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Vehicular Ad Hoc Networks (VANETSs) play a crucial role in enhancing road safety, traffic  opq6t car:
management, and driving efficiency through real-time communication between vehicles and . '
infrastructure. However, VANETS are vulnerable to various security threats, one of which is the  17affic Flow;
“ghost car” attack. In this attack, a malicious entity injects false information into the network,  Vehicle Coordination.
simulating the presence of a non-existent or “ghost” vehicle. This can lead to severe consequences
such as traffic disruptions, accidents, and a compromised trust in the system’s reliability. This study
aims to simulate and analyze the impacts of ghost car attacks on Vehicular Ad Hoc Networks — Article History:
(VANETS), focusing specifically on intersection waiting times and overall traffic flow. We used

Abstract

Simulation of Urban Mobility (SUMO) integrated with ns-3 for realistic VANET simulations, Received: 27 February 2025
iptroducing vqrying numbe_rs of gh_ost vehicles. Results indicgte signifiqant_incre_ases in yvaiting Revised: 13 December 2025
times and vehicle counts at intersections due to ghost cars, leading to traffic disruptions. This study

evaluates ghost car attacks within realistic urban scenarios and proposes targeted detection and ~ Accepted: 25  December 2025

mitigation strategies, leveraging authentication, machine learning, and blockchain technologies. Published: 01 February 2026

1- Introduction

Vehicular Ad Hoc Networks (VANETS) are an integral part of modern Intelligent Transportation Systems (ITS),
enabling vehicles to communicate with each other (Vehicle-to-Vehicle or V2V) and with infrastructure (Vehicle-to-
Infrastructure or V2I) [1]. By allowing vehicles to share real-time information such as traffic conditions, accident alerts,
and navigation data, VANETS promise to revolutionize road safety, traffic efficiency, and overall driving experience [2].
According to recent studies, the global market for connected cars is expected to reach $225.16 billion by 2027, driven
largely by advances in VANET technology [3, 4]. These networks reduce traffic congestion, improve emergency
response times, and enhance fuel efficiency by coordinating the movement of vehicles on roadways [5]. However, the
connectivity that makes VANETSs advantageous also exposes them to a range of security threats, which could
compromise both vehicle safety and traffic management systems.

One of the primary security challenges in VANETS is their open and decentralized nature [6]. Since vehicles
frequently join and leave the network while on the move, maintaining trust and secure communication between them is
inherently difficult [7]. This creates opportunities for various attacks, including sybil attacks, replay attacks, man-in-the-
middle attacks, and the increasingly prominent "ghost car" attack [8, 9]. In sybil attacks, for instance, an attacker
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generates multiple fake identities to overwhelm the network, while in replay attacks, valid data is captured and resent
later to confuse vehicles [10]. The ghost car attack is particularly concerning because it involves injecting false

information into the network to simulate the presence of a non-existent vehicle, which can lead to significant disruptions
in traffic flow.

The ghost car attack works by fabricating a vehicle that does not physically exist but appears to be present within the
network [11]. This deceptive information can be used to manipulate traffic conditions in several ways, such as forcing
vehicles to slow down, reroute unnecessarily, or make abrupt stops to avoid collisions with the fake vehicle. In urban
environments, where traffic density is high and intersections are frequent, the presence of a ghost car can lead to
substantial delays [12]. Waiting times at intersections may increase as real vehicles respond to the false signals generated
by the ghost car, causing cascading effects on overall traffic efficiency. In addition, the risk of accidents and road

congestion grows as legitimate vehicles react to non-existent obstacles, eroding the trust that VANETS rely on to function
optimally.

Research into VANET security attacks has highlighted the need for robust detection and mitigation techniques to
counter such threats. Studies have shown that security breaches in VANETS can lead to economic losses, traffic
inefficiencies, and even life-threatening accidents [13]. For example, according to a report by the National Highway
Traffic Safety Administration (NHTSA), traffic-related fatalities could increase by 10-20% if VANET systems are
compromised [14-16]. The need to address these vulnerabilities is especially critical given the anticipated expansion of
autonomous vehicles, which will rely heavily on secure VANET communications.

Despite the recognized risks, there is a gap in the literature concerning the specific impact of ghost car attacks on
traffic dynamics, particularly regarding the effect on waiting times and traffic flow at intersections. Understanding these
effects is essential for developing robust countermeasures. This study aims to fill that gap by simulating a ghost car
attack in a VANET environment, with a focus on evaluating the delays and traffic disruptions it causes. By analyzing
waiting times at key points in traffic, such as intersections, and measuring the overall impact on traffic flow, the research
will provide insights into how disruptive a ghost car can be and offer potential strategies for mitigating the attack. The
findings of this study will contribute to the development of secure VANET architecture, helping to protect the future of
intelligent transportation systems.

2- Simulation Approach

The simulation of the ghost car attack and its effects on traffic flow was conducted using two primary tools:
Simulation of Urban Mobility (SUMO) for traffic simulation and ns-3 for network simulation. These tools were chosen
to replicate a realistic vehicular ad hoc network (VANET) environment, where the impact of a ghost car attack on traffic
dynamics, particularly waiting times at intersections and overall traffic flow, could be assessed. We simulated a typical
urban T-junction with moderate to high traffic density to reflect real-world congestion scenarios. The road network was
extracted from OpenStreetMap (Ayer Keroh, Melaka, Malaysia) to ensure a realistic layout with traffic lights and
multiple lanes as shown in Figure 1. While the study focused on a single type of intersection, the setup allowed for
dynamic variations in vehicle counts, enabling the assessment of how ghost cars disrupt traffic under increasing load.
Table 1 presents the detailed simulation parameters used in the study.
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Figure 1. T-Junction of Ayer Keroh, Melaka, Malaysia on OSMWebWizard
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Table 1. Simulation parameter

Parameter Settings
Network simulator ns-3.39 and SUMO
Wireless communication WAVE/IEEE 802.11p
Selected network traffic area T-junction near Ayer Keroh, Melaka
Maximum simulation time 200 seconds
Number of legitimate vehicle nodes 50-100
Number of ghost car nodes 1-10
Delay in point-to-point channel 2ms

To simulate the ghost car attack, a non-existent vehicle was introduced into the VANET system. This ghost car
injected false information into the network, creating a virtual presence that disrupted normal traffic operations. The ghost
car was designed to cause delays at intersections by generating false occupancy data that forced real vehicles to alter
their behaviour, such as slowing down, rerouting, or stopping to avoid a collision with the non-existent vehicle. Two
variations of the ghost car were implemented: one where the ghost car was visible within the simulation, and another
where it operated invisibly, affecting traffic without being observed by the vehicles or infrastructure.

The network simulation was performed in ns-3, utilizing the WAVE/802.11p protocol to enable real-time
communication between vehicles (V2V) and between vehicles and infrastructure (V2I). This communication was
essential for simulating the behaviour of the vehicular network during the ghost car attack. To ensure synchronized
operation between SUMO and ns-3, the Traffic Control Interface (TraCl) was used, allowing for real-time traffic
movement and network interactions. The integration between SUMO and ns-3 provided a comprehensive view of how
the ghost car affected both the traffic flow and the communication network. Traffic data, such as waiting times at
intersections and the number of vehicles affected by the ghost car, were collected and analysed. Visualization of the
traffic patterns and congestion levels was achieved using Matplotlib. Comparisons were drawn between the normal
traffic scenario and the scenario affected by the ghost car attack, with a focus on waiting times at intersections and the
overall impact on traffic flow. Figure 2 illustrates the simulation methodology includes defining the simulation area,
configuring traffic scenarios, integrating SUMO and ns-3 simulations, ghost cars in phased intervals, recording waiting
times, analyzing data, and comparing with normal traffic flow.

Simulation Area (OpenStreetMap)

'

SUMO
Map Data Traffic Scenario
NS-3
Libraries for Trace File
WAVE/802.11p
Ghost Car
Interval 1 Interval 2 Interval N

'

Graph Generation

CSV Results File

Figure 2. Simulation Block Diagram
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2-1-Ghost Car Setup

The primary objective of the ghost car simulation was to evaluate the disruptive impact of non-existent, or "ghost,"
vehicles on real-world traffic flow and waiting times, particularly at a critical intersection near Multimedia University
(MMU), Melaka. Ghost cars, in this context, represent vehicles that do not physically exist but are falsely introduced
into a traffic system, misleading the traffic management systems and other vehicles into treating them as real. By
simulating these phantom vehicles, the study sought to explore how they could influence congestion, delay legitimate
traffic, and cause inefficiencies in urban mobility.

The simulation was conducted using two platforms: SUMO (Simulation of Urban Mobility) for generating realistic
traffic flows and modelling vehicle behaviour, and ns-3 for handling network communications between the vehicles.
Together, these platforms allowed for a detailed examination of both traffic and communication aspects. The simulation
was centered on a T-junction, a commonly congested intersection type in urban traffic systems, providing a
representative and relevant testbed for understanding how ghost cars might affect typical traffic flow.

In configuring the ghost vehicles for the simulation, a maximum limit of 10 ghost cars was set. This decision allowed
the simulation to maintain balance and avoid overwhelming the system, thus ensuring that the results reflected a realistic
traffic scenario. The ghost cars were not introduced all at once; rather, they were added in phases, with one vehicle being
introduced every 20 simulation steps following an initial 10-second delay. This gradual influx of ghost vehicles was
intended to mimic the real-world scenario of vehicles steadily approaching an intersection, while also providing insight
into how the timing of such ghost vehicle attacks affects traffic flow. Ghost cars were differentiated from real vehicles
through parameters including lack of physical presence (no collision detection), consistent introduction intervals (every
20 simulation steps), and artificially induced waiting delays (an additional 5 seconds per ghost vehicle introduced).

Once introduced, each ghost vehicle contributed an additional 5 seconds to the waiting time of legitimate, real vehicles
at the T-junction. This configuration simulated the congestion that ghost vehicles would create by falsely occupying
space in the traffic system. Throughout the simulation, detailed data on vehicle counts and waiting times were recorded
at every step, allowing for a comprehensive analysis of how ghost vehicles alter the dynamics of traffic.

Throughout the simulation, detailed data was collected at every simulation step, capturing the number of real and
ghost vehicles present, as well as the respective waiting times for each. This allowed for an in-depth analysis of how
ghost vehicles disrupted the flow of legitimate traffic. The data was then visualized through graphs showing the
variations in traffic conditions before and after the ghost cars were introduced. These visualizations were critical in
illustrating the stark contrast between normal traffic flow and the congested conditions caused by the introduction of
ghost vehicles.

The gradual increase in ghost vehicle presence demonstrated how even a small number of such vehicles could
significantly disrupt traffic operations. The data clearly indicated that as the number of ghost cars grew, traffic delays
worsened, creating an increasingly chaotic traffic environment. The insights gleaned from this simulation provided a
better understanding of how ghost car attacks could exploit vulnerabilities in traffic management systems, causing
cascading delays that, over time, could lead to gridlock or severe congestion, especially in densely populated urban area

2-2-Performance Metrics

In evaluating the impact of ghost car attacks on Vehicular Ad Hoc Networks (VANETS), several performance metrics
were considered. One key metric is the vehicle count at the intersection, which tracks the number of vehicles present
during the simulation. In the ghost car scenario, vehicle counts were artificially inflated, causing congestion and leading
to inefficient traffic management as the system responded to non-existent vehicles.

Another important metric is waiting time, which measures how long vehicles remain idle at the intersection. The
introduction of ghost cars led to significantly longer waiting times, as real vehicles were delayed by the fabricated
presence of ghost vehicles, highlighting the disruptive nature of the attack on traffic flow. Traffic throughput, or the
number of vehicles successfully passing through the intersection, was also measured. Throughput decreased during the
ghost car scenario due to these delays, demonstrating the negative impact of ghost cars on overall traffic efficiency.

Additionally, the congestion level at the intersection was examined by analysing vehicle density and waiting times.
The presence of ghost cars led to higher congestion levels, creating artificial traffic jams that severely affected the normal
flow of vehicles. Lastly, the response time to ghost car presence was assessed by observing how quickly real vehicles
adjusted to the appearance of ghost cars. The longer response times further illustrated the impact of the attack, as vehicles
had to react to fabricated obstacles that disrupted normal traffic coordination

3- Results

In the normal traffic flow, vehicles move through the intersection based on typical traffic conditions without external
interference. Vehicle counts and waiting times fluctuate naturally but remain within expected ranges. In contrast, when
a ghost car is introduced, it disrupts this flow by creating false congestion. This leads to longer waiting times, more
erratic vehicle counts, and overall inefficiencies, as real vehicles are forced to react to non-existent threats, significantly
impacting traffic coordination and causing unnecessary delays.
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3-1-Normal Traffic Flow

Figure 3 shows the normal traffic scenario; vehicles are behaving as expected in response to the intersection’s traffic
signals and lane assignments. There appear to be moderate numbers of vehicles, and traffic flow seems manageable,
with no significant buildup or abnormal congestion. This reflects typical intersection behavior without external
interference, such as ghost cars, allowing the traffic system to function efficiently based on real conditions.

Figure 3. Simulation of normal traffic flow

Figure 4 shows vehicle activity at an intersection during a traffic simulation. It records the number of vehicles present
and the waiting time at each step. The simulation tracks how long vehicles are delayed at the intersection, with waiting
times increasing as more vehicles approach and decreasing as vehicles move through. This log offers insight into the
flow of traffic, showing how congestion builds up and clears over time. It helps analyze traffic patterns and identify
periods of delay and smooth flow in real-time scenarios.
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Figure 4. Simulation log for normal traffic flow

Figure 5 tracks the real vehicles detected at the intersection over time. In the first part of the simulation, no vehicles
are present until around the 40-second mark, when a few vehicles begin arriving at the intersection. The vehicle count
then fluctuates as more vehicles enter and leave the intersection. The highest number of vehicles detected at the
intersection is around four, occurring around the 75-second mark. After that peak, the number of vehicles gradually
decreases, with a few intermittent arrivals and departures before the traffic flow returns to zero around the 170-second
mark. This indicates a typical pattern of traffic flow where vehicles occasionally queue and disperse as they pass through
the intersection
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Real Vehicles Detected at Intersection
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Figure 5. Normal traffic flow

In the bottom graph, the waiting times at the intersection appeared over the same period. Initially, there is no waiting
time since no vehicles are present. However, as the vehicle count increases (as seen in the upper graph), the waiting time
also rises, peaking sharply at around 50 seconds. This peak is significant, showing a maximum waiting time of
approximately 50 seconds, which aligns with the high traffic volume indicated in the upper graph. After this peak, the
waiting time rapidly decreases, reflecting the clearance of vehicles from the intersection. There are a few smaller spikes
in waiting time later in the simulation, correlating with the brief arrival of vehicles after the 100-second mark. However,
these spikes are much lower compared to the main peak.

3-2-Ghost Cars Traffic Flow

In comparison to normal traffic flow, the introduction of ghost cars significantly disrupts the system. In the ghost car
scenario, vehicle counts increase steadily due to the non-existent ghost cars, leading to much longer waiting times at
intersections. While normal traffic flow sees fluctuations and eventual reductions in waiting times as vehicles clear the
intersection, the ghost car scenario causes prolonged delays, as real vehicles are forced to respond to the fake congestion
created by the ghost cars. This results in a chaotic and inefficient traffic flow compared to the smoother, more predictable
patterns of normal traffic.

Figure 6 shows the intersection with the introduction of a ghost car, represented by the blue vehicle. The ghost car
does not physically exist but appears within the system, causing real vehicles to adjust their behavior. Real vehicles,
represented by yellow cars, are seen waiting at various points in the intersection. The presence of the ghost car can lead
to unnecessary stops or slowdowns, as the system treats the ghost car as a real vehicle, potentially increasing congestion
and disrupting the normal flow of traffic. This highlights how the ghost car attack creates artificial congestion in the
network.

Figure 6. Simulation of traffic with ghost cars appeared
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Figure 7 shows the detail of how the presence of both real vehicles and ghost cars affects waiting times at an
intersection. Each step records the number of real vehicles, ghost cars, and the waiting time for vehicles. As the
simulation progresses, the waiting time increases significantly due to the presence of ghost cars. This log illustrates the
impact of ghost cars on traffic flow, highlighting how they cause delays by making real vehicles wait longer than they
would in a normal traffic scenario.
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Figure 7. Simulation Log for ghost car flow

Figure 8 demonstrates the real and ghost vehicles detected at the intersection over time. Initially, only real vehicles
are present, but as the simulation progresses, ghost vehicles (represented by the blue line) start to appear. Unlike the real
vehicles, which fluctuate in number, the ghost vehicles steadily increase, eventually reaching a count of eight by the end
of the simulation. This steady growth in ghost vehicles highlights the disruptive nature of the attack, as the non-existent
vehicles persistently occupy virtual space in the network, forcing real vehicles to alter their behavior unnecessarily.
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Figure 8. Ghost car flow

The bottom graph shows the waiting times at the intersection. Like the normal flow, waiting times begin to increase
as real vehicles accumulate. However, once ghost cars are introduced, the waiting times grow significantly higher and
more erratic. At around the 75-second mark, the waiting time reaches a peak of nearly 70 seconds, far exceeding the
peak seen in the normal traffic scenario. Even after this peak, the waiting times continue to fluctuate, reflecting the
ongoing impact of ghost vehicles as they continue to disrupt traffic coordination. The total waiting time remains high
throughout the simulation, contrasting sharply with the normal scenario, where waiting times decreased after vehicles
cleared the intersection.

The introduction of ghost cars clearly increases both the vehicle count and waiting times at the intersection. Ghost
vehicles create persistent congestion that forces real vehicles to experience delays far beyond what would occur under
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normal conditions. This demonstrates how a ghost car attack can severely disrupt traffic efficiency, causing significant
delays and inefficiencies in vehicular coordination. In our simulation, the average waiting time at the intersection
increased from approximately 18.4 seconds under normal traffic conditions to over 47.2 seconds during the peak of the
ghost car scenario, representing a nearly 2.5 times increase in waiting time. Vehicle counts at the intersection peaked at
nearly double the normal values due to the presence of ghost cars. Compared to other known VANET attacks such as
Sybil attacks (which in past studies led 90 to 100% increase in delays), the ghost car scenario exhibited a more persistent
disruption due to its illusion of continuous physical presence. This persistence caused ongoing false congestion, which
is less transient than other attacks relying on identity duplication or message delays.

4- Discussion

To effectively mitigate the ghost car attack in VANETS, a combination of security measures, detection algorithms,
and network protocols can be employed. Authentication is a fundamental strategy to ensure that only legitimate vehicles
can participate in a VANET. By implementing digital signatures and certificates, vehicles are assigned unique identities
issued by a trusted authority. This ensures that all messages exchanged within the network are signed and verified before
being accepted. For example, a vehicle can sign its data with its private key, and other vehicles can verify it using the
sender’s public key. This prevents malicious nodes from introducing fabricated vehicles like ghost cars.

Reputation-based systems help in distinguishing between trustworthy and potentially malicious vehicles. Every
vehicle is assigned a reputation score based on its behavior and the accuracy of its transmitted information. Vehicles
that consistently send valid and reliable data gain a higher reputation score, while those that transmit suspicious data
lose reputation. This system helps mitigate ghost car attacks by making it difficult for attackers to build a trusted
presence in the network. If a vehicle is flagged due to suspicious behavior, its messages will be disregarded by other
vehicles.

Position verification mechanisms involve cross-checking the physical location of a vehicle using multiple
sources. Vehicles can utilize data from onboard sensors or communicate with nearby nodes to validate the claimed
position of other vehicles. If discrepancies are detected, such as a vehicle claiming to be in a location that contradicts
sensor data or network inputs, it is flagged as a potential ghost car. Time-stamping each message ensures that
outdated or replayed messages cannot be used to manipulate the network. Every message transmitted includes a
timestamp, and receiving vehicles check if the message is recent enough. If a ghost car tries to introduce old or
delayed messages, they will be flagged as invalid due to incorrect timestamps. This prevents attackers from using
replay attacks to create ghost cars.

Machine learning and anomaly detection techniques can be used to analyze vehicle behaviors and detect unusual
patterns indicative of a ghost car attack. For instance, a ghost car might exhibit erratic movements, such as unrealistic
speeds or sudden position changes, which can be detected through anomaly detection algorithms. Vehicles with abnormal
behaviors are flagged and isolated from the network. Crowdsourced verification relies on the collective input from
multiple vehicles to confirm the presence of other vehicles. When a suspicious vehicle is detected, nearby vehicles are
asked to verify its existence through their own sensors or observations. If most vehicles report that the suspected vehicle
is not present, it is flagged as a ghost car. Recommended machine learning algorithms include Random Forest and Deep
Neural Networks due to their effectiveness in pattern recognition of anomalous vehicular behavior. Training these
algorithms requires realistic traffic data, both normal and under attack conditions.

Secure neighbor discovery protocols ensure that vehicles can only communicate with legitimate and physically
proximate nodes. This is done by verifying that vehicles are within a valid communication range before establishing a
connection. If a vehicle claiming to be a neighbor is not detected within a reasonable distance using onboard sensors, it
is flagged as suspicious. This strategy helps in detecting ghost cars by limiting communication to physically present
vehicles, preventing attackers from injecting ghost vehicles from a distance.

Blockchain technology can be applied to VANETS to create an immutable and decentralized ledger of all vehicle
communication. Each message exchanged between vehicles is recorded on the blockchain, ensuring that the data is
secure, verifiable, and tamper-proof. In this scenario, ghost car data cannot be easily introduced into the network
because every vehicle must be verified through the blockchain before its data is accepted. This decentralized security
method significantly enhances the trustworthiness of VANET communications. However, implementation
challenges include computational overhead, latency concerns, and the complexity of integrating with existing
VANET infrastructures.

An Intrusion Detection System (IDS) for VANETSs continuously monitors network traffic and detects abnormal
patterns that could indicate security breaches, such as ghost car attacks. The IDS uses predefined rules or machine
learning algorithms to identify deviations in vehicle behavior, such as unrealistic positions, speeds, or message contents.
When suspicious behavior is detected, the system raises an alert, and further actions, such as isolating the suspicious
vehicle, are taken to prevent network disruptions.
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5- Conclusion

The findings from this study highlight the impacts of ghost car attacks on VANETSs, particularly emphasizing
disruptions to traffic efficiency and safety. The simulation results show clearly increased waiting times at intersections
and inflated vehicle counts due to the artificial congestion generated by ghost vehicles. These disruptions reveal
vulnerabilities in current VANET architectures, as ghost cars can persistently occupy virtual space, misleading legitimate
traffic systems and causing delays. This research demonstrates that ghost car attacks have the potential to significantly
degrade the operational reliability of intelligent transportation systems (ITS), compromising their primary functions of
improving road safety, traffic efficiency, and overall driving experience. The practical implications are critical, as any
degradation in VANET reliability directly impacts public safety, infrastructure efficiency, and user trust in vehicular
technologies. Therefore, robust detection and mitigation strategies, such as leveraging machine learning, blockchain,
and enhanced authentication methods, are essential to secure VANETS against ghost car threats effectively.

To ensure broader applicability of these findings, future research should address the generalizability of the proposed
detection and mitigation strategies across different environments. Specifically, subsequent studies should simulate ghost
car attacks in varied geographic settings, including both urban and rural areas with different infrastructure complexities.
Testing these scenarios would reveal how diverse road types and adapting traffic densities influence the impact of ghost
cars, providing insights for more universal mitigation strategies. Additionally, future studies should explore the
effectiveness of the proposed detection mechanisms with different types of vehicles, including autonomous vehicles and
traditional human-driven vehicles, to evaluate potential differences in susceptibility and response. Real-world testing or
advanced simulations incorporating heterogeneous vehicle networks could further validate the practicality of proposed
solutions. Exploring combined cyber threats, such as simultaneous ghost car and Sybil or replay attacks, could present
deeper insights into the resilience of VANETSs under compound threat scenarios. By thoroughly addressing these
considerations, future research can substantially enhance the reliability and security of VANET-based transportation
systems, contributing to safer and efficient traffic management worldwide.
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