Awvailable online at www.ijournalse.org

[]
il EMERGING SCIENCE JOURNAL

(ISSN: 2610-9182)

L] ‘ Emerging Science Journal

EMERGING SCIENCE JOURNAL

Vol. 9, No. 5, October, 2025

Real-Time FPGA-Based ADAS Solution for Driver Drowsiness
Detection and Autonomous Stopping

Abedalmuhdi Almomany ®, Zaid Marouf 2, Amin Jarrah 2@, Muhammad Sutcu 3

! Electrical & Computer Engineering Department, Gulf University for Science & Technology, Mishref 32093, Kuwait.
2 Department of Computer Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, Jordan.

3 Department of Engineering Management, Gulf University for Science & Technology, Mishref 32093, Kuwait.

Keywords:

Driver Drowsiness Detection;
This §tudy addresses dri\(er drows'iness, a leading cause pf traffic acgidents., by deve!oping @ Advanced Driver Assistance Systems (ADAS):
real-time Advanced Driver Assistance System that integrates biometric detection and . . . A
autonomous vehicle control. The objective of this study is to enhance road safety through the Real-Time Biometric Monitoring;
early detection of drowsiness and automated intervention. The proposed system detects signs of ~ Convolutional Neural Networks (CNNs);
drowsiness by monitoring facial and ocular features using a real-time video stream. Once a
predefined threshold is exceeded, an audible alert is triggered. If the driver remains
unresponsive, the system gradually reduces the vehicle’s speed and initiates an automated stop
procedure. Methodologically, the system employs OpenCV for image processing and a
convolutional neural network for lane detection and vehicle control. It is implemented on a high-))
performance hardware platform using field-programmable gate arrays programmed via Vivado Article History:
High-Level Synthesis to ensure low-latency operation. The results confirm the system’s real-

Abstract

FPGA Implementation.

time capability, accuracy in drowsiness detection, and effective vehicle control under drowsy ~ Received: 02 April 2025
drivir.lg conditions. The system’s Qovelty lies ip its combination of bior}letric .monitori.ng, deep Revised: 14 September 2025
learning, and hardware acceleration to provide faster and more reliable intervention than

existing Advanced Driver Assistance System technologies. This integration sets a new Accepted: 19 September 2025

benchmark for proactive road safety measures. Published: 01 October 2025

1- Introduction

Accidents resulting from driver drowsiness, fatigue, and falling asleep at the wheel pose a significant threat to road
safety. Drowsiness impairs a driver’s ability to react swiftly, reduces their attention span, and compromises their
decision-making skills [1], increasing the risk of accidents. Several factors contribute to driver drowsiness and fatigue,
including sleep deprivation; untreated sleep disorders such as sleep apnea; extended working hours; driving during
nighttime or mid-afternoon when the body naturally tends to feel sleepy; and the use of sedating medications, substances,
or alcohol. Drivers experiencing drowsiness often display warning signs such as frequent yawning, difficulty focusing
and keeping their eyes open, lane drifting, missing traffic signs or exits, and feeling restless or irritable. Fatigue
significantly degrades driving performance by reducing alertness, concentration, and reaction time, which diminishes
the driver’s situational awareness, judgment, and decision-making speed. The likelihood of making mistakes while
driving significantly increases as driver fatigue intensifies. Certain groups, such as commercial drivers (e.g., truck and
bus drivers) with long working hours, night shift workers, individuals with untreated sleep disorders, and drivers facing

* CONTACT: momany.a@gust.edu.kw
DOI: http://dx.doi.org/10.28991/ES]-2025-09-05-023

© 2025 by the authors. Licensee ESJ, Italy. This is an open access article under the terms and conditions of the Creative
Commons Attribution (CC-BY) license (https://creativecommons.org/licenses/by/4.0/).

Page | 2687

http://www.ijournalse.org/
http://dx.doi.org/10.28991/ESJ-2025-09-05-023
http://dx.doi.org/10.28991/ESJ-2025-09-05-023
https://orcid.org/0000-0002-5922-6106
https://orcid.org/0000-0001-8039-190X
https://orcid.org/0000-0002-8523-9103

Emerging Science Journal | Vol. 9, No. 5

chronic sleep deprivation, are particularly vulnerable to driving accidents caused by drowsiness [2]. According to the
National Highway Traffic Safety Administration (NHTSA), in 2021—the most recent year for which data is available—
driver fatigue was responsible for 58,000 accidents, resulting in 684 fatalities and 40,000 injuries [3].

Statistics underscore the need for systems that can detect driver fatigue and alert the driver or, when necessary, control
the vehicle to prevent accidents. Figure 1 illustrates drowsy driving accident statistics in the United States from 2017-
2021 [3].

100000 - . L -
91000 90000 maccidents minjuries fatalities

90000 -
80000 -
70000 -
60000 -
50000 -
40000 -
30000 -
20000 -

10000 -

0 A

2017 2018 2019 2020 2021

Figure 1. Drowsy Driving Accident Statistics in the USA [3]

Technological advancements have enabled the integration of various technologies to enhance the driving experience
and improve driver and passenger safety. Despite ongoing research on driver drowsiness detection, existing solutions
still face several challenges. Many rely on wearable devices, which are impractical for everyday use, as they require the
driver to wear specialized equipment. Additionally, several existing systems suffer from delayed response times [4],
which creates a problem in scenarios where the driver falls asleep and immediate intervention is necessary. To address
these issues, this study proposes a real-time, smart system that leverages multiple open-source tools, deep learning
models, and real-time hardware acceleration through FPGA deployment. The system monitors facial and ocular features
to detect drowsiness, triggers alerts, and, if necessary, initiates a safe stop sequence that requires no external input from
the driver.

The OpenCV library was employed to detect and analyze the driver’s facial features, leveraging the Viola-Jones
algorithm to identify signs of drowsiness, such as partially closed eyes or significant head tilts. Upon detecting
drowsiness, the system triggers an audio alert to wake the driver [5]. In addition, the system uses a camera to capture
real-time images of the road. These images were analyzed using a convolutional neural network (CNN), which generates
control signals to ensure that the vehicle remains within its lane during safe stops. The entire system was implemented
on the FPGA platform from the Zynqg UltraScale+ family, specifically the XCZU7EV-1FFVC11561 model, using the
Vivado High-Level Synthesis (HLS) tool. This facilitated efficient and high-speed processing. Together, these
components provide a comprehensive integrated solution for enhancing driver safety and mitigating the risks associated
with drowsy driving.

1-1-FPGA

An FPGA is a programmable integrated circuit that allows users to reconfigure its hardware functionality multiple
times [6]. An FPGA comprises a fixed set of resources capable of implementing both complex and simple low-level
functions, including lookup tables (LUTS), flip-flops, digital signal processors (DSPs), and RAM blocks [7-9]. FPGAs
also feature multiple input/output (1/0) ports for interfacing with external devices. One of their advantages is that they
can bypass the instruction fetch and decode overhead typical of traditional processors with stored memory instruction
sets. This capability facilitates the development of optimized data paths and control circuitry tailored to specific
applications. The distributed placement of LUTs within the FPGA fabric makes FPGAs highly suitable for parallel
pipelined computations [10]. For example, the body of a loop can be divided into smaller, executable sections, with each

Page | 2688

Emerging Science Journal | Vol. 9, No. 5

section mapped to a distinct stage of the FPGA’s computational logic. As such, custom-designed pipelines can be created
to closely align with the specific low-level architecture of a given application. Energy efficiency is another key benefit
of FPGAs, particularly in mobile computing devices and high-performance scientific applications in which power
consumption is often a limiting factor. FPGAs are employed to reduce energy usage by offering a high degree of
customization. Their programmability enables the execution of specific functions and algorithms, which often
significantly improves execution times in many applications.

However, FPGA platforms have some limitations. For instance, the design configuration and synthesis processes can
be time-consuming, and FPGAs typically operate at lower clock frequencies than modern CPU platforms. These factors
must be considered when evaluating the suitability of FPGAs for specific applications [10].

1-2-Vivado

Vivado High-Level Synthesis (HLS) is an advanced design tool that facilitates the creation of hardware architectures
using high-level programming languages, such as C, C++, and SystemC. This tool translates high-level algorithm
descriptions into register-transfer level (RTL) code, which is suitable for execution on FPGA devices through High-
Level Synthesis. Simulations can be performed using C or RTL with the same testbench file to validate the high-level
and low-level code. The Vivado HLS workflow is illustrated in Figure 2 [9].

[——
Test Bench |€ C, C++, CO.HSU’E_“WESJ
| SystemC Directives
C Simulation C Synthesis
h 2 l
RTL Adapter VHDL, Verlog
v v L 2
RTL Simulation Packaged IP

h 4

Vivado Design
Suite

Figure 2. Vivado HLS Workflow [16]

The Vivado HLS enhances the design process by offering various optimization techniques, such as loop unrolling,
local memory utilization, and resolving dependencies, which help create more efficient designs. These optimizations
improve clock cycle time and execution throughput. Designers can apply directives to different code components,
including arrays, loops, and functions [8]. Using Vivado HLS significantly reduces the design time and effort, enabling
designers to focus on algorithm development rather than hardware-level details [6]. Furthermore, Vivado HLS allows
users to explore alternative design architectures and optimizations using a range of synthesis options [9]. Incorporating
Vivado HLS into a system allows users to expedite the development of an autonomous driving system designed to detect
driver drowsiness while achieving greater design flexibility and enhanced efficiency [10].

1-3- Convolutional Neural Network (CNN)

Neural networks (NNs) are of significant interest in the fields of artificial intelligence (Al) and machine learning
(ML) owing to their ability to learn complex patterns and generate accurate predictions [12]. A neural network comprises
computational models inspired by the human brain and consists of interconnected nodes that process and transmit

Page | 2689

Emerging Science Journal | Vol. 9, No. 5

information. A neural network’s hidden layer(s) performs advanced computations to extract meaningful features from
input data [13], which are critical for producing accurate predictions. Finally, the output layer integrates the refined
information from the hidden layer(s) to generate the network’s final prediction.

In this study, we employed a specific type of neural network known as a convolutional neural network (CNN), which
has significantly advanced the field of computer vision. CNNs have demonstrated remarkable performance in tasks such
as image classification and object detection, making them highly effective for analyzing visual data. Furthermore, their
ability to precisely extract relevant features from images makes them particularly valuable. The autonomous stopping
system leverages the robust object detection capabilities of CNNs [14]. The CNN model utilized in this study was trained
using a large dataset comprising over 50,000 images to minimize sudden performance changes, thereby ensuring the
system’s accuracy and stability.

Input images were represented as two-dimensional matrices and processed through multiple CNN layers, including
convolutional layers, pooling layers, and fully connected layers. Each layer played a crucial role in the feature extraction
and classification process, with distinct functions contributing to the model’s overall performance. During the prediction
process, convolutional layers served as the initial stage in a convolutional neural network (CNN). These layers utilized
linear filters that traverse the input image to extract desired features and patterns from various locations, including edges,
textures, and shapes [14]. Nonlinearity was introduced by passing the output of the convolutional layers through a
rectified linear unit (ReLU) activation function. Following this, the pooling layer reduced the dimensionality of the
feature map by down-sampling and focusing on the most significant features of the image. Subsequently, fully connected
layers aggregated high-level features by capturing critical relationships between them. Finally, the output prediction
layer utilized these learned features to generate a meaningful prediction, enabling the CNN model to make decisions
based on the training process. The sequential structure of convolution, activation, pooling, and fully connected layers
enabled the CNN model to extract and represent features effectively, ensuring accurate predictions.

In this study, a CNN model was employed to enhance driver safety by mitigating the risks associated with drowsy
driving. The model was designed to maintain the vehicle’s position on the correct track and prevent sudden deviations.
Figure 3 illustrates how a pre-trained CNN model can be integrated into a Vivado HLS project. The CNN model
developed in this study ensured safe driving under various road conditions by providing real-time control signals to
adjust the speed and direction of the vehicle, demonstrating that the synergy between CNN-based object detection and
real-time system control improves driver safety.

#include "ap_fixed.h"
#include "hls_video.h"

#define EXP_WIDTH 16
#define INT_WIDTH 4

typedef xed< s INT_¥ > float24_t;
float24_t v [8) = { 0.382973, ... , -0.405078};
float24_t [4)[4]] = { 0.127658, ... 0.135026};
float24_t y +es 5 0.000000};
float24_t -0.017675, ... , 0.039321};
voild conv_layer(<float24_t> & 3 <float24_t> &
float24_t [CON N] [CONV1_KERN IZE][CON J[CON);
float24_t [CONV ZEL) { ... 33
void pool_layer(<float24_t>& 5 <float24_t>&) Ji SERRRRS L
void fc_layer(- <float24_t> & > <float24_t> &in,
loat24_t [! 1 J 1,
float24_t [1 J T

Figure 3. Importing a pre-trained CNN model into a Vivado HLS project
1-4-OpenCV

OpenCV (Open Source Computer Vision) is a widely adopted open-source library that offers an extensive suite of
tools for computer vision and machine learning applications. It also provides image processing, video analysis, and
object detection functionalities [15]. OpenCV supports several programming languages, including C++, MATLAB,
Java, and Python, and seamlessly integrates with standard template library (STL) containers via its template interface.
With a vast collection of readily available algorithms, OpenCV is a vital basis for designing various applications. It is
structured into numerous modules, with the multi-dimensional array module acting as the core segment for managing
vital data structures and procedures. To improve execution performance, OpenCV supports multithreading and reentrant
functionality, which allows multiple threads to execute the same functions or different classes simultaneously by utilizing
atomic reference counting to ensure thread safety [7].

Page | 2690

Emerging Science Journal | Vol. 9, No. 5

1-5-Viola-Jones algorithm

The Viola-Jones algorithm, developed by Viola & Jones (2001) [16], is a widely used machine-learning technique
for object detection (particularly face detection). It consists of several key components, the first of which is the use of
Haar-like features (i.e., features of digital images that are designed for object detection). These features are simple
rectangular patterns that capture the contrast between the adjacent regions of an image. The extracted features are passed
into a classifier, which determines whether the object within the analyzed window matches the target object, such as a
face or eye, in this case. The second component of the algorithm is the integral image, which is also known as a summed-
area table. This data structure allows for the rapid calculation of pixel value sums within any rectangular region of an
image. The integral image is computed by summing all the pixel values from the top-left corner of the image to a given
pixel position.

The integral image, originally introduced in computer graphics by Frank Crowe in 1984 and later adapted for
computer vision by Nixon & Aguado [17], significantly enhances the efficiency of the Viola-Jones algorithm by
accelerating the computation of Haar-like features. For an image containing n pixels, the time complexity for computing
the integral image is O(n). Notably, the sum of the pixel values within any rectangular region requires only four values
from the integral image, regardless of the window size.

The Viola-Jones algorithm also employs the adaptive boosting (AdaBoost) algorithm, an ensemble learning method
that combines multiple weak classifiers to form a strong classifier. This enhances the model’s performance by focusing
on features that improve object-detection accuracy [18]. The algorithm scans the input image using a fixed-size sliding
window and applies a series of classifiers to each window. If a window passes through all classifiers, it is identified as
containing the desired object. Additionally, the algorithm utilizes a scale pyramid to detect objects of varying sizes by
repeatedly resizing the image and reapplying the detection process [19]. The Viola-Jones algorithm is one of the most
influential and widely recognized object-detection methods, particularly for face detection. It is known for its speed,
accuracy, and strong performance in low-power devices, making it an efficient and practical choice for real-world
applications [16].

2- Related Works

Numerous researchers have explored various methods, features, and algorithms to achieve reliable results for
detecting and responding to driver drowsiness. This section briefly overviews previous studies on the transfer of driving
control once driver drowsiness is detected. Some studies relied on wearable devices that drivers must use while operating
a vehicle. For instance, one type of wearable device consists of glasses equipped with an eye-blink sensor that monitors
a driver’s eyes. If the eyes are closed or partially closed, the driver is diagnosed as drowsy or asleep [20]. Another
example of wearable technology is a chest band equipped with an ECG sensor that monitors heart rate variability (HRV).
The system determines whether the driver is drowsy based on HRV measurements [21, 22]. Additionally, some studies
have utilized electrooculogram (EOG) signals collected through electrodes attached to the skin surrounding the eyes
[23]. These approaches demonstrate the diverse range of wearable solutions that have been developed to monitor driver
alertness and ensure road safety.

Alternatively, some studies have relied on computer vision techniques, which typically use a camera focused on the
driver’s face to detect signs of drowsiness. When drowsiness is identified, appropriate actions are taken to prevent
accidents. These studies have employed various techniques. For instance, one study utilized a CNN model in
combination with the supervised Karolinska Sleepiness Scale (KSS), a 9-point scale on which individuals self-assessed
their current level of alertness [24]. Another study implemented the ShuffleNet CNN architecture enhanced by the North
Goshawk Optimization (NGO) algorithm to improve the performance of the drowsiness detection model [25].

Similarly, a distinct technique employs Haar cascade classifiers to detect facial and eye signs. The captured images
were then extracted and analyzed using a specially designed CNN to classify whether the driver exhibited signs of
drowsiness [26]. In an alternative approach, images captured from a webcam were analyzed using OpenCV and
processed by a deep learning model to determine whether the driver’s eyes were open or closed [27]. In addition, a
system based on a CNN architecture was developed to extract complex features from images. This system also utilized
the NGO algorithm to optimize the parameters of the ShuffleNet model, whereas the extreme learning machine (ELM)
model was employed to identify driver drowsiness [25]. These studies highlight the potential use of computer vision
techniques in non-invasive driver drowsiness detection.

The actions taken after detecting driver drowsiness vary across studies. Some approaches focus on issuing warnings
to alert the driver, helping them recover from their drowsy state, and preventing accidents. For example, one study
implemented an alert system that included a Wi-Fi-based vehicle communication module paired with a mobile phone
application to deliver notifications [20]. Another study developed a system that provided timely warnings, such as
auditory or visual alerts, encouraging drivers to take corrective measures and reduce the risk of accidents [25].
Additionally, some studies relied solely on audio alerts, focusing primarily on the accurate detection of drowsiness
signals [26, 27]. Some researchers have argued that audio and visual alerts alone may not be sufficient to prevent
accidents. Consequently, vehicle intervention has been introduced to detect driver drowsiness, thereby enhancing safety
and better protecting drivers.

Page | 2691

Emerging Science Journal | Vol. 9, No. 5

These interventions vary across studies. For instance, one study developed a system recommending switching driving
control modes when the driver’s performance deteriorates due to fatigue or inattention [28]. Another study designed a
system utilizing OpenCV to detect signs of drowsiness while employing the Canny edge detection algorithm to ensure
that the vehicle remained on its intended path [29]. Additionally, one study proposed a system that includes an advanced
driver assistance system (ADAS) that takes control of the vehicle’s operations if the driver enters a drowsy state and
fails to respond to warnings [30]. These studies present various unique methods for detecting driver drowsiness.
However, achieving effective real-time drowsiness detection remains a significant challenge that requires further
innovation [31, 33]. Table 1 summarizes related works and the technologies they used to detect driver drowsiness and

improve road safety.

Table 1. Related Works

Ref Contribution Method Drawbacks
Daza et al The authors proposed a ground truth generation method based on the - CNN As the authors mention, the system is non-intrusive,
4] ’ supervised Karolinska Sleepiness Scale (KSS), which is a 9-point scale - KSS meaning it primarily focuses on detecting the driver’s
on which people are asked how alert they feel. - Simulation environment drowsiness.
The researchers developed a system that recommends changes in drivin i CoPilot relies on predefined rules or algorithms for car
> pedasy . g ; 9 - Naive approach control, which may not be adaptable to dynamic or
Koo et al. control modes if the driver’s performance deteriorates due to fatigue or . e A .
[28] inattention. Experiments on a real-world prototype of a self-driving car ~ AntiSleep complex driving situations. Moreover, it may lack the
- =X : prototyp 9 - CoPilot ability to handle unexpected scenarios or effectively
showed the success of their technology. -) h
respond to real-time changes in the environment.
- . . . Eye-blink sensors rely on the detection of eye
Madhuri & The model uses recognition and av0|d§1nce_ alg_or_lth_ms to auton_omously - Arduino IDE movements and blink patterns as indicators of
. brake and avoid obstructions. Congestion is minimized by a driver alert . . B
UmaMaheswari S i . A - Eye-blink sensor drowsiness. Factors like eye dryness, eye contact lens
system, which includes a Wi-Fi-based vehicle communication module . o NS
[20] : o - Threshold proximit usage, or individual variations in eye movement patterns
and a mobile phone application. p y o
can affect the reliability and accuracy of the sensor.
I The researchers developed a drowsiness detection algorithm that 5 0~ If drowsiness is detected, the car slows down
Thulasimani et S . . penCV S S . -
analyzes several characteristics, such as closing the eyes, yawning, and . automatically; however, this is not applicable in very
al. [29] - Canny edge detection

head tilting, to evaluate the degree of driver drowsiness.

many situations.

An approach was presented that involves using eye feature extraction - CNN While using an alarm to wake the driver can alert them
Ahmed et al. [26] techniques, such as eye closure duration, to indicate driver fatigue and - OpenCV to potential drowsiness, relying solely on an alarm may
drowsiness. - Alarm not always be effective.
- CNN
The authors used machine learning techniques, especially convolutional _ gcg Only an alarm is activated after drowsiness is detected
Parashar & neural networks (CNNs), to predict the driver’s state and emotions, thus - OpenCV (i.e., there is no interference with vehicle control).The
Jadaun [21] improving road safety. In addition, they used electrocardiogram (ECG) P researchers used many technologies to detect drowsiness,
signals as part of the psychological system to detect drowsiness. - TensorFlow which may have led to adverse results.
- Keras
Physiological measures such as heart rate variability (HRV) have been ;he researcr;]e_rsh l.Jsed a welejlrag:e fc hest ban? to monitor
Luetal. proposed as a potential solution for detecting drowsiness, even in eart rate, w nen is not applicable or norma use.
O : ' - HRV The work did not depend on traditional methods for
[22] automated driving scenarios. The authors used data from real road d - leepi h drivi f
driving trials involving 43 participants e_tectlng sleepiness, such as driving performance or
' driver behavior.
. . - CNN . - - .
Guptaetal. The model classified whether the driver’s eyes were open or closed to Only an alarm is activated after drowsiness is detected
P ; - OpenCV : P ; h :
[27] indicate drowsiness. K (i.e., there is no interference with vehicle control).
- Keras
The extreme learning machine (ELM) model was used to identify driver
v . drowsiness. After identifying driver drowsiness, the system sent timely - ShuffleNet They depend on auditory and visual warnings to bring the
ang & Yi : - - - . . - o P
25] warnings, such as auditory or visual warnings, encouraging drivers to - NGO driver out of a drowsy state, which is not sufficient in
take remedial action and avoid possible accidents. The model attained . g many situations.
97.05% accuracy and a computational time of 0.60 seconds.
The proposed system analyzes electrooculogram (EOG) signals and
Belesetal. images of the driver’s eye. The warning system includes components - EOG sensor There is no specific time between the alarm activation and
[23] that recognize, analyze, and make judgments based on the driver’s - Fuzzy logic algorithm the switch to the autonomous driving mode.

attention level.

Our research aims to address these challenges by leveraging advanced machine-learning techniques, such as
convolutional neural networks (CNNs), in combination with OpenCV libraries. This approach delivers a robust and
reliable solution for detecting drowsiness and monitoring a driver’s state. While some related works achieved a
commendable execution time of 0.6 seconds for computation-intensive tasks, our system significantly improves this,
achieving an execution time as low as approximately 0.007 seconds. Furthermore, unlike certain studies that relied on
wearable devices to detect drowsiness, our approach utilizes an Al-powered camera directed at the driver’s face. This
makes our system more practical, user-friendly, and widely applicable than previous systems.

3- Methodology

The primary objective of this study is to prevent accidents caused by driver drowsiness through the development of
an Advanced Driver Assistance System (ADAS). This system integrates CNNs to ensure that the vehicle remains on its
path while issuing control actions to safely decelerate and stop the car [32]. Additionally, our ADAS leverages OpenCV’s
pretrained Haar cascade classifiers in conjunction with the Viola-Jones algorithm for drowsiness detection. Figure 4
illustrates the integration of all project components.

Page | 2692

Emerging Science Journal | Vol. 9, No. 5

__ﬂ:

DC Speed Motor

Steering Stepper
Motor

e AN
,/ Acamera Xy
// forobject
/ RIS 3
4/ detectionin N

/ i \
/ the road using N

24 CNN N

Figure 4. Integration of All Project Components within the ADAS

The FPGA receives images of the driver’s face from the camera, which are then analyzed using OpenCV -pretrained
classifiers to detect the driver’s face and eyes. An alarm connected to the FPGA was triggered if the algorithm detected
signs of drowsiness, and the autonomous stopping system was activated if the driver did not respond in time. In this case,
the FPGA sent control signals to the steering stepper motor and the DC speed motor to adjust the vehicle’s direction and
speed, ensuring a safe stop. The proposed system met real-time requirements while optimizing power consumption
through the hardware-based FPGA solution. Figure 5 outlines the primary steps of the autonomous driving system and
illustrates the logical flow of data and control signals.

Yes

L 3

Stopping
system will
be activated,
The alarm
will stay
turned on

Face and eyes
detection
using OpenCy
pretrained
classifiers

A sign of
drowsiness is
detected

A sign of
drowsiness is
detected

Driver
wakeup

Alarm turned
on

Figure 5. The core logic of the autonomous driving system

The implementation of the ADAS framework begins by collecting biometric data, such as eye features, from the
driver to feed into the ADAS. OpenCV’s pretrained Haar Cascade classifiers are then used to analyze the data and
perform the eye detection process. Subsequently, the file containing these classifiers is passed to the Viola-Jones
algorithm for verification. This verification step is conducted outside of the Vivado application using C++.

Once the detection process is confirmed to operate correctly, the same file is processed using a specific Python script
to extract the features of the classifiers. This intermediate step is necessary because Vivado HLS cannot directly accept
the classifier file format. The extracted features are organized into matrices, which are then passed to the Viola-Jones
algorithm within the Vivado tool to complete the eye detection process and implement the drowsiness detection
algorithm.

In parallel with detecting a driver’s drowsiness, the ADAS self-driving system may need to perform a safe stop. This
functionality begins by training the model on a self-collected dataset of over 50,000 images. Once trained, the model is
exported as a Keras file, effectively as a pretrained model. This file is then tested in the Udacity simulator to verify that
it correctly adjusts the car’s direction and speed. Following successful validation, the same Keras file is processed
through a Python script to extract the model’s weights and biases. These extracted values are subsequently passed to
Vivado for implementation in the self-driving algorithm. This extraction step is essential, as Vivado does not support
direct input of Keras file formats. Once all components are implemented in Vivado, the register transfer level (RTL)
representation of the design is generated. Figure 6 provides a detailed overview of the interconnection and execution of
these steps. More details about the ADAS’s components are explained in the following subsections.

Page | 2693

Emerging Science Journal | Vol. 9, No. 5

h
<

OpenCV pre-trained
Haar Cascade
classifiers XML file

</>

\
L. ,_J A python script
—1 for extracting

Drowsiness
Haar features

Detection
Algorithm

v
=

Vivado™ HLS

rsvs : —

p "d An FPGA
applie

Pr -

v

F
@
—

F

b 4

<[>

Udacity € ey | A\ python script
simulator for extracting
CNN weights
and biases
O
o,/ 0
0P Lo
o0
Autonomous
Driving CNN
model

Figure 6. Implementation of All Components in the ADAS Framework

Algorithm 1. Dynamic Threshold Value Technique for Real-Time Eye State Detection

function eyesStateCheck takes an image (img)

Initialize threshold Percentage to 1.4
Initialize totalPixelCount to 480 * 640

Set eye pixels to 0
For each row i in img
For each column j in img
if img[i][j] equals 255 then:
increment eye pixels by 1
Calculate eye persent as eye pixels * totalPixelsCount * 100.0
If eye percentage is less than the threshold percentage
Return true (indicates drowsiness)

Else
Return false (indicates not drowsy)

Algorithm 1 provides a simplified representation of the dynamic threshold percentage technique. It dynamically
evaluates whether the eyes are open or closed by comparing the percentage of white pixels (eye area) to a predefined
threshold (1.4%). If the calculated percentage is below the threshold, the system interprets this as a closed-eye state,

indicating potential drowsiness.

Page | 2694

Emerging Science Journal | Vol. 9, No. 5

The drowsiness detection system is tested under various conditions, including scenarios involving head tilts and
drivers wearing clear eyeglasses (excluding tinted or shaded lenses). Images 14 in Figure 7 demonstrate the system’s
ability to detect drowsiness, both in normal situations and when the driver is wearing spectacles. Vivado HLS
implementation begins by initializing a file called features.h, which contains arrays holding the classifier feature values.
These features are crucial in detecting the driver’s eyes. To handle low-light environments, where facial features may
not be adequately captured—we propose integrating a light sensor with the camera module. This sensor can measure
ambient light levels and trigger a controlled illumination source to enhance visibility when needed. However, handling
scenarios involving excessive or direct lighting remains a current limitation and will be explored in future research.

The design is then bit-streamed onto an FPGA, which is integrated with other vehicle components to execute the
functionalities of the ADAS framework. Of note, the Udacity simulator is used solely for results verification and can be
skipped once all results are confirmed to be consistent and reliable.

3-1-Drowsiness Detection

As previously discussed, the proposed method reliably detects driver drowsiness by integrating multiple tools and
libraries, including the Viola-Jones algorithm, OpenCV-pretrained Haar cascade classifiers, and Python scripts. The
ADAS represents the analyzed image as a matrix of pixels. A widely recognized technique known as the dynamic
threshold value was employed for drowsiness detection [33]. This technique determines whether the driver is awake by
analyzing the eye region within the captured image. Specifically, the number of pixels corresponding to the eye segment
was calculated and expressed as a percentage of the total number of pixels in the image matrix. According to related
studies by Valcan & Gaianu [34], and Kim et al. [35], the eyes typically constitute 4% to 5% of the face, whereas the
face itself accounts for approximately 30% to 40% of the total image area, depending on the camera’s distance and angle.
The system determines the driver’s state by comparing this percentage with a predefined threshold value so that
drowsiness can be detected accurately.

Figure 7. Implementation of All Components in the ADAS Framework

3-2- Alarm System

The audio alarm employed to wake the driver from a drowsy state operated continuously until the driver regained
alertness. The autonomous driving system was activated if the driver failed to respond to an alarm within 4.43 seconds
[36]. During self-driving mode, the alarm continued to sound to wake the driver. Once the driver awoke, the alarm ceased
and the car transitioned back to manual operation.

Algorithm 2 outlines the functionality of the alarm system. The Boolean output (true or false) from this function can
be connected to the FPGA output pin. This output pin can either interface with a digital-to-analog converter (DAC) to
connect the FPGA to an alarm or directly link to specific alarm types that do not require a DAC for FPGA compatibility
[37]. This pseudocode outlines a clear process for making real-time decisions about whether to alert the driver or activate
safety protocols, ensuring a balance between driver engagement and autonomous intervention.

Page | 2695

Emerging Science Journal | Vol. 9, No. 5

Algorithm 2. Alarm System Pseudocode for Drowsiness Intervention and Autonomous Control

function AlarmSystem (drowsiness detected, alarm active)

if drowsiness detected and not alarm active then:
Set alarm active to true

Start timer
if alarm active and timer < 4.43 seconds then:
wait for response from driver
if response received then:
Stop alarm
Reset timer
Set Driver awake to true
eles if timer >= 4.43 seconds then:
Activate autonomous driving
Continue alarm
Wait for Driver to wake up
if driver wake up then:
Deactivate autonomous driving
Set alarm active to false

Reset timer

3-3- Autonomous Driving System

The autonomous driving system was designed to maintain the vehicle’s position on the road while gradually slowing
down to ensure a safe stop. When the autonomous driving mode is activated, the CNN model processes visual input from
the vehicle’s cameras. Based on the model’s analysis of the input, the model generates control signals to regulate the
car’s speed and direction [38]. To evaluate the model’s ability to respond to input images and appropriately adjust the
vehicle’s speed and direction, we conducted tests using the Udacity simulator [39], as illustrated in Figure 8.

- —

Figure 8. Evaluation of the trained model within the Udacity simulator environment

3-4-Vivado Implementation

Certain adaptations are necessary when working with the Vivado HLS when implementing the algorithms required
for the system. For the drowsiness detection algorithm, Vivado provides a header file named hls_video_haar.h, which
includes all classes and functions required to implement the Viola-Jones algorithm for face and eye detection. Once a
driver’s face and eyes are detected, the drowsiness detection algorithm is activated to identify any signs of drowsiness.
After the CNN model was trained, the weights and biases of the autonomous stopping system in the Vivado HLS were
exported using a Python script, which wrote them in a text file. These values were then transferred from the text file into
matrices in Vivado, where they were used as inputs for the autonomous driving algorithm. This step was necessary
because Vivado does not directly accept Keras files (pretrained models).

Page | 2696

Emerging Science Journal | Vol. 9, No. 5

For the autonomous driving algorithm, a separate function was created for each layer of the CNN. Each function
processed the output image from the function of the previous layer, except for the first layer, which directly took the
input stream from the camera. Below is a detailed explanation of the layer specific functions used in the autonomous
driving algorithm:

e Convolutional layer functions (convl, conv2, conv3, conv4, and convb): These functions contain the learned
filters responsible for extracting features from the input stream. During inference, the convolutional layers apply
these filters to the new input data to extract relevant features learned during training. Figure 9 depicts an example
of the implementation of the convl function.

o Flatten layer function (flattened): After the final convolutional layer, the multi-dimensional feature maps are
flattened into a one-dimensional vector. This step is essential because fully connected (dense) layers expect a one-
dimensional input.

¢ Dense layer functions (densel, dense2, dense3, and dense4): These functions take the flattened feature vector and
the output of the flattened layer and perform additional processing to make a final prediction. The weights in these
layers are adjusted during training to map the extracted features to the desired outputs, such as the steering angle
and throttle control.

o Activation functions (e.g., ReLU): Activation functions are applied after each layer to introduce nonlinearity into
the model, enabling it to learn and perform more complex tasks.

In the implementation of the convl function, as shown in Figure 9, the weights and biases of the pretrained CNN
model, along with the input stream from the camera, are passed to the function. The learned filters, utilizing the weights
and biases, were applied to the input stream to extract the relevant features. At the end of the function, the ReLU
activation function is used to introduce nonlinearity into the model.

#define CONV1_BUFFER_SIZE (IMAGE_SIZE * IMAGE_CHANNELS * (CONV1_KERNEL_SIZE -1) + CONV1_KERNEL_SIZE * IMAGE_CHANNELS)

voild convl(hls::stream<float24_t> &out, hls::stream<float24_t> &in, float24_t weight[CONV1_KERNEL_SIZE][CONV1_KERNEL_SIZE]
[CONV1_CHANNELS] [CONV1_FILTERS],float24_t bias[CONV1_BIAS_SIZE]) {

int i, j, k, filter;

float24_t sum, placeholder;

int row_offset, col_offset, channel_offset;

hls::LineBuffer<CONV1_BUFFER_SIZE, 1, float24_t> conv_buff;

for (i = 0; i < CONV1_BUFFER_SIZE; i++) {
if (in.empty() == 0) {
in >> placeholder;
conv_buff.shift_up(0);
conv_buff.insert_top(placeholder, 0);

}
for (1 = 0; < (IMAGE_SIZE CONV1_KERNEL_SIZE + 1); i += CONV1_STRIDE)
conv_layerl_label9: for (j = 0; j < (IMAGE_SIZE - CONV1_KERNEL_SIZE + 1); j += CONV1_STRIDE) {
conv_layerl_label2: for (filter = 0; filter < CONV1_FILTERS; filter++) {
sum = 0;

conv_layerl_label6: for (row_offset = 0; row_offset < CONV1_KERNEL_SIZE; row_offset++)
conv_layerl_label7: for (col_offset = 0; col_offset < CONV1_KERNEL_SIZE; col_offset++)
conv_layerl_label8: for (channel_offset = 0; channel_offset < CONV1_CHANNELS; channel_offset++) {
int t1, t2;
static float24_t vall, val2;
tl = row_offset * IMAGE_SIZE * IMAGE_CHANNELS;
t2 = col_offset * IMAGE_CHANNELS;
vall = conv_buff.getval(tl + t2 + channel_offset, 0);
val2 = weight[row_offset][col_offset][channel_offset][filter];
sum += vall * val2;
}
out << relu(sum + bias[filter]);

}

if ((j + CONV1_STRIDE < (IMAGE_SIZE - CONV1_KERNEL_SIZE + 1))) {
conv_layerl_labell: for (int p = 0; p < IMAGE_CHANNELS; p++)
if (in.empty() == 0) {
in >> placeholder;
conv_buff.shift_up(0);
conv_buff.insert_top(placeholder, 0);
}
} else if ((i1 + CONV1_STRIDE < (IMAGE_SIZE - CONV1_KERNEL_SIZE + 1))
&% (j + CONV1_STRIDE >= (IMAGE_SIZE - CONV1_KERNEL_SIZE + 1)))
conv_layerl_label®: for (int p = 0; p < CONV1_KERNEL_SIZE * IMAGE_CHANNELS; p++)
if (in.empty() == 0) {
in >> placeholder;
conv_buff.shift_up(0);
conv_buff.insert_top(placeholder, 0);

Figure 9. Implementation of Convolution Layer 1 Function

Page | 2697

Emerging Science Journal | Vol. 9, No. 5

4- Performance and Resource Analysis

Initially, the results and discussion of each system component are addressed individually. Following this, we
showcase the results and analysis of the entire system after integrating its components to function cohesively. Each
function has multiple solutions, and each solution incorporates directives aimed at improving the performance or
reducing FPGA resource utilization. Finally, the most suitable solution for the project was selected.

4-1- Drowsiness Detection System

After the synthesis process was run for the first solution of this function, a report showing the resources that this
function needed to be executed in an FPGA was generated (Table 2). The product family for this solution is Vertix7, and
the target device is xc7vx690t-fig1761-2. The report also shows the latency and the time (in nanoseconds) taken to
execute this function in an FPGA (Table 3).

Table 2. Drowsiness Detection Function Resources for Solution 1

Resources Quantity used Percent
BRAM18K 0 0%
DSB84E 11 ~0%
FF 2925 ~0%
LUT 4924 1%
URAM 0 0%

Table 3. Drowsiness Detection Function Timing and Latency for Solution 1

Timing Latency
(Clock period in nanoseconds) (Clock Cycles)
Target Estimated Min Max
10 ns 8.581ns 617792 617792

As in Table 2, the amount of resources used in this solution indicates that it is a compute-intensive problem. Still,
there is a gap between the used and available resources, which we tried to reduce using another device in the next
solution. We also tried to reduce the estimated timing, which was our main concern. In the second solution, we reduced
the available resources by changing the target device into xczu2eg-sfvc784-2LV-e from the zynquplus family; the
difference is apparent in Table 4. The resources used were almost the same as those used in the previous solution. The
report also provides the latency and execution time (in nanoseconds) required to run this function on an FPGA, as
presented in Table 5. The execution time achieved satisfies the real-time requirements, as the result of 7.998 ns is below
the target time of 10 ns.

Table 4. Drowsiness Detection Function Resources for Solution 2

Resources Quantity used Percent
BRAM18K 0 0%
DSB84E 11 4%
FF 2973 3%
LUT 4914 10%
URAM 0 0%

Table 5. Drowsiness Detection Function Timing and Latency for Solution 2

Timing Latency
(Clock period in nanoseconds) (Clock Cycles)
Target Estimated Min Max
10ns 7.998 ns 617793 617793

4-2- Stopping System

Before discussing the Vivado solutions for the stopping system function, the results of the validation loss after training
the CNN maodel are presented. The loss curves for the model shown in Figure 10 illustrate a consistent decrease in
training and validation losses. This trend indicates that the model learned effectively from the data. Furthermore, the
validation loss converged closely with the training loss, suggesting that the model generalizes well with the unseen data.
Notably, no significant increase occurred in validation loss, which typically results in signal overfitting.

Page | 2698

Emerging Science Journal | Vol. 9, No. 5

Loss Curves
0.2 -

0.18 - Training Loss

0.16 + Validation Loss
0.14 A

0.12 -
0.1 A
0.08
0.06 -
0.04 -
0.02 1

Loss

Epoch

Figure 10. Model Loss Curves

The first Vivado solution for this function shows that this function uses a vast number of resources, indicating that it
is a compute-intensive problem requiring many computations to be solved. Table 6 shows the number of resources used
for the first solution of this function. For this solution, the product family is Vertix7, and the target device is xc7vx485t-
ffgl157-1. The report also shows the latency and the time (in nanoseconds) taken to execute this function in an FPGA
(Table 7).

Table 6. Stopping System Function Resources for Solution 1

Resources Quantity used Percent
BRAM18K 270 13%
DSB84E 14 = 0%
FF 52260 8%
LUT 13617 4%
URAM 0 0%

Table 7. Stopping System Function Timing and Latency for Solution 1

Timing Latency
(Clock period in nanoseconds) (Clock Cycles)
Target Estimated Min Max
10 ns 8.522 ns 6720346 6728346

As previously mentioned, several optimization techniques have been employed to enhance performance by
incorporating the proposed directives to achieve a high-performance, optimized design. This process was repeated for
each segment of the code to utilize resources effectively and create an efficient implementation. Table 8 presents the
resources utilized to implement this component of the ADAS solution, and Table 9 displays the execution time results.
The execution time of 8.221 ns is below the target threshold of 10 ns, demonstrating the efficiency of the optimized
design.

Table 8. Stopping System Function Resources for Solution 2

Resources Quantity used Percent
BRAM18K 184 15%
DSB84E 14 = 0%
FF 51984 10%
LUT 13661 5%
URAM 0 0%

Table 9. Stopping System Function Timing and Latency for Solution 2

Timing Latency
(Clock period in nanoseconds) (Clock Cycles)
Target Estimated Min Max
10 ns 8.221ns 4555021 4563021

Page | 2699

Emerging Science Journal | Vol. 9, No. 5

4-3- End-to-End System Design

Before the components of the ADAS framework were integrated, each module was individually tested and verified
to ensure proper functionality. Following this, all components were integrated into a complete ADAS, and the entire
design was synthesized on the target FPGA computing platform xc7vx485t-ffg1157-1 from the vertix7 product family in
the first solution for the end-to-end system. Table 10 shows the overall resources needed for the first solution of the end-
to-end system, while Table 11 shows the latency and the time (in nanoseconds) taken execution.

Table 10. End-to-End System Resources for Solution 1

Resources Quantity used Percent
BRAM18K 258 12%
DSBB84E 25 = 0%
FF 51039 8%
LUT 18197 5%
URAM 0 0%

Table 11. End-to-End System Timing and Latency for Solution 1

Timing Latency
(Clock period in nanoseconds) (Clock Cycles)
Target Estimated Min Max
15ns 12.175ns 617788 5180809

The number of BRAM_18K used, which is responsible for storing the data, increased, while the other resources
remained in the same range. In the second solution of the end-to-end system, the number of flip-flops and lookup tables
increased slightly, while the BRAM_18K and DSPs remained the same (see Table 12). To improve the performance
estimates, we reduced the target time. In this situation, Vivado tried to fit the target time into the synthesis process, and
it succeeded most of the time. Therefore, we set the target time to 15 nanoseconds in our attempt to reduce the estimated
time. This attempt was successful, as the estimated time was reduced by 4.301 nanoseconds (see Table 13).

Table 12. End-to-End System Resources for Solution 2

Resources Quantity used Percent
BRAM18K 258 12%
DSB84E 25 = 0%
FF 54425 8%
LUT 18217 6%
URAM 0 0%

Table 13. End-to-End System Timing and Latency for Solution 2

Timing Latency
(Clock period in nanoseconds) (Clock Cycles)
Target Estimated Min Max
15ns 12.746 ns 617788 5180809

Table 14 provides the overall resource utilization after all optimization techniques were applied. The table
demonstrates the feasibility of creating a real-time solution for future automotive applications. In addition, Table 15
highlights the execution time requirements, showing that the achieved clock cycle time significantly outperformed the
target. This confirms that the proposed ADAS framework satisfies real-time operational requirements and is well-suited
to address driver drowsiness. Because the available computing resources on the target FPGA are sufficient to synthesize
the entire design, the focus shifted to optimizing the execution time as a priority, followed by resource usage
optimization.

Table 14. End-to-End System Resources for Solution 3

Resources Quantity used Percent
BRAM18K 184 29%
DSB84E 25 1%
FF 54435 11%
LUT 18188 7%
URAM 0 0%

Page | 2700

Emerging Science Journal | Vol. 9, No. 5

Table 15. End-to-End System Timing and Latency for Solution 3

Timing Latency
(Clock period in nanoseconds) (Clock Cycles)
Target Estimated Min Max
15ns 12.175ns 617788 5180809

5- Conclusion

This study aimed to develop a real-time solution for advanced driver assistance systems (ADAS) to prevent accidents
caused by driver drowsiness. The proposed solution is based on a high-speed FPGA computing platform using the Xilinx
Vivado HLS tool, which provides an efficient hardware-level vehicle acceleration environment. The proposed solution
integrates several technologies, including OpenCV libraries to provide validated features for face and eye detection,
trained CNN models for autonomous driving decisions, custom Python scripts for tasks such as extracting weights and
biases from the CNN model, and the Viola-Jones algorithm, which receives the extracted features and then locates the
face and eyes to detect signs of drowsiness and trigger an immediate alert to drivers. If the driver does not respond within
4.43 seconds, the autonomous driving algorithm takes over to maintain the vehicle’s position on the road while gradually
slowing it down to ensure a safe and controlled stop. Our system leveraged FPGA technology to achieve impressive
timing results, which is critical for real-time safety applications.

The main contribution of our work is that it shows that innovative use of FPGAs significantly reduces the execution
time of computationally intensive algorithms, ensuring real-time system operation. Nevertheless, several challenges still
need to be addressed in future research. The system is not prepared to handle images of a driver's face under low-light
conditions or when drivers wear shaded sunglasses. Additionally, although our ADAS framework effectively slows the
vehicle and keeps it on the road in emergencies, it does not have a self-parking feature, which would further enhance
vehicle autonomy and could be considered an important direction for future development and system improvement.

6- Declarations
6-1- Author Contributions

Conceptualization, A.A. and Z.M.; methodology, A.A., Z.M., AJ., and M.S.; software, A.A. and Z.M.; validation,
AA., ZM., Al., and M.S.; formal analysis, A.A. and Z.M.; investigation, A.A., AJ., M.S., and Z.M.; writing—original
draft preparation, A.A., AJ., M.S., and Z.M.; writing—review and editing, A.A., AJ., M.S., and Z.M.; visualization,
A.A.and Z.M.; supervision, A.A.; project administration, A.A. and A.J.; funding acquisition, A.A. and M.S. All authors
have read and agreed to the published version of the manuscript.

6-2- Data Availability Statement

The data presented in this study are available in the article.
6-3- Funding

The authors received no financial support for the research, authorship, and/or publication of this article.
6-4- Institutional Review Board Statement

Not applicable.

6-5- Informed Consent Statement

Not applicable.

6-6- Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this manuscript. In addition, the
ethical issues, including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double
publication and/or submission, and redundancies have been completely observed by the authors.

7- References

[1] Sutherland, C., Smallwood, A., Wootten, T., & Redfern, N. (2023). Fatigue and its impact on performance and health. British
Journal of Hospital Medicine, 84(2), 1-8. d0i:10.12968/hmed.2022.0548.

[2] Dinges, D. F. (1995). An overview of sleepiness and accidents. Journal of Sleep Research, 4(s2), 4-14. do0i:10.1111/j.1365-
2869.1995.th00220.x.

[3] NHTSA. (2021). Drowsy-driving. National Highway Traffic Safety Administration (NHTSA), Washington, United States.
Available online: https://www.nhtsa.gov/book/countermeasures-that-work/drowsy-driving (accessed on September 2025).

Page | 2701

Emerging Science Journal | Vol. 9, No. 5

[4] MDhealth (2023). Why falling asleep when driving happens and how to handle it. MDhealth, London, United Kingdom. Available
online: https://www.md-health.com/Falling-Asleep-While-Driving (accessed on September 2025).

[5] Arun, S., Murugappan, M., & Sundaraj, K. (2011). Hypovigilance warning system: A review on driver alerting techniques. 2011
IEEE Control and System Graduate Research Colloquium, 65-69. doi:10.1109/icsgrc.2011.5991831.

[6] Almomany, A., Al-Omari, A. M., Jarrah, A., Tawalbeh, M., & Alqudah, A. (2020). An OpenCL-based parallel acceleration of a
sobel edge detection algorithm using intel FPGA technology. South African Computer Journal, 32(1), 3-26.
d0i:10.18489/sacj.v32i1.749.

[7] Almomany, A., Ayyad, W. R., & Jarrah, A. (2022). Optimized implementation of an improved KNN classification algorithm
using Intel FPGA platform: Covid-19 case study. Journal of King Saud University - Computer and Information Sciences, 34(6),
3815-3827. doi:10.1016/j.jksuci.2022.04.006.

[8] Almomany, A., Jarrah, A., & Al Assaf, A. (2022). FCM Clustering Approach Optimization Using Parallel High-Speed Intel FPGA
Technology. Journal of Electrical and Computer Engineering, 2022, 1-11. doi:10.1155/2022/8260283.

[9] Almomany, A., Jarrah, A., & Al Assaf, A. (2023). Accelerating FCM Algorithm Using High-Speed FPGA Reconfigurable
Computing Architecture. Journal of Electrical Engineering & Technology, 18(4), 3209-3217. doi:10.1007/s42835-023-01432-z.

[10] Almomany, A., Sutcu, M., & Ibrahim, B. S. K. S. M. K. (2024). Accelerating electrostatic particle-in-cell simulation: A novel
FPGA-based approach for efficient plasma investigations. PLOS ONE, 19(6), e0302578. doi:10.1371/journal.pone.0302578.

[11] Husejko, M., Evans, J., & Rasteiro Da Silva, J. C. (2015). Investigation of High-Level Synthesis tools’ applicability to data
acquisition systems design based on the CMS ECAL Data Concentrator Card example. Journal of Physics: Conference Series,
664(8), 082019. doi:10.1088/1742-6596/664/8/082019.

[12] Abiodun, O. I, Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A. E., & Arshad, H. (2018). State-of-the-art in artificial
neural network applications: A survey. Heliyon, 4(11). doi:10.1016/j.heliyon.2018.e00938.

[13] Kattenborn, T., Leitloff, J., Schiefer, F., & Hinz, S. (2021). Review on Convolutional Neural Networks (CNN) in vegetation
remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 24—49. doi:10.1016/j.isprsjprs.2020.12.010.

[14] Zhigiang, W., & Jun, L. (2017). A review of object detection based on convolutional neural network. 2017 36" Chinese Control
Conference (CCC), 11104-11109. doi:10.23919/chicc.2017.8029130.

[15] Khan, M., Chakraborty, S., Astya, R., & Khepra, S. (2019). Face Detection and Recognition Using OpenCV. 2019 International
Conference on Computing, Communication, and Intelligent Systems (ICCCIS), 116-119. doi:10.1109/icccis48478.2019.8974493.

[16] Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. Proceedings of the 2001 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition. CVPR, 511-518. doi:10.1109/cvpr.2001.990517.

[17] Nixon, M. S., & Aguado, A. S. (2020). Image processing. Feature Extraction and Image Processing for Computer Vision, 83—
139, Academic Press, Cambridge, United States. doi:10.1016/b978-0-12-814976-8.00003-8.

[18] Dahirou, Z., Zheng, M., & Yuxin, M. (2020). Face Detection with Viola Jones Algorithm. 2020 7™ International Conference on
Information Science and Control Engineering (ICISCE), 602-606. doi:10.1109/icisce50968.2020.00130.

[19] Singh, V. K., Shrivastava, U., Bouayad, L., Padmanabhan, B., lalynytchev, A., & Schultz, S. K. (2018). Machine learning for
psychiatric patient triaging: An investigation of cascading classifiers. Journal of the American Medical Informatics Association,
25(11), 1481-1487. doi:10.1093/jamia/ocy109.

[20] Madhuri, K., & UmaMaheswari, B. (2019). Adaptive steering control and driver alert system for smart vehicles. Proceedings of
the 3 International Conference on Computing Methodologies and Communication, ICCMC 2019, 208-213.
doi:10.1109/ICCMC.2019.8819636.

[21] Parashar, D., & Jadaun, A. (2022). Driver drowsiness detection system using machine learning. YMER Digital, 21(05), 962—
965. doi:10.37896/ymer21.05/a8.

[22] Lu, K., Karlsson, J., Dahlman, A. S., Sjoqvist, B. A., & Candefjord, S. (2022). Detecting Driver Sleepiness Using Consumer
Wearable Devices in Manual and Partial Automated Real-Road Driving. IEEE Transactions on Intelligent Transportation
Systems, 23(5), 4801-4810. doi:10.1109/T1TS.2021.3127944.

[23] Beles, H., Vesselenyi, T., Rus, A., Mitran, T., Scurt, F. B., & Tolea, B. A. (2024). Driver Drowsiness Multi-Method Detection
for Vehicles with Autonomous Driving Functions. Sensors, 24(5), 1541. doi:10.3390/s24051541.

[24] Daza, I. G., Bergasa, L. M., Bronte, S., Javier Yebes, J., Almazén, J., & Arroyo, R. (2014). Fusion of optimized indicators from
advanced driver assistance systems (ADAS) for driver drowsiness detection. Sensors (Switzerland), 14(1), 1106-1131.
doi:10.3390/s140101106.

[25] Yang, E., & Yi, O. (2024). Enhancing Road Safety: Deep Learning-Based Intelligent Driver Drowsiness Detection for Advanced
Driver-Assistance Systems. Electronics (Switzerland), 13(4), 708—-726. doi:10.3390/electronics13040708.

Page | 2702

https://www.md-health.com/Falling-Asleep-While-Driving

Emerging Science Journal | Vol. 9, No. 5

[26] Ahmed, M. A., Hussein, H. A., Omar, M. B., & Hameed, Q. A. (2022). Real Time Driver Drowsiness Detection Based on
Convolution Neural Network. Journal of Algebraic Statistics, 13(2), 2006-2012.

[27] Gupta, A., Kumar, S., Kumar, R., & Partheeban, N. (2020). Driver drowsiness detection system with OpenCV & Keras. IOSR
Journal of Computer Engineering, 22(2), 12-18.

[28] Koo, Y., Kim, J., & Han, W. (2015). A method for driving control authority transition for cooperative autonomous vehicle. 2015
IEEE Intelligent Vehicles Symposium (1V), 394-399. doi:10.1109/ivs.2015.7225717.

[29] Thulasimani, L., Poojeevan, P., & Prithashasni, P. S. (2021). Real Time Driver Drowsiness Detection using OpenCV and Facial
Landmarks. The Journal of Contemporary Issues in Business and Government, 27(6), 649-664.
doi:10.47750/cibg.2021.27.06.054.

[30] Correia, A. P., Llanos, C. H., Carvalho, R. W. de, Alfaro, S. A., Koike, C., & Moreno, E. D. (2010). A Control Design Approach
for Controlling an Autonomous Vehicle with FPGAs. Journal of Computers, 5(3). doi:10.4304/jcp.5.3.360-371.

[31] Cong, J., Fang, Z., Lo, M., Wang, H., Xu, J., & Zhang, S. (2018). Understanding Performance Differences of FPGAs and GPUs.
2018 IEEE 26™ Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), 93-96.
doi:10.1109/fccm.2018.00023.

[32] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D., Monfort, M., Muller, U., Zhang, J.,
Zhang, X., Zhao, J., & Zieba, K. (2016). End to End Learning for Self-Driving Cars. doi:10.48550/arXiv.1604.07316.

[33] Asano, S., Maruyama, T., & Yamaguchi, Y. (2009). Performance comparison of FPGA, GPU and CPU in image processing.
2009 International Conference on Field Programmable Logic and Applications. doi:10.1109/fpl.2009.5272532.

[34] Valcan, S., & Gaianu, M. (2021). Ground truth data generator for eye location on infrared driver recordings. Journal of Imaging,
7(9), 162. doi:10.3390/jimaging7090162.

[35] Kim, D., Park, H., Kim, T., Kim, W., & Paik, J. (2023). Real-time driver monitoring system with facial landmark-based eye
closure detection and head pose recognition. Scientific Reports, 13(1), 18264. doi:10.1038/s41598-023-44955-1.

[36] Han,J. H., & Ju, D. Y. (2021). Advanced alarm method based on driver’s state in autonomous vehicles. Electronics (Switzerland),
10(22), 2796. doi:10.3390/electronics10222796.

[37] Ohkawa, T., Yamashina, K., Kimura, H., Ootsu, K., & Yokota, T. (2018). FPGA Components for Integrating FPGAs into Robot
Systems. IEICE Transactions on Information and Systems, E101.D(2), 363-375. doi:10.1587/transinf.2017rcp0011.

[38] Aladem, M., & Rawashdeh, S. A. (2021). A single-stream segmentation and depth prediction CNN for autonomous driving.
IEEE Intelligent Systems, 36(4), 79-85. doi:10.1109/MI1S.2020.2993266.

[39] Lade, S., Shrivastav, P., Waghmare, S., Hon, S., Waghmode, S., & Teli, S. (2021). Simulation of Self Driving Car Using Deep
Learning. 2021 International Conference on Emerging Smart Computing and Informatics (ESCI-2021), 175-180.
d0i:10.1109/esci50559.2021.9396941.

Page | 2703

