the field of computer vision. CNNs have demonstrated remarkable performance in tasks such 

as image classification and object detection, making them highly effective for analyzing visual data. Furthermore, their 

ability to precisely extract relevant features from images makes them particularly valuable. The autonomous stopping 

system leverages the robust object detection capabilities of CNNs [14]. The CNN model utilized in this study was trained 

using a large dataset comprising over 50,000 images to minimize sudden performance changes, thereby ensuring the 

system’s accuracy and stability.  

Input images were represented as two-dimensional matrices and processed through multiple CNN layers, including 

convolutional layers, pooling layers, and fully connected layers. Each layer played a crucial role in the feature extraction 

and classification process, with distinct functions contributing to the model’s overall performance. During the prediction 

process, convolutional layers served as the initial stage in a convolutional neural network (CNN). These layers utilized 

linear filters that traverse the input image to extract desired features and patterns from various locations, including edges, 

textures, and shapes [14]. Nonlinearity was introduced by passing the output of the convolutional layers through a 

rectified linear unit (ReLU) activation function. Following this, the pooling layer reduced the dimensionality of the 

feature map by down-sampling and focusing on the most significant features of the image. Subsequently, fully connected 

layers aggregated high-level features by capturing critical relationships between them. Finally, the output prediction 

layer utilized these learned features to generate a meaningful prediction, enabling the CNN model to make decisions 

based on the training process. The sequential structure of convolution, activation, pooling, and fully connected layers 

enabled the CNN model to extract and represent features effectively, ensuring accurate predictions. 

In this study, a CNN model was employed to enhance driver safety by mitigating the risks associated with drowsy 

driving. The model was designed to maintain the vehicle’s position on the correct track and prevent sudden deviations. 

Figure 3 illustrates how a pre-trained CNN model can be integrated into a Vivado HLS project. The CNN model 

developed in this study ensured safe driving under various road conditions by providing real-time control signals to 

adjust the speed and direction of the vehicle, demonstrating that the synergy between CNN-based object detection and 

real-time system control improves driver safety. 

 

Figure 3. Importing a pre-trained CNN model into a Vivado HLS project 

1-4- OpenCV 

OpenCV (Open Source Computer Vision) is a widely adopted open-source library that offers an extensive suite of 

tools for computer vision and machine learning applications. It also provides image processing, video analysis, and 

object detection functionalities [15]. OpenCV supports several programming languages, including C++, MATLAB, 

Java, and Python, and seamlessly integrates with standard template library (STL) containers via its template interface. 

With a vast collection of readily available algorithms, OpenCV is a vital basis for designing various applications. It is 

structured into numerous modules, with the multi-dimensional array module acting as the core segment for managing 

vital data structures and procedures. To improve execution performance, OpenCV supports multithreading and reentrant 

functionality, which allows multiple threads to execute the same functions or different classes simultaneously by utilizing 

atomic reference counting to ensure thread safety [7]. 



Emerging Science Journal | Vol. 9, No. 5 

Page | 2691 

1-5- Viola-Jones algorithm 

The Viola-Jones algorithm, developed by Viola & Jones (2001) [16], is a widely used machine-learning technique 

for object detection (particularly face detection). It consists of several key components, the first of which is the use of 

Haar-like features (i.e., features of digital images that are designed for object detection). These features are simple 

rectangular patterns that capture the contrast between the adjacent regions of an image. The extracted features are passed 

into a classifier, which determines whether the object within the analyzed window matches the target object, such as a 

face or eye, in this case. The second component of the algorithm is the integral image, which is also known as a summed-

area table. This data structure allows for the rapid calculation of pixel value sums within any rectangular region of an 

image. The integral image is computed by summing all the pixel values from the top-left corner of the image to a given 

pixel position.  

The integral image, originally introduced in computer graphics by Frank Crowe in 1984 and later adapted for 

computer vision by Nixon & Aguado [17], significantly enhances the efficiency of the Viola-Jones algorithm by 

accelerating the computation of Haar-like features. For an image containing n pixels, the time complexity for computing 

the integral image is O(n). Notably, the sum of the pixel values within any rectangular region requires only four values 

from the integral image, regardless of the window size. 

The Viola-Jones algorithm also employs the adaptive boosting (AdaBoost) algorithm, an ensemble learning method 

that combines multiple weak classifiers to form a strong classifier. This enhances the model’s performance by focusing 

on features that improve object-detection accuracy [18]. The algorithm scans the input image using a fixed-size sliding 

window and applies a series of classifiers to each window. If a window passes through all classifiers, it is identified as 

containing the desired object. Additionally, the algorithm utilizes a scale pyramid to detect objects of varying sizes by 

repeatedly resizing the image and reapplying the detection process [19]. The Viola-Jones algorithm is one of the most 

influential and widely recognized object-detection methods, particularly for face detection. It is known for its speed, 

accuracy, and strong performance in low-power devices, making it an efficient and practical choice for real-world 

applications [16]. 

2- Related Works 

Numerous researchers have explored various methods, features, and algorithms to achieve reliable results for 

detecting and responding to driver drowsiness. This section briefly overviews previous studies on the transfer of driving 

control once driver drowsiness is detected. Some studies relied on wearable devices that drivers must use while operating 

a vehicle. For instance, one type of wearable device consists of glasses equipped with an eye-blink sensor that monitors 

a driver’s eyes. If the eyes are closed or partially closed, the driver is diagnosed as drowsy or asleep [20]. Another 

example of wearable technology is a chest band equipped with an ECG sensor that monitors heart rate variability (HRV). 

The system determines whether the driver is drowsy based on HRV measurements [21, 22]. Additionally, some studies 

have utilized electrooculogram (EOG) signals collected through electrodes attached to the skin surrounding the eyes 

[23]. These approaches demonstrate the diverse range of wearable solutions that have been developed to monitor driver 

alertness and ensure road safety. 

Alternatively, some studies have relied on computer vision techniques, which typically use a camera focused on the 

driver’s face to detect signs of drowsiness. When drowsiness is identified, appropriate actions are taken to prevent 

accidents. These studies have employed various techniques. For instance, one study utilized a CNN model in 

combination with the supervised Karolinska Sleepiness Scale (KSS), a 9-point scale on which individuals self-assessed 

their current level of alertness [24]. Another study implemented the ShuffleNet CNN architecture enhanced by the North 

Goshawk Optimization (NGO) algorithm to improve the performance of the drowsiness detection model [25]. 

Similarly, a distinct technique employs Haar cascade classifiers to detect facial and eye signs. The captured images 

were then extracted and analyzed using a specially designed CNN to classify whether the driver exhibited signs of 

drowsiness [26]. In an alternative approach, images captured from a webcam were analyzed using OpenCV and 

processed by a deep learning model to determine whether the driver’s eyes were open or closed [27]. In addition, a 

system based on a CNN architecture was developed to extract complex features from images. This system also utilized 

the NGO algorithm to optimize the parameters of the ShuffleNet model, whereas the extreme learning machine (ELM) 

model was employed to identify driver drowsiness [25]. These studies highlight the potential use of computer vision 

techniques in non-invasive driver drowsiness detection.        

The actions taken after detecting driver drowsiness vary across studies. Some approaches focus on issuing warnings 

to alert the driver, helping them recover from their drowsy state, and preventing accidents. For example, one study 

implemented an alert system that included a Wi-Fi-based vehicle communication module paired with a mobile phone 

application to deliver notifications [20]. Another study developed a system that provided timely warnings, such as 

auditory or visual alerts, encouraging drivers to take corrective measures and reduce the risk of accidents [25]. 

Additionally, some studies relied solely on audio alerts, focusing primarily on the accurate detection of drowsiness 

signals [26, 27]. Some researchers have argued that audio and visual alerts alone may not be sufficient to prevent 

accidents. Consequently, vehicle intervention has been introduced to detect driver drowsiness, thereby enhancing safety 

and better protecting drivers.  



Emerging Science Journal | Vol. 9, No. 5 

Page | 2692 

These interventions vary across studies. For instance, one study developed a system recommending switching driving 

control modes when the driver’s performance deteriorates due to fatigue or inattention [28]. Another study designed a 

system utilizing OpenCV to detect signs of drowsiness while employing the Canny edge detection algorithm to ensure 

that the vehicle remained on its intended path [29]. Additionally, one study proposed a system that includes an advanced 

driver assistance system (ADAS) that takes control of the vehicle’s operations if the driver enters a drowsy state and 

fails to respond to warnings [30]. These studies present various unique methods for detecting driver drowsiness. 

However, achieving effective real-time drowsiness detection remains a significant challenge that requires further 

innovation [31, 33]. Table 1 summarizes related works and the technologies they used to detect driver drowsiness and 

improve road safety. 

Table 1. Related Works 

Our research aims to address these challenges by leveraging advanced machine-learning techniques, such as 

convolutional neural networks (CNNs), in combination with OpenCV libraries. This approach delivers a robust and 

reliable solution for detecting drowsiness and monitoring a driver’s state. While some related works achieved a 

commendable execution time of 0.6 seconds for computation-intensive tasks, our system significantly improves this, 

achieving an execution time as low as approximately 0.007 seconds. Furthermore, unlike certain studies that relied on 

wearable devices to detect drowsiness, our approach utilizes an AI-powered camera directed at the driver’s face. This 

makes our system more practical, user-friendly, and widely applicable than previous systems. 

3- Methodology 

The primary objective of this study is to prevent accidents caused by driver drowsiness through the development of 

an Advanced Driver Assistance System (ADAS). This system integrates CNNs to ensure that the vehicle remains on its 

path while issuing control actions to safely decelerate and stop the car [32]. Additionally, our ADAS leverages OpenCV’s 

pretrained Haar cascade classifiers in conjunction with the Viola-Jones algorithm for drowsiness detection. Figure 4 

illustrates the integration of all project components. 

Ref Contribution Method Drawbacks 

Daza et al.  
[24] 

The authors proposed a ground truth generation method based on the 

supervised Karolinska Sleepiness Scale (KSS), which is a 9-point scale 

on which people are asked how alert they feel. 

- CNN 

- KSS 

- Simulation environment 

As the authors mention, the system is non-intrusive, 

meaning it primarily focuses on detecting the driver’s 

drowsiness. 

Koo et al.  

[28] 

The researchers developed a system that recommends changes in driving 

control modes if the driver’s performance deteriorates due to fatigue or 

inattention. Experiments on a real-world prototype of a self-driving car 

showed the success of their technology. 

- Naive approach 

- AntiSleep 

- CoPilot 

CoPilot relies on predefined rules or algorithms for car 

control, which may not be adaptable to dynamic or 

complex driving situations. Moreover, it may lack the 

ability to handle unexpected scenarios or effectively 

respond to real-time changes in the environment. 

Madhuri & 

UmaMaheswari  

[20] 

The model uses recognition and avoidance algorithms to autonomously 

brake and avoid obstructions. Congestion is minimized by a driver alert 

system, which includes a Wi-Fi-based vehicle communication module 

and a mobile phone application. 

- Arduino IDE 

- Eye-blink sensor 

- Threshold proximity 

Eye-blink sensors rely on the detection of eye 

movements and blink patterns as indicators of 

drowsiness. Factors like eye dryness, eye contact lens 

usage, or individual variations in eye movement patterns 

can affect the reliability and accuracy of the sensor. 

Thulasimani et 

al. [29] 

The researchers developed a drowsiness detection algorithm that 

analyzes several characteristics, such as closing the eyes, yawning, and 

head tilting, to evaluate the degree of driver drowsiness. 

- OpenCV 

- Canny edge detection 

If drowsiness is detected, the car slows down 

automatically; however, this is not applicable in very 

many situations. 

Ahmed et al. [26] 
An approach was presented that involves using eye feature extraction 

techniques, such as eye closure duration, to indicate driver fatigue and 

drowsiness. 

- CNN 

- OpenCV 

- Alarm 

While using an alarm to wake the driver can alert them 

to potential drowsiness, relying solely on an alarm may 

not always be effective. 

Parashar & 

Jadaun [21] 

The authors used machine learning techniques, especially convolutional 

neural networks (CNNs), to predict the driver’s state and emotions, thus 

improving road safety. In addition, they used electrocardiogram (ECG) 

signals as part of the psychological system to detect drowsiness. 

- CNN 

- ECG 

- OpenCV 

- TensorFlow 

- Keras 

Only an alarm is activated after drowsiness is detected 

(i.e., there is no interference with vehicle control).The 

researchers used many technologies to detect drowsiness, 

which may have led to adverse results. 

Lu et al.  
[22] 

Physiological measures such as heart rate variability (HRV) have been 

proposed as a potential solution for detecting drowsiness, even in 

automated driving scenarios. The authors used data from real road 

driving trials involving 43 participants. 

- HRV 

The researchers used a wearable chest band to monitor 

heart rate, which is not applicable for normal use. 

The work did not depend on traditional methods for 

detecting sleepiness, such as driving performance or 

driver behavior. 

Gupta et al.  

[27] 
The model classified whether the driver’s eyes were open or closed to 

indicate drowsiness. 

- CNN 

- OpenCV 

- Keras 

Only an alarm is activated after drowsiness is detected 

(i.e., there is no interference with vehicle control). 

Yang & Yi  
[25] 

The extreme learning machine (ELM) model was used to identify driver 

drowsiness. After identifying driver drowsiness, the system sent timely 

warnings, such as auditory or visual warnings, encouraging drivers to 

take remedial action and avoid possible accidents. The model attained 

97.05% accuracy and a computational time of 0.60 seconds. 

- ShuffleNet 

- NGO 

- ELM 

They depend on auditory and visual warnings to bring the 

driver out of a drowsy state, which is not sufficient in 

many situations. 

Beles et al.  
[23] 

The proposed system analyzes electrooculogram (EOG) signals and 

images of the driver’s eye. The warning system includes components 

that recognize, analyze, and make judgments based on the driver’s 

attention level. 

- EOG sensor 

- Fuzzy logic algorithm 

There is no specific time between the alarm activation and 

the switch to the autonomous driving mode. 



Emerging Science Journal | Vol. 9, No. 5 

Page | 2693 

 

Figure 4. Integration of All Project Components within the ADAS 

The FPGA receives images of the driver’s face from the camera, which are then analyzed using OpenCV-pretrained 

classifiers to detect the driver’s face and eyes. An alarm connected to the FPGA was triggered if the algorithm detected 

signs of drowsiness, and the autonomous stopping system was activated if the driver did not respond in time. In this case, 

the FPGA sent control signals to the steering stepper motor and the DC speed motor to adjust the vehicle’s direction and 

speed, ensuring a safe stop. The proposed system met real-time requirements while optimizing power consumption 

through the hardware-based FPGA solution. Figure 5 outlines the primary steps of the autonomous driving system and 

illustrates the logical flow of data and control signals. 

 

Figure 5. The core logic of the autonomous driving system 

The implementation of the ADAS framework begins by collecting biometric data, such as eye features, from the 

driver to feed into the ADAS. OpenCV’s pretrained Haar Cascade classifiers are then used to analyze the data and 

perform the eye detection process. Subsequently, the file containing these classifiers is passed to the Viola-Jones 

algorithm for verification. This verification step is conducted outside of the Vivado application using C++.  

Once the detection process is confirmed to operate correctly, the same file is processed using a specific Python script 

to extract the features of the classifiers. This intermediate step is necessary because Vivado HLS cannot directly accept 

the classifier file format. The extracted features are organized into matrices, which are then passed to the Viola-Jones 

algorithm within the Vivado tool to complete the eye detection process and implement the drowsiness detection 

algorithm.  

In parallel with detecting a driver’s drowsiness, the ADAS self-driving system may need to perform a safe stop. This 

functionality begins by training the model on a self-collected dataset of over 50,000 images. Once trained, the model is 

exported as a Keras file, effectively as a pretrained model. This file is then tested in the Udacity simulator to verify that 

it correctly adjusts the car’s direction and speed. Following successful validation, the same Keras file is processed 

through a Python script to extract the model’s weights and biases. These extracted values are subsequently passed to 

Vivado for implementation in the self-driving algorithm. This extraction step is essential, as Vivado does not support 

direct input of Keras file formats. Once all components are implemented in Vivado, the register transfer level (RTL) 

representation of the design is generated. Figure 6 provides a detailed overview of the interconnection and execution of 

these steps. More details about the ADAS’s components are explained in the following subsections.  



Emerging Science Journal | Vol. 9, No. 5 

Page | 2694 

 

Figure 6. Implementation of All Components in the ADAS Framework 

Algorithm 1 provides a simplified representation of the dynamic threshold percentage technique. It dynamically 

evaluates whether the eyes are open or closed by comparing the percentage of white pixels (eye area) to a predefined 

threshold (1.4%). If the calculated percentage is below the threshold, the system interprets this as a closed-eye state, 

indicating potential drowsiness. 

Algorithm 1. Dynamic Threshold Value Technique for Real-Time Eye State Detection 

function eyesStateCheck takes an image(img) 

Initialize threshold Percentage to 1.4  

     Initialize totalPixelCount to 480 * 640 

       Set eye_pixels to 0 

       For each row i in img 

For each column j in img 

  if img[i][j] equals 255 then: 

     increment eye_pixels by 1 

       Calculate eye_persent as eye pixels * totalPixelsCount * 100.0 

       If eye_percentage is less than the threshold percentage 

          Return true (indicates drowsiness) 

       Else 

          Return false (indicates not drowsy)  



Emerging Science Journal | Vol. 9, No. 5 

Page | 2695 

The drowsiness detection system is tested under various conditions, including scenarios involving head tilts and 

drivers wearing clear eyeglasses (excluding tinted or shaded lenses). Images 1–4 in Figure 7 demonstrate the system’s 

ability to detect drowsiness, both in normal situations and when the driver is wearing spectacles. Vivado HLS 

implementation begins by initializing a file called features.h, which contains arrays holding the classifier feature values. 

These features are crucial in detecting the driver’s eyes. To handle low-light environments, where facial features may 

not be adequately captured—we propose integrating a light sensor with the camera module. This sensor can measure 

ambient light levels and trigger a controlled illumination source to enhance visibility when needed. However, handling 

scenarios involving excessive or direct lighting remains a current limitation and will be explored in future research. 

The design is then bit-streamed onto an FPGA, which is integrated with other vehicle components to execute the 

functionalities of the ADAS framework. Of note, the Udacity simulator is used solely for results verification and can be 

skipped once all results are confirmed to be consistent and reliable.  

3-1- Drowsiness Detection 

As previously discussed, the proposed method reliably detects driver drowsiness by integrating multiple tools and 

libraries, including the Viola-Jones algorithm, OpenCV-pretrained Haar cascade classifiers, and Python scripts. The 

ADAS represents the analyzed image as a matrix of pixels. A widely recognized technique known as the dynamic 

threshold value was employed for drowsiness detection [33]. This technique determines whether the driver is awake by 

analyzing the eye region within the captured image. Specifically, the number of pixels corresponding to the eye segment 

was calculated and expressed as a percentage of the total number of pixels in the image matrix. According to related 

studies by Valcan & Gaianu [34], and Kim et al. [35], the eyes typically constitute 4% to 5% of the face, whereas the 

face itself accounts for approximately 30% to 40% of the total image area, depending on the camera’s distance and angle. 

The system determines the driver’s state by comparing this percentage with a predefined threshold value so that 

drowsiness can be detected accurately. 

 

Figure 7. Implementation of All Components in the ADAS Framework 

3-2- Alarm System 

The audio alarm employed to wake the driver from a drowsy state operated continuously until the driver regained 

alertness. The autonomous driving system was activated if the driver failed to respond to an alarm within 4.43 seconds 

[36]. During self-driving mode, the alarm continued to sound to wake the driver. Once the driver awoke, the alarm ceased 

and the car transitioned back to manual operation. 

Algorithm 2 outlines the functionality of the alarm system. The Boolean output (true or false) from this function can 

be connected to the FPGA output pin. This output pin can either interface with a digital-to-analog converter (DAC) to 

connect the FPGA to an alarm or directly link to specific alarm types that do not require a DAC for FPGA compatibility 

[37]. This pseudocode outlines a clear process for making real-time decisions about whether to alert the driver or activate 

safety protocols, ensuring a balance between driver engagement and autonomous intervention. 



Emerging Science Journal | Vol. 9, No. 5 

Page | 2696 

Algorithm 2. Alarm System Pseudocode for Drowsiness Intervention and Autonomous Control 

function AlarmSystem (drowsiness_detected, alarm_active) 

if drowsiness_detected and not alarm_active then: 

        Set alarm_active to true 

          Start timer 

          if alarm_active and timer < 4.43 seconds then: 

  wait for response from driver 

  if response received then: 

     Stop alarm 

     Reset timer 

     Set Driver awake to true 

  eles if timer >= 4.43 seconds then: 

     Activate autonomous driving 

     Continue alarm  

     Wait for Driver to wake up 

     if driver_wake_up then: 

        Deactivate autonomous driving 

        Set alarm_active to false 

        Reset timer 

3-3- Autonomous Driving System 

The autonomous driving system was designed to maintain the vehicle’s position on the road while gradually slowing 

down to ensure a safe stop. When the autonomous driving mode is activated, the CNN model processes visual input from 

the vehicle’s cameras. Based on the model’s analysis of the input, the model generates control signals to regulate the 

car’s speed and direction [38]. To evaluate the model’s ability to respond to input images and appropriately adjust the 

vehicle’s speed and direction, we conducted tests using the Udacity simulator [39], as illustrated in Figure 8. 

 

Figure 8. Evaluation of the trained model within the Udacity simulator environment 

3-4- Vivado Implementation 

Certain adaptations are necessary when working with the Vivado HLS when implementing the algorithms required 

for the system. For the drowsiness detection algorithm, Vivado provides a header file named hls_video_haar.h, which 

includes all classes and functions required to implement the Viola-Jones algorithm for face and eye detection. Once a 

driver’s face and eyes are detected, the drowsiness detection algorithm is activated to identify any signs of drowsiness. 

After the CNN model was trained, the weights and biases of the autonomous stopping system in the Vivado HLS were 

exported using a Python script, which wrote them in a text file. These values were then transferred from the text file into 

matrices in Vivado, where they were used as inputs for the autonomous driving algorithm. This step was necessary 

because Vivado does not directly accept Keras files (pretrained models). 



Emerging Science Journal | Vol. 9, No. 5 

Page | 2697 

For the autonomous driving algorithm, a separate function was created for each layer of the CNN. Each function 

processed the output image from the function of the previous layer, except for the first layer, which directly took the 

input stream from the camera. Below is a detailed explanation of the layer specific functions used in the autonomous 

driving algorithm: 

 Convolutional layer functions (conv1, conv2, conv3, conv4, and conv5): These functions contain the learned 

filters responsible for extracting features from the input stream. During inference, the convolutional layers apply 

these filters to the new input data to extract relevant features learned during training. Figure 9 depicts an example 

of the implementation of the conv1 function. 

 Flatten layer function (flattened): After the final convolutional layer, the multi-dimensional feature maps are 

flattened into a one-dimensional vector. This step is essential because fully connected (dense) layers expect a one-

dimensional input. 

 Dense layer functions (dense1, dense2, dense3, and dense4): These functions take the flattened feature vector and 

the output of the flattened layer and perform additional processing to make a final prediction. The weights in these 

layers are adjusted during training to map the extracted features to the desired outputs, such as the steering angle 

and throttle control. 

 Activation functions (e.g., ReLU): Activation functions are applied after each layer to introduce nonlinearity into 

the model, enabling it to learn and perform more complex tasks. 

In the implementation of the conv1 function, as shown in Figure 9, the weights and biases of the pretrained CNN 

model, along with the input stream from the camera, are passed to the function. The learned filters, utilizing the weights 

and biases, were applied to the input stream to extract the relevant features. At the end of the function, the ReLU 

activation function is used to introduce nonlinearity into the model. 

 

Figure 9. Implementation of Convolution Layer 1 Function 



Emerging Science Journal | Vol. 9, No. 5 

Page | 2698 

4- Performance and Resource Analysis 

Initially, the results and discussion of each system component are addressed individually. Following this, we 

showcase the results and analysis of the entire system after integrating its components to function cohesively. Each 

function has multiple solutions, and each solution incorporates directives aimed at improving the performance or 

reducing FPGA resource utilization. Finally, the most suitable solution for the project was selected. 

4-1- Drowsiness Detection System 

After the synthesis process was run for the first solution of this function, a report showing the resources that this 

function needed to be executed in an FPGA was generated (Table 2). The product family for this solution is Vertix7, and 

the target device is xc7vx690t-ffg1761-2. The report also shows the latency and the time (in nanoseconds) taken to 

execute this function in an FPGA (Table 3). 

Table 2. Drowsiness Detection Function Resources for Solution 1 

Resources Quantity used Percent 

BRAM18K 0 0% 

DSB84E 11 ≈ 0% 

FF 2925 ≈ 0% 

LUT 4924 1% 

URAM 0 0% 

Table 3. Drowsiness Detection Function Timing and Latency for Solution 1 

Timing 

 (Clock period in nanoseconds) 

Latency  

(Clock Cycles) 

Target Estimated Min Max 

10 ns 8.581 ns 617792 617792 

As in Table 2, the amount of resources used in this solution indicates that it is a compute-intensive problem. Still, 

there is a gap between the used and available resources, which we tried to reduce using another device in the next 

solution. We also tried to reduce the estimated timing, which was our main concern. In the second solution, we reduced 

the available resources by changing the target device into xczu2eg-sfvc784-2LV-e from the zynquplus family; the 

difference is apparent in Table 4. The resources used were almost the same as those used in the previous solution. The 

report also provides the latency and execution time (in nanoseconds) required to run this function on an FPGA, as 

presented in Table 5. The execution time achieved satisfies the real-time requirements, as the result of 7.998 ns is below 

the target time of 10 ns. 

Table 4. Drowsiness Detection Function Resources for Solution 2 

Resources Quantity used Percent 

BRAM18K 0 0% 

DSB84E 11 4% 

FF 2973 3% 

LUT 4914 10% 

URAM 0 0% 

Table 5. Drowsiness Detection Function Timing and Latency for Solution 2 

Timing  

(Clock period in nanoseconds) 

Latency  

(Clock Cycles) 

Target Estimated Min Max 

10 ns 7.998 ns 617793 617793 

4-2- Stopping System 

Before discussing the Vivado solutions for the stopping system function, the results of the validation loss after training 

the CNN model are presented. The loss curves for the model shown in Figure 10 illustrate a consistent decrease in 

training and validation losses. This trend indicates that the model learned effectively from the data. Furthermore, the 

validation loss converged closely with the training loss, suggesting that the model generalizes well with the unseen data. 

Notably, no significant increase occurred in validation loss, which typically results in signal overfitting. 



Emerging Science Journal | Vol. 9, No. 5 

Page | 2699 

 

Figure 10. Model Loss Curves 

The first Vivado solution for this function shows that this function uses a vast number of resources, indicating that it 

is a compute-intensive problem requiring many computations to be solved. Table 6 shows the number of resources used 

for the first solution of this function. For this solution, the product family is Vertix7, and the target device is xc7vx485t-

ffg1157-1. The report also shows the latency and the time (in nanoseconds) taken to execute this function in an FPGA 

(Table 7). 

Table 6. Stopping System Function Resources for Solution 1 

Resources Quantity used Percent 

BRAM18K 270 13% 

DSB84E 14 ≈ 0% 

FF 52260 8% 

LUT 13617 4% 

URAM 0 0% 

Table 7. Stopping System Function Timing and Latency for Solution 1 

Timing  

(Clock period in nanoseconds) 

Latency  

(Clock Cycles) 

Target Estimated Min Max 

10 ns 8.522 ns 6720346 6728346 

As previously mentioned, several optimization techniques have been employed to enhance performance by 

incorporating the proposed directives to achieve a high-performance, optimized design. This process was repeated for 

each segment of the code to utilize resources effectively and create an efficient implementation. Table 8 presents the 

resources utilized to implement this component of the ADAS solution, and Table 9 displays the execution time results. 

The execution time of 8.221 ns is below the target threshold of 10 ns, demonstrating the efficiency of the optimized 

design. 

Table 8. Stopping System Function Resources for Solution 2 

Resources Quantity used Percent 

BRAM18K 184 15% 

DSB84E 14 ≈ 0% 

FF 51984 10% 

LUT 13661 5% 

URAM 0 0% 

Table 9. Stopping System Function Timing and Latency for Solution 2 

Timing  

(Clock period in nanoseconds) 

Latency  

(Clock Cycles) 

Target Estimated Min Max 

10 ns 8.221 ns 4555021 4563021 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 2 4 6 8

L
o

ss

Epoch

Loss Curves

Training Loss

Validation Loss



Emerging Science Journal | Vol. 9, No. 5 

Page | 2700 

4-3- End-to-End System Design 

Before the components of the ADAS framework were integrated, each module was individually tested and verified 

to ensure proper functionality. Following this, all components were integrated into a complete ADAS, and the entire 

design was synthesized on the target FPGA computing platform xc7vx485t-ffg1157-1 from the vertix7 product family in 

the first solution for the end-to-end system. Table 10 shows the overall resources needed for the first solution of the end-

to-end system, while Table 11 shows the latency and the time (in nanoseconds) taken execution. 

Table 10. End-to-End System Resources for Solution 1 

Resources Quantity used Percent 

BRAM18K 258 12% 

DSB84E 25 ≈ 0% 

FF 51039 8% 

LUT 18197 5% 

URAM 0 0% 

Table 11. End-to-End System Timing and Latency for Solution 1 

Timing  

(Clock period in nanoseconds) 

Latency  

(Clock Cycles) 

Target Estimated Min Max 

15 ns 12.175 ns 617788 5180809 

The number of BRAM_18K used, which is responsible for storing the data, increased, while the other resources 

remained in the same range. In the second solution of the end-to-end system, the number of flip-flops and lookup tables 

increased slightly, while the BRAM_18K and DSPs remained the same (see Table 12). To improve the performance 

estimates, we reduced the target time. In this situation, Vivado tried to fit the target time into the synthesis process, and 

it succeeded most of the time. Therefore, we set the target time to 15 nanoseconds in our attempt to reduce the estimated 

time. This attempt was successful, as the estimated time was reduced by 4.301 nanoseconds (see Table 13). 

Table 12. End-to-End System Resources for Solution 2 

Resources Quantity used Percent 

BRAM18K 258 12% 

DSB84E 25 ≈ 0% 

FF 54425 8% 

LUT 18217 6% 

URAM 0 0% 

Table 13. End-to-End System Timing and Latency for Solution 2 

Timing  

(Clock period in nanoseconds) 

Latency  

(Clock Cycles) 

Target Estimated Min Max 

15 ns 12.746 ns 617788 5180809 

Table 14 provides the overall resource utilization after all optimization techniques were applied. The table 

demonstrates the feasibility of creating a real-time solution for future automotive applications. In addition, Table 15 

highlights the execution time requirements, showing that the achieved clock cycle time significantly outperformed the 

target. This confirms that the proposed ADAS framework satisfies real-time operational requirements and is well-suited 

to address driver drowsiness. Because the available computing resources on the target FPGA are sufficient to synthesize 

the entire design, the focus shifted to optimizing the execution time as a priority, followed by resource usage 

optimization. 

Table 14. End-to-End System Resources for Solution 3 

Resources Quantity used Percent 

BRAM18K 184 29% 

DSB84E 25 1% 

FF 54435 11% 

LUT 18188 7% 

URAM 0 0% 



Emerging Science Journal | Vol. 9, No. 5 

Page | 2701 

Table 15. End-to-End System Timing and Latency for Solution 3 

Timing  

(Clock period in nanoseconds) 

Latency  

(Clock Cycles) 

Target Estimated Min Max 

15 ns 12.175 ns 617788 5180809 

5- Conclusion 

This study aimed to develop a real-time solution for advanced driver assistance systems (ADAS) to prevent accidents 

caused by driver drowsiness. The proposed solution is based on a high-speed FPGA computing platform using the Xilinx 

Vivado HLS tool, which provides an efficient hardware-level vehicle acceleration environment. The proposed solution 

integrates several technologies, including OpenCV libraries to provide validated features for face and eye detection, 

trained CNN models for autonomous driving decisions, custom Python scripts for tasks such as extracting weights and 

biases from the CNN model, and the Viola-Jones algorithm, which receives the extracted features and then locates the 

face and eyes to detect signs of drowsiness and trigger an immediate alert to drivers. If the driver does not respond within 

4.43 seconds, the autonomous driving algorithm takes over to maintain the vehicle’s position on the road while gradually 

slowing it down to ensure a safe and controlled stop. Our system leveraged FPGA technology to achieve impressive 

timing results, which is critical for real-time safety applications.  

The main contribution of our work is that it shows that innovative use of FPGAs significantly reduces the execution 

time of computationally intensive algorithms, ensuring real-time system operation. Nevertheless, several challenges still 

need to be addressed in future research. The system is not prepared to handle images of a driver's face under low-light 

conditions or when drivers wear shaded sunglasses. Additionally, although our ADAS framework effectively slows the 

vehicle and keeps it on the road in emergencies, it does not have a self-parking feature, which would further enhance 

vehicle autonomy and could be considered an important direction for future development and system improvement. 

6- Declarations  

6-1- Author Contributions 

Conceptualization, A.A. and Z.M.; methodology, A.A., Z.M., A.J., and M.S.; software, A.A. and Z.M.; validation, 

A.A., Z.M., A.J., and M.S.; formal analysis, A.A. and Z.M.; investigation, A.A., A.J., M.S., and Z.M.; writing—original 

draft preparation, A.A., A.J., M.S., and Z.M.; writing—review and editing, A.A., A.J., M.S., and Z.M.; visualization, 

A.A. and Z.M.; supervision, A.A.; project administration, A.A. and A.J.; funding acquisition, A.A. and M.S. All authors 

have read and agreed to the published version of the manuscript. 

6-2- Data Availability Statement 

The data presented in this study are available in the article. 

6-3- Funding 

The authors received no financial support for the research, authorship, and/or publication of this article. 

6-4- Institutional Review Board Statement 

Not applicable. 

6-5- Informed Consent Statement 

Not applicable. 

6-6- Conflicts of Interest 

The authors declare that there is no conflict of interest regarding the publication of this manuscript. In addition, the 

ethical issues, including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double 

publication and/or submission, and redundancies have been completely observed by the authors. 

7- References  

[1] Sutherland, C., Smallwood, A., Wootten, T., & Redfern, N. (2023). Fatigue and its impact on performance and health. British 

Journal of Hospital Medicine, 84(2), 1–8. doi:10.12968/hmed.2022.0548. 

[2] Dinges, D. F. (1995). An overview of sleepiness and accidents. Journal of Sleep Research, 4(s2), 4–14. doi:10.1111/j.1365-

2869.1995.tb00220.x. 

[3] NHTSA. (2021). Drowsy-driving. National Highway Traffic Safety Administration (NHTSA), Washington, United States. 

Available online: https://www.nhtsa.gov/book/countermeasures-that-work/drowsy-driving (accessed on September 2025). 



Emerging Science Journal | Vol. 9, No. 5 

Page | 2702 

[4] MDhealth (2023). Why falling asleep when driving happens and how to handle it. MDhealth, London, United Kingdom. Available 

online: https://www.md-health.com/Falling-Asleep-While-Driving (accessed on September 2025). 

[5] Arun, S., Murugappan, M., & Sundaraj, K. (2011). Hypovigilance warning system: A review on driver alerting techniques. 2011 

IEEE Control and System Graduate Research Colloquium, 65–69. doi:10.1109/icsgrc.2011.5991831. 

[6] Almomany, A., Al-Omari, A. M., Jarrah, A., Tawalbeh, M., & Alqudah, A. (2020). An OpenCL-based parallel acceleration of a 

sobel edge detection algorithm using intel FPGA technology. South African Computer Journal, 32(1), 3–26. 

doi:10.18489/sacj.v32i1.749. 

[7] Almomany, A., Ayyad, W. R., & Jarrah, A. (2022). Optimized implementation of an improved KNN classification algorithm 

using Intel FPGA platform: Covid-19 case study. Journal of King Saud University - Computer and Information Sciences, 34(6), 

3815–3827. doi:10.1016/j.jksuci.2022.04.006. 

[8] Almomany, A., Jarrah, A., & Al Assaf, A. (2022). FCM Clustering Approach Optimization Using Parallel High-Speed Intel FPGA 

Technology. Journal of Electrical and Computer Engineering, 2022, 1–11. doi:10.1155/2022/8260283. 

[9] Almomany, A., Jarrah, A., & Al Assaf, A. (2023). Accelerating FCM Algorithm Using High-Speed FPGA Reconfigurable 

Computing Architecture. Journal of Electrical Engineering & Technology, 18(4), 3209–3217. doi:10.1007/s42835-023-01432-z. 

[10] Almomany, A., Sutcu, M., & Ibrahim, B. S. K. S. M. K. (2024). Accelerating electrostatic particle-in-cell simulation: A novel 

FPGA-based approach for efficient plasma investigations. PLOS ONE, 19(6), e0302578. doi:10.1371/journal.pone.0302578. 

[11] Husejko, M., Evans, J., & Rasteiro Da Silva, J. C. (2015). Investigation of High-Level Synthesis tools’ applicability to data 

acquisition systems design based on the CMS ECAL Data Concentrator Card example. Journal of Physics: Conference Series, 

664(8), 082019. doi:10.1088/1742-6596/664/8/082019. 

[12] Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A. E., & Arshad, H. (2018). State-of-the-art in artificial 

neural network applications: A survey. Heliyon, 4(11). doi:10.1016/j.heliyon.2018.e00938. 

[13] Kattenborn, T., Leitloff, J., Schiefer, F., & Hinz, S. (2021). Review on Convolutional Neural Networks (CNN) in vegetation 

remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 24–49. doi:10.1016/j.isprsjprs.2020.12.010. 

[14] Zhiqiang, W., & Jun, L. (2017). A review of object detection based on convolutional neural network. 2017 36th Chinese Control 

Conference (CCC), 11104–11109. doi:10.23919/chicc.2017.8029130. 

[15] Khan, M., Chakraborty, S., Astya, R., & Khepra, S. (2019). Face Detection and Recognition Using OpenCV. 2019 International 

Conference on Computing, Communication, and Intelligent Systems (ICCCIS), 116–119. doi:10.1109/icccis48478.2019.8974493. 

[16] Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. Proceedings of the 2001 IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition. CVPR, 511-518. doi:10.1109/cvpr.2001.990517. 

[17] Nixon, M. S., & Aguado, A. S. (2020). Image processing. Feature Extraction and Image Processing for Computer Vision, 83–

139, Academic Press, Cambridge, United States. doi:10.1016/b978-0-12-814976-8.00003-8. 

[18] Dahirou, Z., Zheng, M., & Yuxin, M. (2020). Face Detection with Viola Jones Algorithm. 2020 7th International Conference on 

Information Science and Control Engineering (ICISCE), 602–606. doi:10.1109/icisce50968.2020.00130. 

[19] Singh, V. K., Shrivastava, U., Bouayad, L., Padmanabhan, B., Ialynytchev, A., & Schultz, S. K. (2018). Machine learning for 

psychiatric patient triaging: An investigation of cascading classifiers. Journal of the American Medical Informatics Association, 

25(11), 1481–1487. doi:10.1093/jamia/ocy109. 

[20] Madhuri, K., & UmaMaheswari, B. (2019). Adaptive steering control and driver alert system for smart vehicles. Proceedings of 

the 3rd International Conference on Computing Methodologies and Communication, ICCMC 2019, 208–213. 

doi:10.1109/ICCMC.2019.8819636. 

[21] Parashar, D., & Jadaun, A. (2022). Driver drowsiness detection system using machine learning. YMER Digital, 21(05), 962–

965. doi:10.37896/ymer21.05/a8. 

[22] Lu, K., Karlsson, J., Dahlman, A. S., Sjoqvist, B. A., & Candefjord, S. (2022). Detecting Driver Sleepiness Using Consumer 

Wearable Devices in Manual and Partial Automated Real-Road Driving. IEEE Transactions on Intelligent Transportation 

Systems, 23(5), 4801–4810. doi:10.1109/TITS.2021.3127944. 

[23] Beles, H., Vesselenyi, T., Rus, A., Mitran, T., Scurt, F. B., & Tolea, B. A. (2024). Driver Drowsiness Multi-Method Detection 

for Vehicles with Autonomous Driving Functions. Sensors, 24(5), 1541. doi:10.3390/s24051541. 

[24] Daza, I. G., Bergasa, L. M., Bronte, S., Javier Yebes, J., Almazán, J., & Arroyo, R. (2014). Fusion of optimized indicators from 

advanced driver assistance systems (ADAS) for driver drowsiness detection. Sensors (Switzerland), 14(1), 1106–1131. 

doi:10.3390/s140101106. 

[25] Yang, E., & Yi, O. (2024). Enhancing Road Safety: Deep Learning-Based Intelligent Driver Drowsiness Detection for Advanced 

Driver-Assistance Systems. Electronics (Switzerland), 13(4), 708–726. doi:10.3390/electronics13040708. 

https://www.md-health.com/Falling-Asleep-While-Driving


Emerging Science Journal | Vol. 9, No. 5 

Page | 2703 

[26] Ahmed, M. A., Hussein, H. A., Omar, M. B., & Hameed, Q. A. (2022). Real Time Driver Drowsiness Detection Based on 

Convolution Neural Network. Journal of Algebraic Statistics, 13(2), 2006-2012. 

[27] Gupta, A., Kumar, S., Kumar, R., & Partheeban, N. (2020). Driver drowsiness detection system with OpenCV & Keras. IOSR 

Journal of Computer Engineering, 22(2), 12–18. 

[28] Koo, Y., Kim, J., & Han, W. (2015). A method for driving control authority transition for cooperative autonomous vehicle. 2015 

IEEE Intelligent Vehicles Symposium (IV), 394–399. doi:10.1109/ivs.2015.7225717. 

[29] Thulasimani, L., Poojeevan, P., & Prithashasni, P. S. (2021). Real Time Driver Drowsiness Detection using OpenCV and Facial 

Landmarks. The Journal of Contemporary Issues in Business and Government, 27(6), 649–664. 

doi:10.47750/cibg.2021.27.06.054. 

[30] Correia, A. P., Llanos, C. H., Carvalho, R. W. de, Alfaro, S. A., Koike, C., & Moreno, E. D. (2010). A Control Design Approach 

for Controlling an Autonomous Vehicle with FPGAs. Journal of Computers, 5(3). doi:10.4304/jcp.5.3.360-371. 

[31] Cong, J., Fang, Z., Lo, M., Wang, H., Xu, J., & Zhang, S. (2018). Understanding Performance Differences of FPGAs and GPUs. 

2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 93–96. 

doi:10.1109/fccm.2018.00023. 

[32] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D., Monfort, M., Muller, U., Zhang, J., 

Zhang, X., Zhao, J., & Zieba, K. (2016). End to End Learning for Self-Driving Cars. doi:10.48550/arXiv.1604.07316. 

[33] Asano, S., Maruyama, T., & Yamaguchi, Y. (2009). Performance comparison of FPGA, GPU and CPU in image processing. 

2009 International Conference on Field Programmable Logic and Applications. doi:10.1109/fpl.2009.5272532. 

[34] Valcan, S., & Gaianu, M. (2021). Ground truth data generator for eye location on infrared driver recordings. Journal of Imaging, 

7(9), 162. doi:10.3390/jimaging7090162. 

[35] Kim, D., Park, H., Kim, T., Kim, W., & Paik, J. (2023). Real-time driver monitoring system with facial landmark-based eye 

closure detection and head pose recognition. Scientific Reports, 13(1), 18264. doi:10.1038/s41598-023-44955-1. 

[36] Han, J. H., & Ju, D. Y. (2021). Advanced alarm method based on driver’s state in autonomous vehicles. Electronics (Switzerland), 

10(22), 2796. doi:10.3390/electronics10222796. 

[37] Ohkawa, T., Yamashina, K., Kimura, H., Ootsu, K., & Yokota, T. (2018). FPGA Components for Integrating FPGAs into Robot 

Systems. IEICE Transactions on Information and Systems, E101.D(2), 363–375. doi:10.1587/transinf.2017rcp0011. 

[38] Aladem, M., & Rawashdeh, S. A. (2021). A single-stream segmentation and depth prediction CNN for autonomous driving. 

IEEE Intelligent Systems, 36(4), 79–85. doi:10.1109/MIS.2020.2993266. 

[39] Lade, S., Shrivastav, P., Waghmare, S., Hon, S., Waghmode, S., & Teli, S. (2021). Simulation of Self Driving Car Using Deep 

Learning. 2021 International Conference on Emerging Smart Computing and Informatics (ESCI-2021), 175–180. 

doi:10.1109/esci50559.2021.9396941. 


