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Abstract 

Objectives: A systematic study on the general relativistic Poynting-Robertson effect has been 

developed so far by introducing different complementary approaches, which can be mainly divided 

in two kinds: (1) improving the theoretical assessments and model in its simple aspects, and (2) 

extracting mathematical and physical information from such system with the aim to extend methods 

or results to other similar physical systems of analogue structure. Methods/Analysis: We use these 

theoretical approaches: relativity of observer splitting formalism; Lagrangian formalism and 

Rayleigh potential with a new integration method; Lyapunov theory os stability. Findings: We 

determined the three-dimensional formulation of the general relativistic Poynting-Robertson effect 

model. We determine the analytical form of the Rayleigh potential and discuss its implications. We 

prove that the critical hypersurfaces (regions where there is a balance between gravitational and 

radiation forces) are stable configurations. Novelty/Improvement: Our new contributions are: to have 

introduced the three-dimensional description; to have determined the general relativistic Rayleigh 

potential for the first time in the General Relativity literature; to have provided an alternative, 

general and more elegant proof of the stability of the critical hypersurfaces. 
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1- Introduction 

The last four years have been witness of revolutionary discoveries in astrophysics, which have seen as protagonists 

these two significant events: (1) the first detection of gravitational waves from the binary black hole (BH) GW151226 

[1, 2] and then from the binary neutron star (NS) GW170817 [3] thanks to the LIGO and VIRGO collaborations; (2) 

the first imaging of the matter motion around the supermassive BH in the center of M87 Galaxy [4-9] thanks to the 

strong efforts spent on building the Event Horizon Telescope (EHT) and the synergetic cooperation between EHT and 

Black Hole Cam project. The achievement of such scientific milestones have increasingly motivated all research 

groups to improve the actual theoretical models, to validate Einstein theory or possible extension of it, when 

benchmarked with these new amount of powerful observational data. 

Generally, the motion of the matter around massive compact objects, as stellar NSs or BHs, or supermassive BHs, 

is approximated to be mainly geodetic. However, in view of the actual powerful observational capacities and facilities, 

it is important to take into account other small perturbing effects. In particular, when we consider the motion of 

relatively small-sized test particles (e.g., dust grains, gas clouds, meteors, accretion disk matter elements) around 

electromagnetic radiating sources (like type-I X-ray bursts on NS polar caps, boundary layer around a NS, or a hot 

corona around a BH) an important effect to be taken into account is the Poynting-Robertson (PR) effect [10, 11]. The 

forces acting on the test particle are: the gravitational field, directed toward the compact object and opposite to the 

radiation pressure, pointing outward, and also the PR effect. This phenomenon is triggered each time the radiation 
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field invests the test particle, raising up its temperature, which for the Stefan-Boltzmann law starts re-emitting 

radiation. In this model, the test particle is considered as an ideal black body in thermal equilibrium, meaning that all 

the absorbed energy is isotropically re-emitted. 

This process of absorption and remission of radiation generates a recoil force opposite to the test body orbital 

motion. This can be interpreted as an aberration effect in the test particle’s frame or also as an anisotropic re-emission 

in the star reference frame. It is important to note that radiation pressure and PR effect can be split in the classical 

frame, while in GR frame they constitute one single function, which must satisfy the relativistic covariance principle, 

in order not to run into paradoxes. However, the PR effect can be seen as the action of an electromagnetic field on a 

moving body. Such mechanism removes thus very efficiently angular momentum and energy from the test particle, 

forcing it to spiral inward or outward depending on the radiation field intensity. 

Such effect has been initially introduced in classical physics by Poynting in 1903 [10], and then extended in special 

relativity by Robertson in 1937 [11], with several applications to the Solar system [12]. From 2009, it has been 

extended in GR by Bini and collaborators within the two-dimensional (2D) equatorial plane of the Kerr spacetime [13, 

14]. Recently, it has been extended also in the three-dimensional (3D) space [15-17]. 

Our aim is to investigate such phenomenon under different perspectives, in order to extract more peculiar 

information, and for developing new valuable mathematical tools, which can be broadly applied to other dissipative 

systems in GR. in this paper, we would like to revise our new approaches and the consequent implications. The article 

is structured as follows: in Sec. 2, we concentrate on the PR effect model, showing how to pass from the 2D 

description to the 3D case, discussing the further implications and new advantages; in Sec. 3, we treat the PR effect as 

a dissipative system under a Lagrangian formalism, determining analytically the Rayleigh dissipation function through 

a new procedure; in Sec. 4, we study the PR effect as a dynamical system, proving that the critical hypersurfaces 

(regions where gravitational and radiation forcese balance) are stable configurations within Lyapunov theory. Finally, 

in Sec. 5 the conclusions are drawn. 

2- From the 2D to 3D General Relativistic PR Effect Model 

2-1- Geometry and Strategy 

 We consider a rotating compact object, whose outside spacetime is described by the Kerr metric. We use the 

signature (−, +, +, +) for the metric, and geometrical units for gravitational constant 𝐺, and speed of light 𝑐 (𝑐 = 𝐺 =

1). The metric line element, 𝑑𝑠2 = 𝑔𝛼𝛽𝑑𝑥𝛼𝑑𝑥𝛽, expressed in Boyer-Lindquist coordinates, parameterized by mass 𝑀 

and spin 𝑎, reads as [18]. 

d𝑠2 = (
2𝑀𝑟

Σ
− 1) d𝑡2 −

4𝑀𝑟𝑎sin2𝜃

Σ
d𝑡d𝜑 +

Σ

Δ
d𝑟2 + Σd𝜃2 + 𝜌sin2𝜃d𝜑2 (1) 

  

Where Σ ≡ 𝑟2 + 𝑎2cos2𝜃, Δ ≡ 𝑟2 − 2𝑀𝑟 + 𝑎2, and 𝜌 ≡ 𝑟2 + 𝑎2 + 2𝑀𝑎2𝑟sin2𝜃/Σ. 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1. Geometries of the 2D (left panel) and 3D general relativistic PR effect models (right panel). 

The strategy for determining the equations of motion of a test particle under the general relativistic PR effect is 

obtained by following the initial approach followed by Poynting and Robertson. We write first the equations in the test 

particle rest frame through the zero angular momentum observers (ZAMOs), considered at the position occupied by 

the test particle at each instant of time. Then, we transform them in the static observer frame located at infinity. The 

successful technique exploited to achieve such objective is reached through the relativity of observer splitting 

formalism. This represents a powerful method in GR to distinguish the gravitational effects from the fictitious forces 

arising from the relative motion of two non-inertial observers [19-22]. Such formalism allows us to derive the test 

particle equations of motion in the reference frame of the static observer located at infinity as a set of coupled first 

order ordinary and highly-linear differential equations [13-16]. 
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The orthonormal frame adapted to the ZAMOs is [13-16]. 

𝑒�̂� ≡ 𝑛 =
(𝜕𝑡−𝑁𝜑𝜕𝜑)

𝑁
,    𝑒�̂� =

𝜕𝑟

√𝑔𝑟𝑟
, 𝑒�̂� =

𝜕𝜃

√𝑔𝜃𝜃
,    𝑒�̂� =

𝜕𝜑

√𝑔𝜑𝜑
                                                        (2) 

Where 𝑁 = (−𝑔𝑡𝑡)−1/2 and 𝑁𝜑 = 𝑔𝑡𝜑/𝑔𝜑𝜑. The nonzero ZAMO kinematical quantities in the decomposition of the 

ZAMO congruence are acceleration 𝑎(𝑛) = ∇𝑛𝑛, expansion tensor along the �̂�-direction 𝜃�̂�(𝑛), and the relative Lie 

curvature vector 𝑘(L𝑖𝑒)(𝑛) (see Table 1 in [15], for their explicit expressions). We denote scalar and tensors measured 

in the ZAMO frame respectively followed by (𝑛) and by a superposed hat. 

2-2- Radiation Field 

The radiation field is modeled as a coherent flux of photons traveling along null geodesics on the Kerr metric. We 

consider that at each instant of time a single photon, from an emitting surface around the central compact object, 

reaches the test particle in its position. The related stress-energy tensor 𝑇𝜇𝜈 is given by [15, 16]. 

𝑇𝜇𝜈 = ℐ2𝑘𝜇𝑘𝜈 ,        𝑘𝜇𝑘𝜇 = 0,       𝑘𝜇∇𝜇𝑘𝜈 = 0  (3) 

Where ℐ is a parameter linked to the radiation field intensity and 𝑘 is the photon four-momentum field, where the last 

two equations express the condition of null geodesic. In Kerr spacetime, we have that the energy 𝐸 = −𝑘𝑡, the angular 

momentum with respect to the polar axis 𝐿𝑧 = 𝑘𝜑, the Carter constant 𝒬, and the module of the photons 𝑘𝜇𝑘𝜇 = 0 are 

conserved along its trajectory. 

Splitting 𝑘 with respect to the ZAMO frame (see Figure 1), we obtain [13-16]  

𝑘 = 𝐸(𝑛)[𝑛 + �̂�(𝑘, 𝑛)] (4) 

�̂�(𝑘, 𝑛) = sin𝜁sin𝛽  𝑒�̂� + cos𝜁 𝑒�̂� + sin𝜁 cos𝛽 𝑒�̂� (5) 

Where 𝐸(𝑛) is the photon energy measured in the ZAMO frame, �̂�(𝑘, 𝑛) is the photon spatial unit relative velocity 

with respect to the ZAMOs, 𝛽 and 𝜁 are the two angles measured in the ZAMO frame in the azimuthal and polar 

direction, respectively. The radiation field in the 3D model is governed by the two impact parameters (𝑏, 𝑞) , 

associated respectively with the two emission angles (𝛽, 𝜁). The radiation field photons are emitted from a spherical 

rigid surface having a radius 𝑅⋆ centered at the origin of the Boyer-Lindquist coordinates, and rotating rigidly with 

angular velocity Ω⋆. In the 2D model, the motion occurs only in the equatorial plane 𝜃 = 𝜋/2, where we have only 

one impact parameter 𝑏 related to the only emission angle 𝛽 in the ZAMO frame. We say that for 𝑏 = 0 the radiation 

field is radial, otherwise it is a general radiation field (see Figure 1). 

The photon impact parameters are [14, 16]  

𝑏 ≡
𝐿

𝐸
= − [

gtφ+gφφΩ⋆

gtt+gtφΩ⋆
]

𝑟=𝑅⋆

 (6) 

𝑞 ≡
𝒬

𝐸2 = [𝑏2cot2𝜃 − 𝑎2cos2𝜃]𝑟=𝑅⋆
 (7) 

Both relations are evaluated at the emitting surface radius 𝑅⋆. For the azimuthal photon impact parameter 𝑏, we 

have that 𝑏 = 𝑏(𝑅⋆, Ω⋆, 𝜃, 𝑎), where 𝜃 is the polar angle occupied by the test particle during its motion. Instead, for the 

latitudinal photon impact parameter 𝑞, it fixes the Carter constant 𝒬 for a given photon trajectory, and depends only on 

the test particle’s polar angle 𝜃 and the value assumed by 𝑏. 

The related photon angles in the ZAMO frame are [16]. 

cos𝛽 =
𝑏𝑁

√𝑔𝜑𝜑(1+𝑏𝑁𝜑)
,        𝜁 = 𝜋/2  (8) 

By imposing that the photon must hit the test particle in the equatorial plane of the ZAMO frame, even at infinity, 

we substantially reduce the complexity of the problem, because everything is expressed in terms of one single 

parameter, which is astrophysically realistic. 

In both 2D and 3D models, from the conservation of the stress-energy tensor conditions (Bianchi identities), 

namely ∇𝜇𝑇𝜇𝜈 = 0, we are able to determine the parameter ℐ, which has the following expression [16]. 

ℐ2 =
ℐ0

2

√(𝑟2+𝑎2−𝑎𝑏)2−Δ[𝑞+(𝑏−𝑎)2]
  (9) 

Where ℐ0 is ℐ evaluated at the emitting surface. 

2-3- Equations of Motion 

A test particle moves with a timelike four-velocity 𝑈 and a spatial three-velocity with respect to the ZAMO frames, 
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𝝂(𝑈, 𝑛), which both read as (see Figure 1) [16]. 

𝑈 = 𝛾(𝑈, 𝑛)[𝑛 + 𝜈(𝑈, 𝑛)] (10) 

𝜈 = 𝜈(sin𝜓sin𝛼𝑒�̂� + cos𝜓𝑒�̂� + sin𝜓cos𝛼𝑒�̂�) (11) 

Where 𝛾(𝑈, 𝑛) ≡ 𝛾 = 1/√1 − ||𝜈(𝑈, 𝑛)||2  is the Lorentz factor, 𝜈 = ||𝜈(𝑈, 𝑛)|| , 𝛾(𝑈, 𝑛) = 𝛾 . We have that 𝜈 

represents the magnitude of the test particle spatial velocity 𝜈(𝑈, 𝑛), 𝛼 is the azimuthal angle of the vector 𝜈(𝑈, 𝑛) 

measured clockwise from the positive �̂� direction in the �̂� − �̂� tangent plane in the ZAMO frame, and 𝜓 is the polar 

angle of the vector 𝜈(𝑈, 𝑛) measured from the axis orthogonal to the �̂� − �̂� tangent plane in the ZAMO frame. 

We assume that the radiation-test particle interaction occurs through Thomson scattering, characterized by a 

constant momentum-transfer cross section 𝜎, independent from direction and frequency of the radiation field. We can 

split the photon four momentum (4) in terms of the velocity 𝑈 as [16]. 

𝑘 = 𝐸(𝑈)[𝑈 + �̂�(𝑘, 𝑈)]  (12) 

Where 𝐸(𝑈) is the photon energy measured by the test particle. The radiation force can be written as [16]. 

ℱ(𝑟𝑎𝑑)(𝑈)�̂� ≡ −�̃�ℐ2(𝑇�̂�
�̂�𝑈�̂� + 𝑈�̂�𝑇�̂�

�̂�𝑈�̂�𝑈�̂�) = �̃� [ℐ𝐸(𝑈)]2 �̂�(𝑘, 𝑈)�̂� , (13) 

Where 𝑚 is the test particle mass and the term �̃�[ℐ𝐸(𝑈)]2 reads as [16]. 

�̃�[ℐ𝐸(𝑈)]2 =
𝐴 𝛾2(1+𝑏𝑁𝜑)2[1−𝜈sin𝜓cos(𝛼−𝛽)]2

𝑁2√𝑅(𝑟)
  (14) 

Where  

𝑅(𝑟) = (𝑟2 + 𝑎2 − 𝑎𝑏)2 − Δ[𝑞 + (𝑏 − 𝑎)2]  (15) 

and with 𝐴 = �̃�[ℐ0𝐸]2 being the luminosity parameter, which can be equivalently written as 𝐴/𝑀 = 𝐿/𝐿E𝐷𝐷 ∈ [0,1] 
with 𝐿 the emitted luminosity at infinity and 𝐿E𝐷𝐷  the Eddington luminosity. The terms �̂�(𝑘, 𝑈)�̂�  are the radiation 

field components, whose expressions are [16]. 

�̂� �̂� =
sin𝛽

𝛾[1−𝜈sin𝜓cos(𝛼−𝛽)]
− 𝛾𝜈sin𝜓sin𝛼 (16) 

�̂��̂� = −𝛾𝜈cos𝜓  (17) 

�̂��̂� =
cos𝛽

𝛾[1−𝜈sin𝜓cos(𝛼−𝛽)]
− 𝛾𝜈sin𝜓cos𝛼 (18) 

�̂� �̂� = 𝛾𝜈 [
sin𝜓cos(𝛼−𝛽)−𝜈

1−𝜈sin𝜓cos(𝛼−𝛽)
] (19) 

Gathering all information together, it is possible to derive the resulting equations of motion for a test particle 

moving in a 3D space, which are [13-16]  

𝑑𝜈

𝑑𝜏
= −

1

𝛾
{sin𝛼sin𝜓[𝑎(𝑛)�̂� + 2𝜈cos𝛼sin𝜓 𝜃(𝑛)�̂�

�̂�
] +cos𝜓 [𝑎(𝑛)�̂� + 2𝜈cos𝛼sin𝜓 𝜃(𝑛)�̂�

�̂�
]} +

�̃�[Φ𝐸(𝑈)]2

𝛾3𝜈
�̂� �̂�   (20) 

𝑑𝜓

𝑑𝜏
=

𝛾

𝜈
{sin𝜓[𝑎(𝑛)�̂� + 𝑘(𝐿𝑖𝑒)(𝑛)�̂� 𝜈2cos2𝛼 +2𝜈cos𝛼sin𝜓  𝜃(𝑛)�̂�

�̂�
] −

sin𝛼cos𝜓[𝑎(𝑛)�̂� + 𝑘(𝐿𝑖𝑒)(𝑛)�̂� 𝜈2 +2𝜈cos𝛼sin𝜓 𝜃(𝑛)�̂�
�̂�

]} +
�̃�[Φ𝐸(𝑈)]2

𝛾𝜈2sin𝜓
[�̂� �̂�cos𝜓 − �̂��̂�𝜈] (21) 

𝑑𝛼

𝑑𝜏
= −

𝛾cos𝛼

𝜈sin𝜓
[𝑎(𝑛)�̂� + 2𝜃(𝑛)�̂�

�̂�
  𝜈cos𝛼sin𝜓 +𝑘(𝐿𝑖𝑒)(𝑛)�̂� 𝜈2 + 𝑘(𝐿𝑖𝑒)(𝑛)�̂� 𝜈2cos2𝜓sin𝛼] +

�̃�[Φ𝐸(𝑈)]2cos𝛼

𝛾𝜈sin𝜓
[�̂� �̂� −

�̂��̂�tan𝛼]  (22) 

𝑈�̂� ≡
𝑑𝑟

𝑑𝜏
=

𝛾𝜈sin𝛼sin𝜓

√𝑔𝑟𝑟
 (23) 

𝑈�̂� ≡
𝑑𝜃

𝑑𝜏
=

𝛾𝜈cos𝜓

√𝑔𝜃𝜃
  (24) 

𝑈�̂� ≡
𝑑𝜑

𝑑𝜏
=

𝛾𝜈cos𝛼sin𝜓

√𝑔𝜑𝜑
−

𝛾𝑁𝜑

𝑁
 (25) 

𝑈�̂� ≡
𝑑𝑡

𝑑𝜏
=

𝛾

𝑁
  (26) 

Where 𝜏 is the affine parameter (proper time) along the test particle trajectory. Naturally, these equations reduce to the 

2D case, when 𝜓 = 𝜃 = 𝜋/2. 
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2-4- Critical Hypersurfaces and Test Particle’s Trajectories 

The general relativistic PR effect, defined by Equations 20 to 25, exhibits, both in the 2D and 3D models, a critical 

hypersurface around the compact object. This is a region, where there exists a balance among gravitational and 

radiation forces, see Figure 2 for some examples. Such structures are obtained by the requirement that the test particle 

moves on them (𝛼 = 0, 𝜋) with constant velocity (𝜈 = 𝑐𝑜𝑛𝑠𝑡 ) with respect to the ZAMO frame, and the polar axis is 

orthogonal to the critical hypersurface (𝜓 = ±𝜋/2), which in turn implies that 𝑑𝜈/𝑑𝜏 = 𝑑𝛼/𝑑𝜏 = 0 [13-16].  

𝜈 = cos𝛽  (27) 

𝑎(𝑛)�̂� + 2𝜃(𝑛)�̂�
�̂�

𝜈 + 𝑘(𝐿𝑖𝑒)(𝑛)�̂� =
𝐴(1+𝑏𝑁𝜑)2sin3𝛽

𝑁2𝛾√𝑅(𝑟(𝑐𝑟𝑖𝑡))
 𝜈2 (28) 

 
 
Figure 2. Left panel: Critical hypersurfaces for 𝛀⋆ = 𝟎 and the luminosity parameters 𝑨 = 𝟎. 𝟓, 𝟎. 𝟕, 𝟎. 𝟖, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟕, 𝟎. 𝟗 at 

a  constant  spin  𝒂 = 𝟎. 𝟗𝟗𝟗𝟓. The  respective  critical  radii  in  the equatorial plane are 𝒓(𝒄𝒓𝒊𝒕)
𝐞𝒒

∼ 𝟐. 𝟕𝟏𝑴, 𝟒. 𝟎𝟏𝑴, 𝟓. 𝟓𝟐𝑴,  

𝟕. 𝟎𝟒𝑴, 𝟕. 𝟗𝟗𝑴, 𝟏𝟎. 𝟏𝟔𝑴 , while at poles they are 𝒓(𝒄𝒓𝒊𝒕)
𝐩𝒐𝒍𝒆

∼ 𝟐. 𝟗𝟕𝑴, 𝟒. 𝟔𝟓𝑴, 𝟔. 𝟓𝟔𝑴, 𝟖. 𝟑𝟖𝑴, 𝟗. 𝟒𝟖𝑴, 𝟏𝟏. 𝟗𝑴 . Right panel: 

Critical hypersurfaces for a NS (grey sphere) with 𝛀⋆ = 𝟎. 𝟎𝟑𝟏, 𝑹⋆ = 𝟔𝑴, and  luminosity parameters  𝑨 = 𝟎. 𝟕𝟓, 𝟎. 𝟕𝟖, 𝟎. 𝟖,  

𝟎. 𝟖𝟓, 𝟎. 𝟖𝟖 at a constant spin 𝒂 = 𝟎. 𝟒𝟏. The respective critical radii in the equatorial plane are 𝒓(𝒄𝒓𝒊𝒕)
𝐞𝒒

∼ 𝟖. 𝟖𝟖𝑴, 𝟏𝟎. 𝟔𝟏𝑴,

𝟏𝟐. 𝟎𝟓𝑴, 𝟏𝟕. 𝟐𝟔𝑴, 𝟐𝟐. 𝟒𝟑𝑴, while at poles they are 𝒓(𝒄𝒓𝒊𝒕)
𝐩𝒐𝒍𝒆

∼ 𝟒. 𝟕𝟑𝑴, 𝟓. 𝟐𝟖𝑴, 𝟓. 𝟕𝟒𝑴, 𝟕. 𝟒𝟑𝑴, 𝟗. 𝟏𝟏𝑴. The red arrow is 

the polar axis. 

 

Where the first condition means that the test particle moves on the critical hypersurface with constant velocity equal to 

the azimuthal photon velocity, see Equation 5; whereas the second condition determine through an implicit equation 

the shape of the critical hypersurface in terms of the critical radius 𝑟(𝑐𝑟𝑖𝑡) as a function of the polar angle, once metric 

background (i.e., 𝑎) and radiation field proprieties (i.e., 𝐴, 𝑅⋆, Ω⋆) are assigned. 

When the test particle reaches the critical hypersurface, we can have to possible behaviors:   

 latitudinal drift, due to the interplay of gravitational and radiation actions in the polar direction, which brings 

definitively the test particle on the equatorial plane [15, 16]. This corresponds to the condition 𝑑𝜓/𝑑𝜏 ≠ 0, 

because the 𝜓 angle change during the test particle motion on the critical hypersurface; 

 suspended orbits, the test particle does not drift down to the equatorial plane, but moves on a pure circular orbit 

at 𝜃 = �̅� ≠ 𝜋/2. This condition is mathematically achieved by imposing that 𝑑𝜓/𝑑𝜏 = 0, which for 𝑏 ≠ 0 

reads as [16]. 

𝑎(𝑛)�̂� + 𝑘(𝐿𝑖𝑒)(𝑛)�̂� 𝜈2 + 2𝜈sin𝜓  𝜃(𝑛)�̂�
�̂�

+
𝐴(1+𝑏𝑁𝜑)2(1−cos2𝛽sin𝜓)cos𝛽

𝛾𝑁2√𝑅(𝑟(𝑐𝑟𝑖𝑡))tan𝜓
= 0 (29) 

Which is an implicit equation in terms of 𝜓. Instead for 𝑏 = 0 we obtain 𝜓 = ±𝜋/2 [15]. It is important to note that in 

the Schwarzschild case (𝑎 = 0) for 𝑏 = 0 the test particle stops on a point on the critical hypersurface, without 

moving on a purely circular orbit [15]. 

In Figure 3 we display some selected test particle trajectories in 2D and 3D cases in order to show how the PR 

effect alters the matter motion around a compact object [13-16]. It is important to note that in both cases, such effect is 

strongly sensitive from the initial conditions, therefore it requires that the integration error should be very low, 
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otherwise its propagation could lead to not realistic trajectories. In both models, the test particle has two possible 

endings, strongly depending on the initial conditions and the parameters defining the geometrical structure and the 

radiation field: orbiting on the critical hypersurface, or departing at infinity.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

 

 

 

 

 

Figure 3. Test particles’ orbits in the Kerr spacetime plotted in units of 𝑴 = 𝟏. For the 2D plot, the continuos black line is 

the event horizon, the dashed red line is the critical hypersurface, the blue lines are for radial photon with 𝒃 = 𝟎, instead 

the green lines for general photon field with 𝒃 ≠ 𝟎. Left upper panel: the event horizon is at 𝟏. 𝟖𝟔𝟔𝑴, the spin is 𝒂 = −𝟎. 𝟓, 

the luminosity parameter is 𝑨/𝑴 = 𝟎. 𝟔, and the critical radius is at 𝒓(𝒄𝒓𝒊𝒕) = 𝟐. 𝟕𝟏𝑴. All the test particles have the same 

initial positions (𝒓𝟎, 𝝋𝟎, 𝜶𝟎) = (𝟖𝑴, 𝟎, 𝟎), while the initial velocities are: (1) 𝝂𝟎 = 𝟎. 𝟐, (2) 𝝂𝟎 = 𝟎. 𝟓, (3) (𝝂𝟎, 𝒃) = (𝟎. 𝟐, 𝟏. 𝟓), 

and (4) (𝝂𝟎, 𝒃) = (𝟎. 𝟐, 𝟑. 𝟓). For the 3D plots, the black sphere corresponds to the emitting surface of the NS, and the blue-

gray surface denotes the critical hypersurface. Right upper panel: the event horizon is at 𝟏. 𝟖𝟔𝟔𝑴, the spin is 𝒂 = −𝟎. 𝟓, the 

luminosity parameter is 𝑨/𝑴 = 𝟎. 𝟖, and the critical radius is at 𝒓(𝒄𝒓𝒊𝒕) = 𝟓𝑴. All the test particles have the same initial 

positions (𝒓𝟎, 𝝋𝟎, 𝜶𝟎) = (𝟒𝑴, 𝟎, 𝟎), while the initial velocities are: (1) 𝝂𝟎 = 𝟎. 𝟓, (2) 𝝂𝟎 = 𝟎. 𝟖, (3) 𝝂𝟎 = 𝟎. 𝟗, (4) (𝝂𝟎, 𝒃) =

(𝟎. 𝟖, 𝟎. 𝟓), and (5) (𝝂𝟎, 𝒃) = (𝟎. 𝟖, 𝟑. 𝟓). Left lower panel: Test particle trajectories around a NS of spin 𝒂 = 𝟎. 𝟒𝟏, radius 

𝑹⋆ = 𝟔𝑴, angular velocity 𝛀⋆ = 𝟎. 𝟎𝟑𝟏, and luminosity parameter 𝑨 = 𝟎. 𝟖, starting at the position (𝒓𝟎, 𝜽𝟎) = (𝟏𝟓𝑴, 𝟏𝟎∘) 

with the initial velocity 𝝂𝟎 = 𝟎. 𝟎𝟏 oriented in the azimuthal corotating direction direction (orange) and oriented radially 

towards the emitting surface (red). Right lower panel:Test particle trajectories around a NS of spin 𝒂 = 𝟎. 𝟎𝟕, radius 

𝑹⋆ = 𝟔𝑴, angular velocity 𝛀⋆ = 𝟎. 𝟎𝟎𝟓, and luminosity parameter 𝑨 = 𝟎. 𝟖𝟓, starting at the position (𝒓𝟎, 𝜽𝟎) = (𝟏𝟓𝑴, 𝟏𝟎∘) 

with the initial velocity 𝝂𝟎 = 𝟎. 𝟎𝟏 oriented in the azimuthal corotating direction direction (orange) and oriented radially 

towards the emitting surface (red). 

3- Lagrangian Approach: Analytical form of the Rayleigh Potential 

3-1- Mathematical Problem 

 We consider the following mathematical problem: given the equations of motion of a dissipative system in GR, as 

Equations 20 to 25, of the form 𝑚𝒂(𝑈) = 𝐹(𝑟𝑎𝑑)(𝑈)𝛼 , we would like to derive such equations from a principle of least 

action through the Euler-Lagrange equations. 

𝑑

𝑑𝜏
(

𝜕ℒ

𝜕𝑈𝛼
) −

𝜕ℒ

𝜕𝑋𝛼
= −

𝜕𝑉

𝜕𝑈𝛼
  (30) 

(1) (2) 

(3) (4) 
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Where 𝑋 = (𝑡, 𝑟, 𝜃, 𝜑) and 𝑈 = (𝑈𝑡 , 𝑈𝑟 , 𝑈𝜃 , 𝑈𝜑), and the unknown functions to be determined are: the Lagrangian 

function ℒ(𝑋, 𝑈) (including the kinetic energy and all the conservative and generalised forces) and the Rayleigh 

dissipative potential 𝑉(𝑋, 𝑈) (encompassing the dissipative forces). This is a well posed mathematical problem and it 

is known in the literature as the inverse problem in the calculus of variations [23-25]. 

Our aim is to derive the analytical form of both functions, without recurring to numerical simulations or codes. We 

note that the Lagrangian function is already known in the classical literature of GR [18], connected with the pure 

gravitational structure of the background spacetime (i.e., 𝑎 = 0), and given by  

ℒ(𝑋, 𝑈) =
1

2
𝑔𝛼𝛽𝑈𝛼𝑈𝛽 .  (31) 

The challenging issue is of course to determine the analytical form of the Rayleigh potential, connected to the 

dissipative effects in GR, where generally the dissipative force is highly-nonlinear, because it strongly couples with 

the curved geometrical background. 

3-2- The Method 

The general relativistic PR effect represents the first system in GR, where we have been able to analytically 

determine the Rayleigh potential [30, 31]. To obtain such result, we have exploited two important ideas: the 

integrating factor to make a differential (semi-basic) one-form closed in its simply connected domain (i.e., exact), and 

an integration strategy based on the energy dissipated by the system. In this section, we explain into details the 

followed procedure. 

Before to start, we set up some preliminary considerations. The motion of the test particle occurs in ℳ, a simply 

connected domain (the region outside of the compact object including the event horizon). We denote with 𝑇ℳ the 

tangent bundle of ℳ , whereas 𝑇∗ℳ  stands for the cotangent bundle over ℳ . Let 𝜔: 𝑇ℳ → 𝑇∗ℳ  be a smooth 

differential semi-basic one-form [26-28], then the radiation force components (13) can be seen as the components of 

𝜔, namely  

𝜔(𝑋, 𝑈) = 𝐹(𝑟𝑎𝑑)(𝑋, 𝑈)𝛼d𝑋𝛼  (32) 

The vertical exterior derivative d𝑉 is an operator, whose local expression on a smooth differential semi-basic one-

form 𝛽 = 𝛽𝛼d𝑋𝛼 is given by [27-29]. 

d𝑉𝛽 = (
𝜕𝛽𝜇

𝜕𝑈𝛼
−

𝜕𝛽𝛼

𝜕𝑈𝜇
) d𝑋𝛼 ∧ d𝑋𝜇  (33) 

Whose components are the cross derivatives of 𝛽𝛼 with respect to 𝑈𝛽 and ∧ is the wedge product to lift the forms. The 

differential semi-basic one-form 𝝎 is closed under the vertical exterior derivative d𝑉 if d𝑉𝜔 = 0. However, it can be 

checked that the cross derivatives of (33) are not equal to zero if applied to Equation 13. 

Due to the non-linear dependence of the radiation force on the test particle velocity field, the semi-basic one-form 

turns out to be not exact [22]. However, the PR phenomenon exhibits the peculiar propriety according to which 

𝜔(𝑋, 𝑈) becomes exact through the introduction of the integrating factor 𝜇 = (𝐸/𝔼)2 [22, 30, 31], where 𝔼 = −𝑘𝛽𝑈𝛽 

coincides exactly with 𝐸(𝑈)*
. 

For the Poincaré lemma (generalised to the vertical differentiation) the closure condition and the simply connected 

domain 𝒯ℳ guarantee that 𝜇𝜔 is exact [32]. Therefore, it exists a smooth 0-form 𝑉(𝑋, 𝑈) such that −d𝑉𝑉 = 𝜇𝜔, 

which in local coordinates reads as  

𝔽(𝑟𝑎𝑑)(𝑋, 𝑈)𝛼 = −
𝜕𝑉(𝑿,𝑼)

𝜕𝑈𝛼
  (34) 

Substituting all the occurrences of 𝔼 in 𝐹(𝑟𝑎𝑑)(𝑋, 𝑈)𝛼, see Equation 13, we obtain [30, 31]. 

𝔽(𝑟𝑎𝑑)(𝑋, 𝑈)𝛼 = −𝑘𝛼𝔼(𝑋, 𝑈) + 𝔼(𝑋, 𝑈)2𝑈𝛼 .  (35) 

We consider the velocity derivative operator with respect to the energy 𝔼 through the chain rule, having.  

𝜕  (  ⋅  )

𝜕𝑈𝛼
= −𝑘𝛼   

𝜕  (  ⋅  )

𝜕𝔼
  (36) 

Equation 34 reads explicitly in such case as [30, 31]. 

𝜇𝐹(𝑟𝑎𝑑)
𝛼 = 𝑘𝛼 𝜕𝑉

𝜕𝔼
  (37) 

Considering the scalar product of both members of Equation 37 by 𝑈𝛼, we obtain a differential equation for 𝑉, 

                                                           
* We preferred to use a different notation for the energy 𝔼, instead to continue to call it 𝐸(𝑈), to not confuse it with the photon energy 𝐸, since this 

variable is very important for what follows. 
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which yields at the following integral [30, 31]. 

𝑉 = − ∫  (
𝜇𝐹𝛼

𝔼
) d𝔼 + 𝑓(𝑋, 𝑈)  (38) 

Where 𝑓(𝑋, 𝑈) is constant with respect to 𝔼, i.e., 𝜕𝑓(𝑋, 𝑈)/𝜕𝔼 = 0. Such term can be calculated by using the iterative 

process of integration of exact differential one-forms, after having rewritten 𝔼  as −𝑘𝛼𝑈𝛼  in order to have all 

coherently expressed in terms of (𝑋, 𝑈). 

Such step is fundamental to understand our strategy, because it permits not only to reduce the calculations from 

four in terms of the velocity field 𝑈 to just one in terms of the energy 𝔼, but permits to analytically obtain the Rayleigh 

potential in terms of the energy 𝔼 whenever the calculations to obtain 𝑓(𝑋, 𝑈) become complicate. 

Integrating Equation 38, the final result is [30, 31]. 

𝑉 = �̃�ℐ2 [ln (
𝔼

𝐸
) +

1

2
(𝑈𝛼𝑈𝛼 + 1)]  (39) 

Where the constant term 1/2 − ln(𝐸) has been determined considering the classical limit, where it is possible to 

match the general relativistic solution with the classical description [10, 11, 30, 31]. 

3-3- Discussion of the Results 

Our new developed strategy is based on two stages.   

1) Use of an integrating factor to make a differential semi-basic one-form exact (closed in its simply connected 

domain of integration). This approach permits to have more dissipative systems admitting their differential 

semi-basic one-forms closed, since in GR we deal with dissipative forces highly nonlinear with respect to the 

velocity field. The closure condition translates in solving a partial differential equation for the integrating factor 

𝜇, which in the general relativistic PR case can be easily solved by separation of variables [31];  

2) Writing the dissipative force in terms of the dissipated energy 𝔼 (see Equation 35) and passing the derivative 

operatore from the velocity field to the dissipated energy 𝔼 by applying the chain rule (see Equation 36), we can 

finally have through some simple algebraic calculations an analytical form of the Rayleigh potential in terms of 

the dissipated energy 𝔼 (see Equation 38). This integral is defined up to a constant function 𝑓(𝑋, 𝑈) with 

respect to the dissipated energy 𝔼, i.e., 𝜕𝑓(𝑋, 𝑈)/𝜕𝔼 = 0. In this term is contained our ignorance on how the 

dissipative action occurs in the physical system, but at least we know how to act in energetic terms.  

It is important to note that 𝔼 is considered as the dissipated energy, because we can see our radiation field made by 

photon-bullets, which are shot against the test particle-target. Faster the test particle moves, less are the photons 

absorbed, or in other words, more are the photons dissipated. Indeed, if the test particle is at rest, 𝔼 = 𝐸, which is the 

maximum attained energy; while instead if the test particle moves close to a speed of light, 𝔼 = 0 is the minimum 

reachable energy [31]. 

The analytical form of the Rayleigh potential related to the general relativistic PR effect is very important because 

it represents the first example in the GR literature. The Rayleigh potential (38) is a valuable tool to investigate the 

proprieties of the general relativistic PR effect and more in general the radiation processes in high-energy astrophysics. 

In addition, such function entails two main important consequences:   

 The Rayleigh potential contains a logarithm of the energy, which, in view of the interpretation of the dissipated 

energy 𝔼, can be physically interpreted as the absorbed energy from the test particle, while the other function 

𝑈𝛼𝑈𝛼 represents the re-emission process, which is in agreement with the underlying hypothesis of the PR effect 

model, i.e., the test particle behaves as an ideal black body in thermal equilibrium, which re-emits radiation at 

constant rate, isotropically, and independent from the velocity field 𝑈𝛼  [31].  
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Figure 4. Test particle trajectory with the Rayleigh potential 𝑽 for mass 𝑴 = 𝟏 and spin 𝒂 = 𝟎. 𝟏, luminosity parameter 

𝑨 = 𝟎. 𝟏 and photon impact parameter 𝒃 = 𝟏. The test particle moves in the spatial equatorial plane with initial position 

(𝒓𝟎, 𝝋𝟎) = (𝟏𝟎𝑴, 𝟎)  and velocity (𝝂𝟎, 𝜶𝟎) = (√𝟏/𝟏𝟎𝑴, 𝟎) . a) Test particle trajectory spiralling towards the BH and 

stopping on the critical radius (red dashed line) 𝒓(𝒄𝒓𝒊𝒕) = 𝟐. 𝟎𝟐𝑴. The continuous green line is the event horizon radius 

𝒓(𝑬𝑯)
+ = 𝟏. 𝟗𝟗𝑴. Rayleigh potential versus b) radial coordinate, c) azimuthal coordinate, d) time coordinate, e) radial 

velocity, and f) azimuthal velocity. The blue dashed line in panel e) marks the minimum value attained by the radial 

velocity, corresponding to �̇� = −𝟎. 𝟏𝟑. 

 The Rayleigh potential permits to directly connect the theory with the observations. This last sentence can be 

better understood by looking at Figure 4, where in panel 𝑎) the test particle trajectory is displayed (i.e., what 

can be observed) and in panels 𝑏) − 𝑓)  the Rayleigh potential in terms of the coordinates 𝑟, 𝜑, 𝑡, �̇�, 𝑟�̇� , 

respectively (i.e., what derives from the theory). In other words, detecting the test particle motion, it is possible 

to infer the analytic structure of the Rayleigh potential; viceversa by using different functional form of the 

Rayleigh potential to investigate other kinds of radiation processes in high-energy astrophysics, it can be 

possibile to numerically simulate the test particle trajectory (see Ref. [31], for details).  

4- Dynamical System Approach: Stability of the Critical Hypersurfaces 

The general relativistic PR effect can be also analysed under the dynamical system point of view for proving the 

stability of the critical hypersurfaces. To this end, we consider only those initial conditions, where the test particle 

ends its motion on the critical hypersurfaces without escaping at infinity. It is not possible to formally characterise 

these configurations, because the general relativistic PR effect models show a sensitive dependence from the initial 

data
*
. Once the stability issue has been proved, it immediately follows that the critical equatorial ring is a stable 

attractor (region where the test particle is attracted for ending its motion), and the whole critical hypersurface is a 

basin of attraction [33]. 

 

                                                           
* A dynamical system is defined to be sensitive dependent from the initial data, when tiny perturbations to the initial data give extremely different 

future behaviors. 
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4-1- Previous Approach: Linearization Theory 

  In the previous approach pursued by Bini and collaborators, they have been able to prove such statement only in 

the Schwarzschild case within the linear stability theory (see Appendix in Ref. [8]). This method relies on the 

linearization of a dynamical system �̇� = 𝑓(𝑥) towards the critical point 𝑥0 obtaining thus �̇� ≈ 𝐴 ⋅ 𝑥 + 𝑂(|𝑥|2), where 

𝐴 = [∇𝑥𝑓(𝑥)]𝑥0
. Then searching for the eigenvalues of the matrix 𝐴, and checking whether they are all negatives, we 

can finally obtain that the dynamical system is stable toward the critical point 𝑥0. At glance, this approach seems 

theoretically simple, but practically it implies computationally-expensive calculations (especially in the Kerr case). 

4-2- New Approach: Lyapunov Theory 

We have introduced a new, simpler in term s of calculations, and more physical approach based on the Lyapunov 

theory [34]. The dynamical system 20–25, �̇� = 𝑓(𝑥), is defined in the domain 𝒟 (spacetime outside the compact 

object including the event horizon), and we call with ℋ the critical hypersurface. Let Λ = Λ(𝑥) be a smooth and real 

valued function, continuously differentiable in all points of 𝒟 , then Λ is a Lyapunov function for �̇� = 𝑓(𝑥)  if it 

satisfies the following conditions:  

(𝐼)    Λ(𝒙) > 0,    ∀𝒙 ∈ 𝒟\ℋ; (40) 

(𝐼𝐼)    Λ(𝒙𝟎) = 0,    ∀𝒙𝟎 ∈ ℋ; (41) 

(𝐼𝐼𝐼)    Λ̇(𝒙) ≡ ∇Λ(𝒙) ⋅ 𝒇(𝒙) ≤ 0,    ∀𝒙 ∈ 𝒟. (42) 

Once a Lyapunov function Λ is determined for all points belonging to the critical hypersurface ℋ, a theorem due to 

Lyapunov assures that ℋ  is stable [34]. The conditions (𝐼)  and (𝐼𝐼)  are very easy to be proved, while the last 

condition (𝐼𝐼𝐼) requires to perform some calculations, that anyway can be easily carried out by hand. 

Such approaches has the great advantage to study the behavior of a dynamical system without knowing its 

analytical solution or performing any approximation. Nevertheless, some limits should be also taken into account, like: 

there is any fixed rule or recipe to determine it, but sometimes only physical intuitions can help; it is not unique, but it 

could be possible to determine more than one or sometimes can even not exist. 

4-2-1- Three Lyapunov Functions for the General Relativistic PR Effect 

For the general relativistic PR effect, three different Lyapunov functions have been determined. An idea of the 

proof that they are Lyapunov functions is based on expanding all the kinematic terms of the equations of motion with 

respect to the radius, estimating thus their magnitude, and then considering that the test particle’s orbit is confined in a 

bounded box (since by hypothesis we consider only those configurations reaching the critical hypersurface), see Ref. 

[33], for further details.   

 The relative classical mechanical energy of the test particle with respect to the critical hypersurface measured 

in the ZAMO frame is:  

𝕂 =
𝑚

2
|𝜈2 − 𝜈c𝑟𝑖𝑡

2 | + (𝐴 − 𝑀) (
1

𝑟
−

1

𝑟c𝑟𝑖𝑡
)  (43) 

Where 𝜈c𝑟𝑖𝑡(𝜃) = [cos𝛽]𝑟=𝑟c𝑟𝑖𝑡(𝜃) , which includes as a particular case the velocity 𝜈e𝑞 = [cos𝛽]𝑟=𝑟c𝑟𝑖𝑡(𝜋/2)  in the 

equatorial ring. Its derivative is: 

�̇� = 𝑚  s𝑔𝑛(𝜈2 − cos2𝛽) [𝜈
𝑑𝜈

𝑑𝜏
− cos𝛽

𝑑(cos𝛽)

𝑑𝜏
] −

𝐴−𝑀

𝑟2 �̇�  (44) 

Where s𝑔𝑛(𝑥) is the signum function.  

 The relative classical angular momentum of the test particle measured in the ZAMO frame is  

𝕃 = 𝑚(𝑟𝜈sin𝜓cos𝛼 − 𝑟c𝑟𝑖𝑡𝜈c𝑟𝑖𝑡)  (45) 

Its derivative is given by: 

�̇� = 𝑚  [−�̇�c𝑟𝑖𝑡𝜈c𝑟𝑖𝑡 − 𝑟c𝑟𝑖𝑡
𝑑(𝜈c𝑟𝑖𝑡)

𝑑𝜏
+ 𝑟

𝑑𝜈

𝑑𝜏
cos𝛼sin𝜓 + 𝜈(�̇�cos𝛼sin𝜓 − 𝑟sin𝛼sin𝜓  �̇� + 𝑟sin𝛼cos𝜓  �̇�)] (46) 

 The relative general relativistic Rayleigh dissipation function is (see Sec. 3 for details)  

𝔽 = �̃�ℐ2 [lg (
𝔼c𝕣𝕚𝕥

𝐸𝑝
) − lg (

𝔼

𝐸𝑝
)]  (47) 

Where  

𝔼 ≡ −𝑘𝛼𝑈𝛼 = 𝛾
𝐸𝑝

𝑁
(1 + 𝑏𝑁𝜑)[1 − 𝜈sin𝜓cos(𝛼 − 𝛽)]  (48) 



Emerging Science Journal | Vol. 4, No. 3 

Page | 224 

𝔼c𝕣𝕚𝕥 is the energy 𝔼 evaluated on the critical hypersurface, given by: 

𝔼c𝕣𝕚𝕥 = [𝔼]𝑟=𝑅⋆,𝛼=0,𝜋,𝜓=±𝜋/2,𝜈=𝜈c𝑟𝑖𝑡
=

𝐸𝑝|(sin𝛽)c𝑟𝑖𝑡|

𝑁c𝑟𝑖𝑡
(1 + 𝑏𝑁c𝑟𝑖𝑡

𝜑
) (49) 

Its derivative is  

�̇� = �̃�(̇ℐ2) [lg (
𝔼c𝕣𝕚𝕥

𝐸𝑝
) − lg (

𝔼

𝐸𝑝
)] + �̃�ℐ2 [

�̇�c𝑟𝑖𝑡

𝔼c𝕣𝕚𝕥
−

�̇�

𝔼
]  (50) 

 In Figure 5 we show the trajectory of a test particle orbiting in the equatorial plane around a BH and influenced by 

a radiation field together with the general relativistic PR effect. The test particle ends its motion on the critical 

hypersurface, which is the configuration we focussed on. In the other panels of Figure 5, the trend of the three 

proposed functions have been displayed (i.e., 𝕂, 𝕃, 𝔽), together with their derivatives (i.e., �̇�, �̇�, �̇�), to graphically 

prove that they verify the three proprieties to be Lyapunov functions.  

We note that the the first two Lyapunov functions (mechanical energy and angular momentum) are classical 

definition, while the third example (Rayleigh dissipation function) is a pure general relativistic case. The former two 

functions are not in contradiction with the latter, rather they are very useful to substantially reduce the calculations 

with respect to their general relativistic versions. In addition, it must be said that another great advantage of Lyapunov 

theory is that the Lyapunov functions should not need to have a physical meaning, they can be also mathematical 

function, which should respect the three conditions stated above, so that they can prove the stability of the critical 

hypersurfaces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. We show a test particle orbit and the related three Lyapunov functions. Upper left panel: test particle moving 

around a rotating compact object with mass 𝑴 = 𝟏, spin 𝒂 = 𝟎. 𝟑, luminosity parameter 𝑨 = 𝟎. 𝟐, and photon impact 

parameter 𝒃 = 𝟎. The test particle starts its motion at the position (𝒓𝟎, 𝝋𝟎) = (𝟑𝟎𝑴, 𝟎) with velocity (𝝂𝟎, 𝜶𝟎) = (√𝑴/𝒓𝟎, 𝟎). 

The critical hypersurface is a circle with radius 𝒓(𝒄𝒓𝒊𝒕) = 𝟐. 𝟎𝟕𝑴. The energy (see Equations 43 and 44, and upper right 

panel), the angular momentum (see Equations 45 and 46, and lower left panel), and the Rayleigh potential (see Equations 48 

and 50, and lower right panel) together with their 𝝉-derivatives are all expressed in terms of the proper time 𝝉. The dashed 

blue lines in all plots represent the proper time 𝑻𝐭𝒐𝒖𝒄𝒉 at which the test particle reaches the critical hypersurface and it 

amounts to 𝑻𝐭𝒐𝒖𝒄𝒉 = 𝟐𝟗𝟏𝟓𝑴. 

(1) (2) 

(3) (4) 
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5- Conclusions 

In this work we have presented three different and complementary approaches to study the general relativistic PR 

effect. They can be summarised as:   

 Working on the model by improving it in its ingenuous aspects (see Sec. 2). Indeed, we have improved the PR 

effect model from the 2D equatorial plane to the 3D space in Kerr geometry. The emitted photons are in 

general parametrized by two impact parameters (𝑏, 𝑞), since we are in the 3D case. However, imposing that 

the radiation field must lie in the equatorial plane of the ZAMO frame (even at infinity), we not only reduce 

the radiation field to only one parameter, but we also develop an astrophysical coherent model. The resulting 

equations of motion represent a system of six coupled ordinary and highly nonlinear differential equations of 

first order, see Equations 20 to 25. Such dynamical system admits the existence of a critical hypersurface, 

regions where the gravitational attraction is balanced by the radiation force. The test particle can end its 

motion on it, moving over there stably (see Sec. 2.4). The main difference of the 3D model with the 2D case is 

in having the phenomena of latitudinal drift and suspended orbits.  

 The general relativistic PR effect can be seen as a dissipative system (see Sec. 3). The equations of motion can 

be treated within the theory of inverse problem of calculus of variations, where the unknown functions are the 

Lagrangian and the Rayleigh potential. The former is easily found (31), while for the latter we have developed 

a strategy to determine it analytically (39). Such approach is based first on making a differential semi-basic 

one-form exact through the introduction of an integrating factor, and then to substantially reduce the 

calculations for obtaining its analytic expression at least in terms of the dissipated energy (38). The full 

complete analytical form of the Rayleigh potential permitted to discover a new functional class related to 

absorption processes in high-energy astrophysics (see Sec. 3.3), and to develop a strategy to closely relate 

observations and theory (see Figure 4).  

 Another perspective to analyse the general relativistic PR effect is under the dynamical system point of view 

(see Sec. 4). We have proved the stability of the critical hypersurfaces by introducing a new method. The 

previous approach was based on the linearization theory, where the calculations revealed to be very 

demanding (see Sec. 4.1). Therefore, we have thought to introduce a more straightforward method within the 

Lyapunov theory (see Sec. 4.2). The determination of three different Lyapunov functions (i.e., classical 

mechanical energy (43) and angular momentum (45) of the test particle and general relativistic Rayleigh 

potential (48)) permitted to prove in an equivalent way and under different physical aspects the stability of the 

critical hypersurfaces.  

As future projects, we plan to further investigate the results obtained in the three different approaches, namely: (1) 

improve the actual theoretical assessments employed to model the radiation field in some elementary aspects, like: the 

momemntum-transfer cross section will be not anymore constant, but it will depend on the angle and frequency of the 

incoming radiation field, the radiation field is not emitted anymore by a point-like source, but from a finite extended 

source; (2) generalise the strategy for finding the analytical form of the Rayleigh potential to other dissipative systems 

in GR, like for example the gravitational wave theory; (3) apply the Lyapunov functions to all the extensions of the 

general relativistic PR effect model with the due modifications. 

Anyway we would like to find other alternative approaches to the same problem in order to extract several other 

interesting information, and in the same time to develop new formalisms, which can be applied to other dissipative 

systems in GR. We would like also to apply the general relativistic PR effect model to describe some astrophysical 

problems, like: accretion disk model, type-I X-ray burst, photospheric radius expansion. 
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