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Abstract 

Bivariate count data occurs when two associated variable counts necessitate joint estimate primarily 

for efficiency purposes. This paper presents Bayesian estimate for the zero-truncated bivariate 

Poisson regression model. This bivariate model was established using marginal-conditional models. 
Bayes estimators were executed utilizing the random walk Metropolis-Hastings algorithm with two 

distinct prior distributions: Laplace and normal distributions. Moreover, estimators employing the 

bootstrap approach were proposed. Additionally, the credible intervals and the percentile bootstrap 

confidence intervals were analyzed. The performance of the Bayes estimators was compared with 

that of the bootstrap estimators and the maximum likelihood estimators via a Monte Carlo simulation 
analysis, focusing on mean square error. The performance of intervals was evaluated based on 

coverage probability and average length. Furthermore, the explanatory variables were produced 

under conditions of both multicollinearity and a lack of multicollinearity. Two empirical datasets 
were examined to demonstrate the practical use of the suggested model and methodology. The 

findings from both the simulation and application indicate that the Bayesian method with a normal 

prior distribution surpasses alternative methods. 
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1- Introduction 

The interest in discrete bivariate count models has been greatly increased in recent years. Bivariate count models are 

employed in many real-life situations where paired counts exhibit correlation and necessitate joint estimates. For 

instance, there are statistics regarding the number of vehicles involved in road accidents and the number of casualties. 

In addition, the number of children in families with at least one child attending school and the number of schools attended 

by children in the family. Recently, Lerdsuwansri et al. (2022) [1] proposed a Conway-Maxwell-Poisson regression 

model for road traffic injuries in Thailand, whereas Simmachan et al. (2022) [2] suggested modeling road accident 

fatalities with underdispersion and zero-inflated counts. The widely used distribution for modeling the bivariate count 

data sets is the Poisson distribution. For example, Jung & Winkelmann (1993) [3] demonstrated that bivariate Poisson 

regression is superior to the univariate specification. Ho & Singer (1997) [4] proposed bivariate Poisson and bivariate 

Poisson log-normal regression models for the analysis of counts derived from a stratified sampling scheme. Kocherlakota 

& Kocherlakota (2001) [5] developed regression coefficient estimators for a bivariate Poisson distribution under various 

conditions, including unrestricted linear models, parallelism of regression planes, and coincidence of regression planes. 

Famoye (2012) [6] proposed a novel bivariate generalized Poisson regression model applicable to both over-dispersed 

and under-dispersed data.  

AlMuhayfith et al. (2016) [7] examined parameter estimation for bivariate and zero-inflated bivariate Poisson 

regression models through the conditional method. Qarmalah & Alzaid (2023) [8] proposed a class of bivariate Poisson 

models derived from the bivariate Bernoulli model, capable of modeling both positively and negatively correlated data. 

Additionally, a bivariate model was constructed using the marginal-conditional models [9]. Islam & Chowdhury (2015) 
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[10] recently proposed the marginal-conditional model for bivariate Poisson distribution. It is well known that zero-

inflated distribution can be applied to the models of data sets that contain lots of zeros, while zero-truncated distribution 

is proper for data sets that contain no zeros. Chowdhury & Islam (2016) [11] proposed a zero-truncated bivariate Poisson 

model for count data, which was performed using marginal-conditional models on the bivariate model. Moreover, a 

covariate-dependent bivariate generalized linear model is applied to road safety data utilizing canonical link functions 

via maximum likelihood estimation of parameters for Poisson distribution, but the other estimates in this model have yet 

to be discovered. 

The maximum likelihood estimation of parameters is valid for an asymptotically large sample size of data [12, 13]. 

A frequent issue in count regression models is that maximum likelihood estimates can become unstable and exhibit large 

standard errors of the estimates, which negatively impact statistical inference when sample sizes are inadequate. 

Moreover, the presence of multicollinearity among the explanatory variables in regression modeling has undesirable 

effects on maximum likelihood estimators which reduce the reliability of statistical inferences. Hybrid of the 

multicollinearity and high-dimensional data problems can lead to instabilities in a predictive model when applied to a 

new data set [14, 15]. To overcome the problem, various alternatives to parameter estimation have been proposed, and 

the bootstrap method is one of them. The bootstrap method is the technique most widely applied to remedy the effect of 

the small sample sizes and multicollinearity [16, 17]. In a ridge regression model, robust methods are combined with 

bootstrapping to address the simultaneous issues of multicollinearity and multiples outliers in the data [18]. The 

shrinkage parameter estimators were proposed by Sudjai & Duangsaphon (2020) [19], which also used the bootstrapping 

method to estimate the Liu logistic regression coefficient with multicollinearity problem. Moreover, Perveen & Suhail 

(2021) [20] proposed some new Poisson bootstrap Liu and Ridge estimators to address the problem of multicollinearity 

in the Poisson regression model.  

The zero-truncated bivariate Poisson model is well-suited for discrete, nonzero integer-valued bivariate count data. 

However, existing literature has largely overlooked Bayesian inference in this context. Among the contributions to 

Bayesian estimation of bivariate regression models, Majumdar & Gries (2010) [21] proposed simulation to explore the 

effectiveness of parameter estimation using the Bayesian procedure for bivariate zero-inflated Poisson regression, 

comparing the performance to the Bayesian and classical approaches. Choe et al. (2012) [22] estimated the regression 

coefficients of a bivariate Poisson regression model utilizing a Bayesian procedure that employs the Metropolis-Hastings 

algorithm within the Gibbs sampler to derive samples from the full conditional distributions. Specifically, these priors 

exhibit characteristics of high spread, exemplified by a normal density function with an exceptionally large variance. 

The posterior means and the highest posterior density (HPD) intervals for each parameter were computed; however, the 

performance and sensitivity assessments, including mean square error, coverage probability, and average length, remain 

to be determined. Arnold & Ghosh (2023) [23] proposed the Bayesian and frequentist approaches for bivariate Poisson 

conditional distributions. Additionally, recommendations regarding the selection of hyperparameters for the prior 

distribution were provided. Undiscovered Bayesian estimates in a zero-truncated bivariate Poisson regression model. 

Furthermore, several studies illustrated the application of a Bayesian methodology in the count regression model. 

Supharakonsakun (2021) [24] suggested the Bayesian estimation for Poisson distribution.  

Thangjai et al. (2021) [25] introduced confidence intervals for coefficients of variation of PM10 dispersion. Recently, 

Chaiprasithikul & Duangsaphon (2022) [26] proposed the Metropolis-Hastings algorithm for estimating Bayes 

estimators in the discrete Weibull regression model with censored data, utilizing two different prior distributions: 

uniform noninformative and normal distributions. The results of this model demonstrate that a normal prior distribution 

provides a better fit than a uniform noninformative prior distribution. Chaiprasithikul & Duangsaphon (2022) [27] 

proposed zero-inflated and hurdle discrete Weibull regression models utilizing the Metropolis-Hastings algorithm with 

three distinct prior distributions: uniform noninformative, Laplace, and normal distributions. Duangsaphon et al. (2024) 

[28] similarly presented the median discrete Weibull regression model. The findings of this model indicate that the 

Laplace prior distribution provides a superior fit compared to other prior distributions. Moreover, Srisuradetchai & 

Niyomdecha (2024) [29] proposed Bayesian inference for the gamma zero-truncated Poisson distribution. 

In the present article, the Bayesian estimation for zero-truncated bivariate Poisson model based on different prior 

distributions is proposed. What’s more, the bootstrap method is examined. To investigate the performance of Bayesian 

estimation under various prior distributions, the bootstrap method, and maximum likelihood estimation, a simulation 

study was carried out. In addition, two real data sets were analyzed to see how the model works in practice. 

The remainder of this paper is organized as follows. Section 2 provides an overview of the zero-truncated bivariate 

Poisson regression model. The maximum likelihood estimation is shown in section 3. The bootstrap approach is 

suggested in section 4. Bayesian estimate is demonstrated in section 5. Section 6 reports a simulation study to examine 

the performance of various estimations in both multicollinearity and no multicollinearity scenarios. Additionally, Section 

7 applies this model to two real data sets. Lastly, Sections 8–9 provide the discussion and concluding remarks, 

respectively. 

2- Zero-Truncated Bivariate Poisson Regression Model 

This section provides the basic framework for zero-truncated bivariate Poisson regression model see Chowdhury and 

Islam (2016) [11]. 
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2-1- Bivariate Poisson Model 

Consider two jointly distributed random variables, 𝑌1 and 𝑌2, each denotes event counts. Let 𝑌1 be the number of 

occurrences of the first event in a given interval following a Poisson distribution with parameter 𝜆1. The probability 

mass function of 𝑌1 is: 

𝑔1(𝑦1) =
𝑒−𝜆1𝜆1

𝑦1

𝑦1!
; 𝑦1 = 0,1, . ..,  𝜆1 > 0.  (1) 

Let 𝑌2𝑖 be a random variable associated with the number of occurrences of the second event in a given interval 

resulting from the 𝑖 − 𝑡ℎ occurrence of the first event, and suppose that 𝑌2𝑖 has a Poisson distribution with parameter𝜆2 

that can be defined as follows: 

𝑔2(𝑦2𝑖) =
𝑒−𝜆2𝜆2

𝑦2𝑖

𝑦2𝑖!
; 𝑦2𝑖 = 0,1, . ...,  𝜆2 > 0.  (2) 

Now, if 𝑌2𝑖 are assumed to be mutually independent, then the conditional distribution of 𝑌2 = 𝑌21 + 𝑌22+. . . +𝑌2𝑦1
, 

the total number of occurrences of the second event recorded among the 𝑌1 event occurring in the 𝑗 − 𝑡ℎtime interval, is 

Poisson distribution with parameter𝜆2𝑦1. Thus, the conditional distribution of 𝑌2given 𝑌1 are as follows:   

𝑔(𝑦2|𝑦1) =
𝑒−𝜆2𝑦1(𝜆2𝑦1)𝑦2

𝑦2!
; 𝑦2 = 0,1, …..  (3) 

Using conditional and marginal model, the joint distribution of the number of occurrences of the first event  𝑌1 and 

the corresponding number of occurrences of the second event 𝑌2 can be expressed as follows:  

𝑔(𝑦1, 𝑦2) = 𝑔(𝑦2|𝑦1) ⋅ 𝑔1(𝑦1) =
𝑒−𝜆1𝜆1

𝑦1𝑒−𝜆2𝑦1(𝜆2𝑦1)𝑦2

𝑦1!𝑦2!
  (4) 

where 𝑦1 = 0,1, . ..  and  𝑦2 = 0,1, . ...  

2-2- Zero Truncated Bivariate Poisson (ZTBVP) Model 

The probability of 𝑌1 = 0 is 𝑒−𝜆1, using Equation 1.  Given 𝑌𝑍𝑇1 is a zero- truncated Poisson random variable based 

on 𝑌1and 𝑌𝑍𝑇2 is a zero-truncated Poisson random variable based on 𝑌2. Then, the probability mass function for 𝑌𝑍𝑇1 is 

as follows: 

𝑔1
∗(𝑦1) = 𝑃(𝑌1 = 𝑦1|𝑌1 > 0) =

𝑃(𝑌1=𝑦1)

𝑃(𝑌1>0)
=

𝑃(𝑌1=𝑦1)

1−𝑃(𝑌1=0)
=

𝜆1
𝑦1

𝑦1!(𝑒𝜆1−1)
.  (5) 

Then, the exponential form of the probability mass function of 𝑌𝑍𝑇1 can be expressed as follows: 

𝑔1
∗(𝑦1) = 𝑒𝑥𝑝[𝑦1 𝑙𝑛 𝜆1 − 𝑙𝑛(𝑦1!) − 𝑙𝑛(𝑒𝜆1 − 1)].  (6) 

The mean and variance of 𝑌𝑍𝑇1 can be shown as follow:  

𝜇𝑌𝑍𝑇1
= 𝐸[𝑌𝑍𝑇1] =

𝜆1𝑒𝜆1

(𝑒𝜆1−1)
  (7) 

and 

𝜎𝑌𝑍𝑇1
2 = 𝑉𝑎𝑟[𝑌𝑍𝑇1] =

𝜆1𝑒𝜆1

(𝑒𝜆1−1)
(1 −

𝜆1

𝑒𝜆1−1
).  (8) 

In Equation 3, the zero-truncated conditional model of 𝑌2 = 𝑦2|𝑦1, 𝑌2 > 0 can be rewritten as follows: 

𝑃(𝑌2 = 𝑦2|𝑦1, 𝑌2 > 0) =
𝑃(𝑌2=𝑦2|𝑌1=𝑦1)

𝑃(𝑌2>0|𝑌1=𝑦1)
=

𝑃(𝑌2=𝑦2|𝑌1=𝑦1)

1−𝑃(𝑌2=0|𝑌1=𝑦1)
.  (9) 

Then, the probability mass function for zero-truncated conditional Poisson distribution (𝑌𝑍𝑇2|𝑌𝑍𝑇1) can be shown as 

follows: 

𝑔2
∗(𝑦2|𝑦1) =

𝑒−𝜆2𝑦1(𝜆2𝑦1)𝑦2

𝑦2!
×

1

(1−𝑒−𝜆2𝑦1)
=

(𝜆2𝑦1)𝑦2

𝑦2!(𝑒𝜆2𝑦1−1)
.   (10) 

where 𝑦1 = 1,2, . .. and 𝑦2 = 1,2, . ...  

The mean and variance of 𝑌𝑍𝑇2|𝑌𝑍𝑇1 are 

𝜇𝑌𝑍𝑇2|𝑌𝑍𝑇1
= 𝐸[𝑌𝑍𝑇2|𝑌𝑍𝑇1] =

𝜆2𝑦1𝑒𝜆2𝑦1

(𝑒𝜆2𝑦1−1)
   (11) 

and 
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𝜎𝑌𝑍𝑇2|𝑌𝑍𝑇1

2 = 𝑉𝑎𝑟[𝑌𝑍𝑇2|𝑌𝑍𝑇1] =
𝜆2𝑦1𝑒𝜆2𝑦1

(𝑒𝜆2𝑦1−1)
(1 −

𝜆2𝑦1

𝑒𝜆2𝑦1−1
).   (12) 

In a comparable manner, the joint distribution construction of employing the zero-truncation distribution's marginal 

and conditional distribution for bivariate Poisson model can be obtained as follows: 

𝑔∗(𝑦1, 𝑦2) = 𝑔2
∗(𝑦2|𝑦1)𝑔1

∗(𝑦1) =
(𝜆2𝑦1)𝑦2(𝜆1)𝑦1

𝑦1!𝑦2!(𝑒𝜆2𝑦1−1)(𝑒𝜆1−1)
    (13) 

where 𝑦1 = 1,2, . .. and 𝑦2 = 1,2, . ...  

The zero truncated bivariate Poisson model expression in Equation 13 can be expressed in bivariate exponential form 

as: 

𝑔∗(𝑦1, 𝑦2) = 𝑒𝑥𝑝[ 𝑦1 𝑙𝑛 𝜆1 − 𝑙𝑛( 𝑦1!) − 𝑙𝑛( 𝑒𝜆1 − 1) + 𝑦2 𝑙𝑛 𝜆2 + 𝑦2 𝑙𝑛( 𝑦1) − 𝑙𝑛( 𝑦2!) − 𝑙𝑛( 𝑒𝜆2𝑦1 − 1)].   (14) 

2-3- Regression Model 

Given the 𝑘 explanatory variables, 𝒙′ = (1, 𝑥1, . . . , 𝑥𝑘) and a vector composed of regression coefficients is 𝛽1
′ =

(𝛽10, 𝛽11, . . . , 𝛽1𝑘) and 𝛽2
′ = (𝛽20, 𝛽21, . . . , 𝛽2𝑘), it is assumed that the parameter 𝜆1 and 𝜆2 are related to 𝑘 explanatory 

variables 𝒙′as follows: 

𝑙𝑛 𝜆1 = 𝒙′𝛽1 and 𝑙𝑛 𝜆2 = 𝒙′𝛽2.   (15) 

From Equation 14 and 15, the joint probability mass function of  (𝑌𝑍𝑇1, 𝑌𝑍𝑇2) given 𝒙 can be written as follows: 

𝑔∗(𝑦1, 𝑦2|𝒙) = 𝑒𝑥𝑝 [
𝑦1 𝑙𝑛(𝑒(𝒙′𝜷𝟏)) − 𝑙𝑛( 𝑦1!) − 𝑙𝑛( 𝑒𝑒

(𝒙′𝜷𝟏)

− 1)

+𝑦2 𝑙𝑛(𝑒(𝒙′𝜷𝟐)) + 𝑦2 𝑙𝑛( 𝑦1) − 𝑙𝑛( 𝑦2!) − 𝑙𝑛( 𝑒𝑦1𝑒
(𝒙′𝜷𝟐)

− 1)

].   (16) 

3- Maximum Likelihood Estimation 

In this section, the maximum likelihood estimation for the ZTBVP regression model is performed.  

Given a random sample (𝑌𝑍𝑇1𝑖 , 𝑌𝑍𝑇2𝑖);  𝑖 = 1,2, . . . , 𝑛 from the ZTBVP distribution with the observed values 𝒚𝟏 =
𝑦11, 𝑦12, . . . , 𝑦1𝑛 , 𝒚𝟐 = 𝑦21, 𝑦22, . . . , 𝑦2𝑛 , the explanatory variables 𝒙𝑖

′ = (1, 𝑥𝑖1, . . . , 𝑥𝑖𝑘);  𝑖 = 1,2, . . . , 𝑛, and 𝜽 =
(𝛽10, . . . , 𝛽1𝑘, 𝛽20, . . . , 𝛽2𝑘). From Equation 16, the likelihood function of the zero truncated bivariate Poisson regression 

model is given by 

𝐿(𝜽|𝒚𝟏, 𝒚𝟐, 𝒙) = ∏ 𝑒𝑥𝑝 [
𝑦1𝑖 𝑙𝑛 (𝑒𝒙𝑖

′ 𝜷𝟏) − 𝑙𝑛( 𝑦1𝑖!) − 𝑙𝑛( 𝑒𝑒𝒙𝑖
′ 𝜷𝟏

− 1)

+𝑦2𝑖 𝑙𝑛 (𝑒𝒙𝑖
′ 𝜷𝟐) + 𝑦2𝑖 𝑙𝑛( 𝑦1𝑖) − 𝑙𝑛( 𝑦2𝑖!) − 𝑙𝑛( 𝑒𝑦1𝑖𝑒𝒙𝑖

′ 𝜷𝟐
− 1)

]𝑛
𝑖=1    (17) 

The log-likelihood function of the zero-truncated bivariate Poisson regression model is given by 

𝑙𝑛 𝐿 (𝜽|𝒚𝟏, 𝒚𝟐, 𝒙) = ∑ [
𝑦1𝑖 𝑙𝑛( 𝒙𝑖

′ 𝜷𝟏) − 𝑙𝑛( 𝑦1𝑖!) − 𝑙𝑛( 𝑒𝑒𝒙𝑖
′ 𝜷𝟏

− 1)

+𝑦2𝑖 𝑙𝑛( 𝒙𝑖
′ 𝜷𝟐) + 𝑦2𝑖 𝑙𝑛( 𝑦1𝑖) − 𝑙𝑛( 𝑦2𝑖!) − 𝑙𝑛( 𝑒𝑦1𝑖𝑒𝒙𝑖

′ 𝜷𝟐
− 1)

]𝑛
𝑖=1 .   (18) 

The maximum likelihood estimators are obtained by setting the first partial derivatives of the log-likelihood function 

with respect to each unknown parameter equal to zero. The first partial derivatives of 𝑙𝑛 𝐿 (𝜽|𝒚𝟏, 𝒚𝟐, 𝒙) with respect to 

parameters 𝛽1𝑗 and 𝛽2𝑗 , 𝑗 = 0,1, . . , 𝑘 , are showed as follows:  

𝜕

𝜕𝛽1𝑗
𝑙𝑛 𝐿 (𝜽|𝒚𝟏, 𝒚𝟐, 𝒙) = ∑ [𝑦1𝑖 −

𝑒
𝑥𝑖𝑗
′ 𝛽1𝑒𝑒

𝑥𝑖𝑗
′ 𝛽1

𝑒𝑒
𝑥𝑖𝑗
′ 𝛽1

−1

]𝑛
𝑖=1  𝑥𝑖𝑗 = 0   (19) 

and 

𝜕

𝜕𝛽2𝑗
𝑙𝑛 𝐿 (𝜽|𝒚𝟏, 𝒚𝟐, 𝒙) = ∑ [𝑦2𝑖 −

𝑦1𝑖𝑒
𝑥𝑖𝑗
′ 𝛽2𝑒𝑦1𝑖𝑒

𝑥𝑖𝑗
′ 𝛽2

𝑒𝑦1𝑖𝑒
𝑥𝑖𝑗
′ 𝛽2

−1

]𝑛
𝑖=1  𝑥𝑖𝑗 = 0.   (20) 

It is apparent there is no explicit solution to the aforementioned equations. Numerical methods such as the Newton-

Raphson or Gauss-Newton methods, or their variations, can be used to solve equations.  

We define the observed Fisher's information matrix at 𝜽as 𝐼(𝜽) which contain the negative of the second derivative 

of the log-likelihood function. Consequently, the variance-covariance matrix of maximum likelihood estimators is the 

inverse of the observed Fisher's information matrix,  
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∑ = 𝐼−1(𝜽).   (21) 

The maximum likelihood estimators are replaced, yielding an estimator of ∑ presented by ∑̂. Parameter inferences 

are conducted utilizing the maximum likelihood method. Under certain regularity conditions, these estimators exhibit 

standard asymptotic properties [30]. Thus, by the asymptotic normality of maximum likelihood estimators, the 100(1 −
𝛼)% confidence intervals for parameters 𝛽𝑖𝑗 respectively manifests as; 

𝛽̂𝑖𝑗 ± 𝑧𝛼/2√𝜎̂𝛽𝑖𝑗

2    (22) 

where 𝑧𝛼/2 is the upper 𝛼/2 − 𝑡ℎ quantile of the standard normal distribution, 𝑖 = 1,2, 𝑗 = 0,1, . . , 𝑘 and 𝜎̂𝛽𝑖𝑗
is standard 

error of estimator 𝛽̂𝑖𝑗which can be obtained from ∑̂. 

4- Bootstrapping Method 

Given a random sample (𝑌𝑍𝑇1𝑖 , 𝑌𝑍𝑇2𝑖);  𝑖 = 1,2, . . . , 𝑛 from the ZTBVP distribution with the observed values 𝒚𝟏 =
𝑦11, 𝑦12, . . . , 𝑦1𝑛 , 𝒚𝟐 = 𝑦21, 𝑦22, . . . , 𝑦2𝑛 , the explanatory variables 𝒙𝑖

′ = (1, 𝑥𝑖1, . . . , 𝑥𝑖𝑘);  𝑖 = 1,2, . . . , 𝑛 , and 𝛽𝑖𝑗  is a 

regression coefficient;  𝑖 = 1,2, 𝑗 = 0,1, . . . , 𝑘.  There are two approaches for bootstrapping:  the first approach involves 

resampling the random error term, while the second approach resamples from the observations.  This study adopts the second 

approach. Consequently, the outlined procedure for bootstrapping is as follows: 

Step 1: Create a bootstrap sample of size 𝑛 (𝑧1
∗, 𝑧2

∗, . . . , 𝑧𝑛
∗) from the original data with the replacement giving 

1

𝑛
 probability 

for each 𝑧𝑖
∗. Thus, this study obtains the following: 𝑧𝑖

∗ = (𝒚𝟏𝑖
∗, 𝒚𝟐𝑖

∗, 𝒙𝑖
′ ∗

) , 𝑖 = 1,2, . . . , 𝑛. 

Step 2: Estimate parameters 𝛽1𝑗 and 𝛽2𝑗, 𝑗 = 0,1, . . . , 𝑘 for the zero-truncated bivariate Poisson regression model using 

maximum likelihood method.  

Step 3: Repeat steps 1-2 for 𝐵 times, where 𝐵 is the number of repetitions. This investigation can therefore arise bootstrap estimates 

for parameters 𝛽1𝑗 and 𝛽2𝑗. 

Step 4: Use the resulting bootstrap estimates in step 3 (e.g.  ,𝛽̂𝑖𝑗
∗(1)

, 𝛽̂𝑖𝑗
∗(2)

, . . . , 𝛽̂𝑖𝑗
∗(𝐵)

; 𝑖 = 1,2, 𝑗 = 0,1, . . . , 𝑘) to compute the 

average estimate for each estimator. Therefore, the estimated values of the parameters for application with the bootstrapping 

method are as follows: 

𝛽̄̂𝑖𝑗
∗ =

1

𝐵
∑ 𝛽̂𝑖𝑗

∗(𝑏)𝐵
𝑏=1    (23)  

The 100(1 − 𝛼)% percentile bootstrap confidence interval is constructed as follows: 

(𝛽̂𝑖𝑗
∗ 𝛼/2

 , 𝛽̂𝑖𝑗
∗ 1−𝛼/2

)   (24) 

where 𝛽̂𝑖𝑗
∗ 𝛼/2

 and 𝛽̂𝑖𝑗
∗ 1−𝛼/2

 are (𝛼/2)𝐵 − 𝑡ℎ and (1 − 𝛼/2)𝐵 − 𝑡ℎ values in the ordered list of the 𝐵 replications of  𝛽̂𝑖𝑗
∗ , 

𝑖 = 1,2, 𝑗 = 0,1, . . . , 𝑘, and 𝛼 is the level of significance. 

5- Bayesian Estimation 

The Bayes estimators for the zero truncated bivariate Poisson regression model are carried out in this section using 

two schemes of informative prior distributions: Laplace prior distribution and normal prior distribution. 

i) Laplace distribution. 

This study can execute the informative prior distribution, which should contain all potential values of the 𝛽𝑖𝑗 

parameter, if prior information is available.  It chooses the prior distribution of 𝛽𝑖𝑗, which is a Laplace distribution with 

the hyperparameters set to (0,1/𝜆). The possible values of are real numbers that match the possible values of a Laplace 

distribution. The following the prior distributions are as follows: 

𝜋(𝛽𝑖𝑗) =
𝜆

2
𝑒−𝜆|𝛽𝑖𝑗|, 𝜆 > 0,  𝑖 = 1,2, 𝑗 = 0,1, . . . , 𝑘. 

ii) Normal distribution. 

As stated earlier, the prior distribution of 𝛽𝑖𝑗, which is a normal distribution with the hyperparameters as (𝜇𝛽𝑖𝑗
, 𝜎𝛽𝑖𝑗

2 ), 

𝑖 = 1,2, 𝑗 = 0,1, . . . , 𝑘 is chosen for this study because the possible values of 𝛽𝑖𝑗 are real numbers that are comparable 

to the possible values of a normal distribution. The following the prior distributions are as follows: 

𝜋(𝛽𝑖𝑗) =
1

√2𝜋𝜎𝛽𝑖𝑗
2

𝑒
−

1

2𝜎𝛽𝑖𝑗
2 (𝛽𝑖𝑗−𝜇𝛽𝑖𝑗

)
2

, 𝜇𝛽𝑖𝑗
∈ ℝ, 𝜎𝛽𝑖𝑗

2 > 0,  𝑖 = 1,2, 𝑗 = 0,1, . . . , 𝑘. 
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The joint prior distributions of the parameters 𝜽 = (𝛽10, . . . , 𝛽1𝑘 , 𝛽20, . . . , 𝛽2𝑘) under the independence assumption is 

𝜋(𝜽) = 𝜋(𝛽10)𝜋(𝛽11) ⋯ 𝜋(𝛽2(𝑘−1))𝜋(𝛽2𝑘).   (25) 

The joint posterior density function of the parameters 𝜽 can be written as: 

𝑝(𝜽|𝒚𝟏, 𝒚𝟐, 𝒙) =
𝐿(𝜽|𝒚𝟏,𝒚𝟐,𝒙)𝜋(𝜽)

∬⋯ ∫ 𝐿(𝜽|𝒚𝟏,𝒚𝟐,𝒙)𝜋(𝜽)𝑑𝛽10⋯𝑑𝛽2(𝑘−1)𝑑𝛽2𝑘
∝ 𝐿(𝜽|𝒚𝟏, 𝒚𝟐, 𝒙)𝜋(𝜽)   (26) 

where 𝐿(𝜽|𝒚𝟏, 𝒚𝟐, 𝒙) is the likelihood function of zero-truncated bivariate Poisson regression model in Equation 17. 

The Bayes estimator of each parameter under squared error loss function is the expected value of each parameter 

under the joint posterior density function. Therefore, the Bayes estimators are given by 

𝛽̂𝑖𝑗 = ∬ ⋯ ∫ 𝛽𝑖𝑗𝑝(𝜽|𝒚𝟏, 𝒚𝟐, 𝒙)𝑑𝛽10 ⋯ 𝑑𝛽2(𝑘−1)𝑑𝛽2𝑘   (27) 

where 𝑖 = 1,2, 𝑗 = 0,1,2, . . . , 𝑘. 

One challenge in executing the Bayesian procedure lies in acquiring the posterior distribution. The process often 

requires integration, which can be quite challenging to compute, particularly when addressing complex and high-

dimensional models. In this context, Metropolis-Hastings (MH) algorithms prove to be extremely useful for modeling 

deviations from the posterior density and producing precise approximations. [31, 32]. 

Given that the integral in Equation 26 lacks a closed form, this study chose for the random walk Metropolis-Hastings 

algorithm to estimate the Bayes estimators. It also determines the joint posterior density function of the parameters 𝜽 =
(𝛽10, . . . , 𝛽1𝑘, 𝛽20, . . . , 𝛽2𝑘), 𝑝(𝜽|𝒚𝟏, 𝒚𝟐, 𝒙) in Equation 26 as the target distribution, while 𝜽 is the current state value, 

and 𝜽∗ is the proposal value generated from the proposal distribution 𝑞(𝜽∗|𝜽). Then, the proposal value 𝜽∗ is accepted 

with the probability 𝑝 = 𝑚𝑖𝑛(1, 𝑅𝜽), where 

𝑅𝜽 =
𝐿(𝜽∗|𝒚𝟏,𝒚𝟐,𝒙)𝜋(𝜽∗)

𝐿(𝜽|𝒚𝟏,𝒚𝟐,𝒙)𝜋(𝜽)
×

𝑞(𝜽|𝜽∗)

𝑞(𝜽∗|𝜽)
.   (28) 

For the random walk Metropolis algorithm, the proposal distribution is symmetrical, depending only on the distance 

between the current state value and the proposal value.  Then, the proposal value 𝜽∗ is accepted with probability 𝑝 =
𝑚𝑖𝑛(1, 𝑅𝜽), where 

𝑅𝜽 =
𝐿(𝜽∗|𝒚𝟏,𝒚𝟐,𝒙)𝜋(𝜽∗)

𝐿(𝜽|𝒚𝟏,𝒚𝟐,𝒙)𝜋(𝜽)
. 

The iterative steps of the random walk Metropolis algorithm can be described as follows: 

Step 1:  Establish the initial parameters 𝜽(0) = (𝛽10
(0)

, . . . , 𝛽1𝑘
(0)

, 𝛽20
(0)

, . . . , 𝛽2𝑘
(0)

) for the algorithm by utilizing the 

maximum likelihood estimators.  

Step 2: For 𝑙 = 1,2, … , 𝐿, repeat the following steps; 

a) Generate random error vector 𝜺 from a multivariate normal distribution with a zero-mean vector and variance-

covariance matrix as a diagonal matrix in which the diagonal elements are the diagonal of the inverse of the observed 

Fisher’s information matrix; 𝜺 ∼ 𝒩 (𝝁 = 𝟎, 𝜮 = 𝑑𝑖𝑎𝑔(𝐼−1(𝜽))). Then, set 𝜽∗ = 𝜽(𝑙−1) + 𝜺.  

b) Calculate 𝑝 = 𝑚𝑖𝑛(1, 𝑅𝜽) where 𝑅𝜽 =
𝐿(𝜽∗|𝒚𝟏,𝒚𝟐,𝒙)𝜋(𝜽∗)

𝐿(𝜽|𝒚𝟏,𝒚𝟐,𝒙)𝜋(𝜽)
. 

c) Generate 𝑢 from a uniform distribution; 𝑢 ∼ 𝑈(0,1). 

If 𝑢 ≤ 𝑝, accept 𝜽∗ and set 𝜽(𝑙) = 𝜽∗ with probability 𝑝. 

If 𝑢 > 𝑝, reject 𝜽∗ and set 𝜽(𝑙) = 𝜽(𝑙−1) with probability 1 − 𝑝. 

Step 3: Remove 𝐿0 of the chain for burn-in.  

Step 4:  Calculate the estimated values of the Bayes estimators of the parameters 𝛽𝑖𝑗 from the average of the generated 

values as given by; 

𝛽̂𝑖𝑗 =
1

𝐿−𝐿0
∑ 𝛽𝑖𝑗

(𝑙)𝐿
𝑙=𝐿0+1    (30) 

where 𝑖 = 1,2, 𝑗 = 0,1,2, . . . , 𝑘, 𝐿 is the number of iterations in the random walk Metropolis algorithm, and 𝐿0  is the burn-
in period. 

The construction of the Bayesian credible intervals [33, 34] of the parameters 𝛽𝑖𝑗 ,  𝑖 = 1,2, , 𝑗 = 0,1,2, . . . , 𝑘follows 

  (29) 
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the Monte Carlo procedure.  Given an MCMC sample 𝛽𝑖𝑗
(𝑙)

,  𝑙 = 𝐿0 + 1, 𝐿0 + 2, . . . , 𝐿, the Bayesian credible intervals 

for 𝛽𝑖𝑗 can be shown as follows: 

Step 1: Sort {𝛽𝑖𝑗
(𝑙)

,  𝑙 = 𝐿0 + 1, 𝐿0 + 2, . . . , 𝐿} to obtain the ordered value 𝛽𝑖𝑗(1)
≤ 𝛽𝑖𝑗(2)

≤. . . . ≤ 𝛽𝑖𝑗(𝐿−𝐿0)
. 

Step 2: Compute the 100(1 − 𝛼)% credible intervals 

(𝛽̂
𝑖𝑗((𝐿−𝐿0)

𝛼

2
)
 , 𝛽̂

𝑖𝑗((𝐿−𝐿0)(1−
𝛼

2
))

)   (31) 

where 𝛽̂
𝑖𝑗((𝐿−𝐿0)

𝛼

2
)
 and 𝛽̂

𝑖𝑗((𝐿−𝐿0)(1−
𝛼

2
))

 are (𝐿 − 𝐿0)
𝛼

2
− 𝑡ℎ and (𝐿 − 𝐿0)(1 −

𝛼

2
) − 𝑡ℎ values in the ordered list of the                  

𝐿 − 𝐿0  replications from step 1, 𝑖 = 1,2, 𝑗 = 0,1, . . . , 𝑘, and 𝛼 is the level of significance. 

6- Simulation Study 

In this section, the Monte Carlo simulation is conducted to assess and compare the performance of estimating the 

parameters of the zero- truncated bivariate Poisson regression model; maximum likelihood method, bootstrapping 

method, and the Bayesian methods. The simulation was executed, based on the conditions as follows:  

(a) The various selected sample sizes (𝑛) are 50, 100, and 200 for two explanatory variables.          

(b) The explanatory variables are considered, based on both no multicollinearity (Scenario 1) and multicollinearity 

(Scenario 2); 

Scenario 1: Set two different explanatory variables from a normal distribution𝑋1~𝑁(0,1), and a uniform distribution 

𝑋2~𝑈(0,10). Set the regression parameters to take values 𝜽 = (𝛽10, 𝛽11 , 𝛽12, 𝛽20 , 𝛽21, 𝛽22) = (0.2,-0.1,0.1,-0.3,0.2,0.1). 

Scenario 2:  Set two different explanatory variables from a multivariate uniform distribution 𝑿~𝑈(0,1)  where                    

𝑿 = (𝑋1, 𝑋2) and varying correlation level as 0.3 0.5 0.7 and 0.95.   Setting the regression parameters to take values 

𝜽 = (𝛽10, 𝛽11, 𝛽12, 𝛽20, 𝛽21, 𝛽22) = (1.2,-0.45,0.2,-0.63,0.21,0.12).  

(c)  Generate two count response variables from the zero-truncated bivariate Poisson model using package “actuar” in R to 

derive response variables from marginal and conditional distributions as in Equation 6 and 10.  This study assumed that the 

parameter 𝜆1  and 𝜆2 are related to 𝑘  explanatory variables 𝒙′ as in Equation 15; so, it used 𝜆1𝑖 = 𝑒𝒙𝑖
′ 𝜷𝟏 , 𝜆2𝑖 = 𝑒𝒙𝑖

′ 𝜷𝟐 ;                                 

𝑖 = 1,2, … , 𝑛. 

(d)  The parameters are estimated by using the numerical method for maximum likelihood estimation.  This study 

calculates the maximum likelihood estimators by minimizing the negative log-likelihood function of the zero truncated 

bivariate Poisson regression model using function 𝑜𝑝𝑡𝑖𝑚()from package “ stats”  in R; it presents the BFGS method. 

Moreover, this study calculates ∑̂ by inverting the Hessian matrix from the function, i.e. the Hessian matrix is the 

observed Fisher's information matrix. 

(e) For the Bayesian estimation, it fixes the hyperparameters’ values of 𝛽𝑖𝑗. 

The choice of the hyperparameters’ values is generally modified by available information of dataset to improve the 

Bayes estimators. It fixes the hyperparameters’ values of 𝛽𝑖𝑗,𝑖 = 1,2, 𝑗 = 0,1,2, . . . , 𝑘 for normal prior distribution with 

mean zero, and variance is one.  For Laplace prior distribution, it fixes the hyperparameters’  values of 𝛽𝑖𝑗 𝑖 = 1,2, 𝑗 =
0,1,2, . . . , 𝑘 with 𝜆 is 0.5. 

(f) 100(1 − 𝛼)% confidence interval is 95% 

(g) This study considers 𝐿 = 10,000 iterations of the sampler and uses the first 10% of the data as burn-in, 

𝐿0 = 1,000. 

(h) This simulation study is repeated 1,000 times.  

The measures of accuracy [24, 25] for the estimators are  

(i) the estimates of the parameters (Est.)  =
∑ 𝛽̂𝑖𝑗

(𝑙)1,000
𝑙=1

1,000
,   (32) 

(ii) the mean square error (MSE) =
∑ (𝛽̂𝑖𝑗

(𝑙)
−

1,000
𝑙=1 𝛽𝑖𝑗)2

1,000
,   (33) 

(iii) the coverage probability (CP) =
#{𝐿𝐶𝐿𝛽𝑖𝑗

<𝛽𝑖𝑗<𝑈𝐶𝐿𝛽𝑖𝑗
}

1,000
,    (34) 

and 

(iv) the average length (AL) =
∑ (𝑈𝐶𝐿𝛽𝑖𝑗

(𝑙)−
1,000
𝑙=1 𝐿𝐶𝐿𝛽𝑖𝑗

(𝑙))

1,000
,   (35) 
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where 𝛽̂𝑖𝑗

(𝑙)
 is the 𝑗-th estimator, 𝐿𝐶𝐿𝛽𝑖𝑗

(𝑙)
 and 𝑈𝐶𝐿𝛽𝑖𝑗

(𝑙)
 are the 𝑗-th lower bound and upper bound for the 95% 

confidence interval of the 𝑙-th time, and #{𝐿𝐶𝐿𝛽𝑖𝑗
< 𝛽𝑖𝑗 < 𝑈𝐶𝐿𝛽𝑖𝑗

} is the total of the number of times that the true value 

𝛽𝑖𝑗falls within the confidence interval bounds. The same measure of accuracy is utilized for the estimators of regression 

parameters across each approach, encompassing maximum likelihood estimation (MLE), Bootstrapping (Bootstrap), 

and Bayesian methods, while considering various prior distributions: Laplace prior (Bayes(L)) and normal prior 

(Bayes(N)). A comparison of their performances is presented in Figure 1. Tables 1 to 5 provide the estimates of the 

parameters (Est.) and the mean squared error (MSE), while Tables 6 to 10 display the 95% coverage probability (CP) 

and the average length (AL). The accuracy measures for the estimators include: the parameter estimates (Est.) being in 

proximity to the true parameter values.  A larger sample size leads to lower estimated MSE values. Additionally, the 

minimum MSE value. The CP typically aligns with the nominal confidence level (95%). With larger sample sizes, the 

AL of the 95% confidence intervals diminishes. Furthermore, the shortest AL value is also noted. 

 

Figure 1. Monte Carlo simulation flowchart 

Yes 

Yes 

No 

Start 

Input the system configuration 

and component information 

Check 𝑙 ≤ 1,000  

Generate data 

Calculate point estimators 

Construct confidence intervals 

  [𝐿𝐶𝐿𝛽𝑖𝑗

(𝑙), 𝑈𝐶𝐿𝛽𝑖𝑗

(𝑙)] 

Check 𝐿𝐶𝐿𝛽𝑖𝑗

(𝑙) < 𝛽𝑖𝑗 < 𝑈𝐶𝐿𝛽𝑖𝑗

(𝑙)
  

Set CP (𝑙) = 1 

Calculate 𝑈𝐶𝐿𝛽𝑖𝑗

(𝑙) − 𝐿𝐶𝐿𝛽𝑖𝑗

(𝑙)
 

 

Print results 

End 

Set CP (𝑙) = 0 

Calculate  

Est. and MSE 

 

Calculate  

CP and AL 

 

No 



Emerging Science Journal | Vol. 9, No. 3 

Page | 1255 

Table 1 reports the parameter estimates (Est.) along with the mean squared error (MSE) for Scenario 1, where both 

explanatory variables exhibit no multicollinearity. From the results reveal that the parameter estimates (Est.) obtained 

from all methods closely align with the true parameter values across various sample sizes. The MSE analysis indicates 

that all estimators exhibit a monotonic trend, where an increase in sample sizes corresponds to a decrease in estimated 

MSE values. At 𝑛 = 50, almost all Bayes(N) estimators have the lowest MSE. The majority of Bootstrap and Bayes(N) 

estimators demonstrate the lowest MSE when 𝑛 = 100. For 𝑛 = 200, almost all Bootstrap estimators reveal the lowest 

MSE. Additionally, it is important to highlight that, regardless of the sample sizes, the MSE of all estimators from all of 

them exhibits strikingly similar characteristics. 

Tables 2 and 3 present the parameter estimates (Est.) and the mean squared error (MSE) results for Scenario 2, in 

which both explanatory variables demonstrate multicollinearity with correlations of 0.3 and 0.5, respectively. From the 

results reveal that the parameter estimates (Est.) obtained from all methods closely align with the true parameter values 

across various sample sizes. The MSE analysis indicates that all estimators exhibit a monotonic trend, where an increase 

in sample sizes corresponds to a decrease in estimated MSE values. The results indicate that the MSE of the Bayes(N) 

consistently surpasses that of other methods across nearly all estimators. The Bayes(L) follows closely when 𝑛 = 50 and 

100, whereas at 𝑛 = 200, the MSE of all methods exhibits similar behavior. Furthermore, the MSE of both the MLE and 

the Bootstrap techniques exhibit quite similar behavior across all sample sizes. 

Tables 4 and 5 present the mean squared error (MSE) results for Scenario 2, where both explanatory variables exhibit 

multicollinearity with correlations of 0.7 and 0.95, indicating a high level of collinearity. From the results reveal that 

the parameter estimates (Est.) obtained from all methods closely align with the true parameter values across various 

sample sizes. The MSE analysis indicates that all estimators exhibit a monotonic trend, where an increase in sample 

sizes corresponds to a decrease in estimated MSE values. The performance of the Bayes(N) method's MSE clearly 

surpasses that of alternative approaches in nearly every estimator, while the Bayes(L) method consistently ranks second 

across all sample sizes. Additionally, the MSE of both the MLE and the Bootstrap techniques exhibit quite comparable 

behavior across all sample sizes. Furthermore, it is important to observe that almost all estimators obtained using the 

Bootstrap method exhibit a lower MSE compared to those from the MLE method when the correlation is 0.95 at sample 

sizes of 100 and 200. 

Table 1. Parameter estimates (Est.) and MSE for Scenario 1: 𝜽 = (0.2, -0.1, 0.1, -0.3, 0.2, 0.1). 

𝒏 𝜽 
MLE Bootstrap Bayes(L) Bayes(N) 

Est. MSE Est. MSE Est. MSE Est. MSE 

50 

0.2 0.1743 0.0667 0.1475 0.0684 0.1391 0.0682 0.1356 0.0685 

-0.1 -0.0975 0.0134 -0.0968 0.0137 -0.0948 0.0130 -0.0966 0.0133 

0.1 0.1004 0.0015 0.1014 0.0015 0.1024 0.0015 0.1029 0.0015 

-0.3 -0.3126 0.0491 -0.3285 0.0494 -0.3088 0.0475 -0.3146 0.0461 

0.2 0.1995 0.0082 0.1999 0.0083 0.1953 0.0082 0.1972 0.0082 

0.1 0.0999 0.0010 0.1007 0.0010 0.0980 0.0010 0.0989 0.0009 

100 

0.2 0.1926 0.0330 0.1787 0.0327 0.1709 0.0332 0.1713 0.0337 

-0.1 -0.1002 0.0060 -0.1006 0.0060 -0.0991 0.0059 -0.1003 0.0059 

0.1 0.0999 0.0008 0.1005 0.0007 0.1015 0.0007 0.1015 0.0007 

-0.3 -0.3107 0.0230 -0.3200 0.0229 -0.3099 0.0232 -0.3147 0.0229 

0.2 0.2005 0.0039 0.2007 0.0039 0.1983 0.0039 0.1995 0.0039 

0.1 0.1011 0.0005 0.1017 0.0005 0.1004 0.0005 0.1010 0.0005 

200 

0.2 0.1884 0.0170 0.1810 0.0169 0.1749 0.0174 0.1762 0.0175 

-0.1 -0.101 0.0027 -0.1011 0.0027 -0.1005 0.0028 -0.1014 0.0028 

0.1 0.1004 0.0004 0.1007 0.0004 0.1015 0.0004 0.1014 0.0004 

-0.3 -0.3078 0.0113 -0.3124 0.0111 -0.3063 0.0116 -0.3095 0.0115 

0.2 0.1989 0.0016 0.1989 0.0017 0.1977 0.0017 0.1983 0.0017 

0.1 0.1005 0.0002 0.1008 0.0002 0.1000 0.0002 0.1004 0.0002 

Note: The boldface identifies the smallest MSE for each case. 
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Table 2. Parameter estimates (Est.) and MSE for Scenario 2 (correlation level is 0.3): 𝜽 = (1.2, -0.45, 0.2, -0.63, 0.21, 0.12). 

𝒏 𝜽 
MLE Bootstrap Bayes(L) Bayes(N) 

Est. MSE Est. MSE Est. MSE Est. MSE 

50 

1.2 1.1877 0.0432 1.1750 0.0449 1.1483 0.0453 1.1226 0.0445 

-0.45 -0.4705 0.1134 -0.4765 0.1171 -0.4145 0.1037 -0.3858 0.0953 

0.2 0.2070 0.1054 0.2097 0.1084 0.1997 0.0921 0.2170 0.0859 

-0.63 -0.662 0.0812 -0.6877 0.0867 -0.6326 0.0662 -0.6135 0.0535 

0.21 0.1985 0.1891 0.1948 0.1966 0.1536 0.1487 0.1380 0.1299 

0.12 0.1424 0.188 0.1484 0.1939 0.1045 0.1442 0.0920 0.1229 

100 

1.2 1.1856 0.0208 1.1787 0.0214 1.1658 0.0216 1.1515 0.0217 

-0.45 -0.4485 0.0542 -0.4502 0.0546 -0.4163 0.0531 -0.4049 0.0519 

0.2 0.2055 0.0475 0.2060 0.0482 0.1981 0.0437 0.2113 0.0430 

-0.63 -0.6376 0.0405 -0.6504 0.0418 -0.6214 0.0370 -0.6164 0.0339 

0.21 0.2045 0.0882 0.2040 0.0899 0.1776 0.0780 0.1742 0.0745 

0.12 0.1185 0.0914 0.1206 0.0943 0.0995 0.0787 0.0954 0.0764 

200 

1.2 1.1962 0.0103 1.1929 0.0104 1.1878 0.0104 1.1792 0.0105 

-0.45 -0.4537 0.0281 -0.4547 0.0282 -0.4376 0.0281 -0.4331 0.0269 

0.2 0.2028 0.0238 0.2032 0.0239 0.1961 0.0228 0.2066 0.0229 

-0.63 -0.6344 0.0173 -0.6407 0.0176 -0.6238 0.0164 -0.6231 0.0159 

0.21 0.2050 0.0395 0.2047 0.0398 0.1883 0.0362 0.1879 0.0369 

0.12 0.1246 0.0411 0.1259 0.0412 0.1131 0.0372 0.1128 0.0373 

Note: The boldface identifies the smallest MSE for each case. 

Table 3. Parameter estimates (Est.) and MSE for Scenario 2 (correlation level is 0.5): 𝜽 = (1.2, -0.45, 0.2, -0.63, 0.21, 0.12). 

𝒏 𝜽 
MLE Bootstrap Bayes(L) Bayes(N) 

Est. MSE Est. MSE Est. MSE Est. MSE 

50 

1.2 1.1883 0.0384 1.1760 0.0400 1.1534 0.0403 1.1301 0.0401 

-0.45 -0.4711 0.1366 -0.4779 0.1410 -0.4107 0.1184 -0.3781 0.1072 

0.2 0.2067 0.1247 0.2090 0.1278 0.1860 0.1033 0.1949 0.0933 

-0.63 -0.6602 0.0732 -0.6867 0.0790 -0.6389 0.0629 -0.6186 0.0508 

0.21 0.1928 0.2315 0.188 0.2408 0.1535 0.1759 0.1347 0.1432 

0.12 0.1445 0.2207 0.1523 0.2300 0.1153 0.1621 0.1058 0.1320 

100 

1.2 1.1863 0.0184 1.1798 0.0190 1.1690 0.0193 1.1563 0.0195 

-0.45 -0.4486 0.0636 -0.4505 0.0642 -0.4109 0.0610 -0.4019 0.0584 

0.2 0.2043 0.0568 0.2043 0.0574 0.1867 0.0504 0.1985 0.0498 

-0.63 -0.6384 0.036 -0.6506 0.0372 -0.6256 0.0334 -0.6189 0.0305 

0.21 0.2047 0.1064 0.2033 0.1089 0.1801 0.0894 0.1738 0.0840 

0.12 0.1192 0.1095 0.1212 0.1127 0.1047 0.0906 0.1011 0.0861 

200 

1.2 1.1964 0.0091 1.1930 0.0093 1.1877 0.0093 1.1807 0.0095 

-0.45 -0.4545 0.0331 -0.4557 0.0333 -0.4338 0.0325 -0.4316 0.0315 

0.2 0.2031 0.0283 0.2039 0.0286 0.1923 0.0270 0.2020 0.0268 

-0.63 -0.6342 0.0156 -0.6407 0.0159 -0.6263 0.0151 -0.6249 0.0146 

0.21 0.2031 0.0473 0.2034 0.0478 0.1879 0.0422 0.1879 0.0424 

0.12 0.1261 0.0502 0.1272 0.0504 0.1183 0.0444 0.1162 0.0445 

Note: The boldface identifies the smallest MSE for each case. 
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Table 4. Parameter estimates (Est.) and MSE for Scenario 2 (correlation level is 0.7): 𝜽 = (1.2, -0.45, 0.2, -0.63, 0.21, 0.12). 

𝒏 𝜽 
MLE Bootstrap Bayes(L) Bayes(N) 

Est. MSE Est. MSE Est. MSE Est. MSE 

50 

1.2 1.1889 0.0349 1.1766 0.0366 1.1552 0.0374 1.1342 0.0370 

-0.45 -0.476 0.1945 -0.4828 0.2006 -0.4026 0.1534 -0.3591 0.1308 

0.2 0.2101 0.1799 0.2126 0.1844 0.1741 0.1372 0.1684 0.1143 

-0.63 -0.6603 0.0677 -0.6858 0.0731 -0.6401 0.0594 -0.6214 0.0481 

0.21 0.1863 0.3404 0.1812 0.3482 0.1504 0.2244 0.1342 0.1626 

0.12 0.1510 0.3239 0.1578 0.3312 0.1244 0.2081 0.1157 0.1467 

100 

1.2 1.1890 0.0176 1.1825 0.0180 1.1723 0.0182 1.1604 0.0188 

-0.45 -0.4564 0.0906 -0.4583 0.0918 -0.4107 0.0809 -0.3955 0.0750 

0.2 0.2109 0.0939 0.2110 0.0954 0.1831 0.0802 0.1881 0.0751 

-0.63 -0.6559 0.0337 -0.6677 0.0353 -0.6434 0.0316 -0.6371 0.0283 

0.21 0.2221 0.1424 0.2208 0.1448 0.1986 0.1091 0.1897 0.0974 

0.12 0.1364 0.1412 0.1379 0.1426 0.1230 0.1059 0.1224 0.0959 

200 

1.2 1.1995 0.0090 1.1964 0.0091 1.1914 0.0091 1.1857 0.0090 

-0.45 -0.4601 0.0459 -0.4615 0.0460 -0.4307 0.0430 -0.4287 0.0414 

0.2 0.2089 0.0436 0.2093 0.0439 0.1886 0.0394 0.1958 0.0389 

-0.63 -0.6321 0.0147 -0.6381 0.0149 -0.6264 0.0142 -0.6246 0.0138 

0.21 0.2116 0.0693 0.2113 0.0696 0.1971 0.0582 0.1962 0.0579 

0.12 0.1160 0.0674 0.1167 0.0677 0.1119 0.0564 0.1103 0.0562 

Note: The boldface identifies the smallest MSE for each case. 

Table 5. Parameter estimates (Est.) and MSE for Scenario 2 (correlation level is 0.95): 𝜽 = (1.2, -0.45, 0.2, -0.63, 0.21, 0.12). 

𝒏 𝜽 
MLE Bootstrap Bayes(L) Bayes(N) 

Est. MSE Est. MSE Est. MSE Est. MSE 

50 

1.2 1.1889 0.0315 1.1768 0.0330 1.1636 0.0341 1.1462 0.0333 

-0.45 -0.4940 0.9213 -0.5067 0.9286 -0.3307 0.3849 -0.2386 0.1958 

0.2 0.2277 0.8978 0.2368 0.9036 0.0919 0.3667 0.0328 0.1706 

-0.63 -0.6566 0.0609 -0.6818 0.0658 -0.6373 0.0564 -0.6169 0.0451 

0.21 0.1424 1.5871 0.1350 1.5180 0.1313 0.4588 0.1258 0.1556 

0.12 0.1876 1.5287 0.1975 1.4661 0.1483 0.4328 0.1285 0.1351 

100 

1.2 1.1860 0.0154 1.1801 0.0157 1.1737 0.0162 1.1630 0.0166 

-0.45 -0.4552 0.4186 -0.4562 0.4148 -0.3422 0.2485 -0.2814 0.1679 

0.2 0.2105 0.4048 0.2093 0.4020 0.1099 0.2336 0.0680 0.1504 

-0.63 -0.6395 0.0294 -0.6519 0.0302 -0.6324 0.0288 -0.6211 0.0258 

0.21 0.2128 0.7606 0.2107 0.7504 0.1839 0.3315 0.1617 0.1544 

0.12 0.1138 0.7565 0.1169 0.7476 0.1198 0.3250 0.1260 0.1531 

200 

1.2 1.1967 0.0078 1.1939 0.0079 1.1904 0.0081 1.1864 0.0080 

-0.45 -0.4616 0.2133 -0.4675 0.2106 -0.3970 0.1573 -0.3608 0.1288 

0.2 0.2087 0.2040 0.2131 0.2014 0.1501 0.1486 0.1210 0.1212 

-0.63 -0.6335 0.0129 -0.6399 0.0131 -0.6296 0.0131 -0.6266 0.0127 

0.21 0.1903 0.3499 0.1865 0.3470 0.1779 0.2113 0.1654 0.1433 

0.12 0.1380 0.3610 0.1429 0.3567 0.1367 0.2165 0.1451 0.1453 

Note: the boldface identifies the smallest MSE for each case. 
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Table 6 presents the 95% coverage probability (CP) and the average length (AL) for Scenario 1, in which both 

explanatory variables show no multicollinearity. The CP for all methods generally approximates the nominal confidence 

level across different sample sizes. Furthermore, as sample sizes increase, the AL of the 95% confidence intervals 

decreases for all methods. The AL of the Bayes(N) method was similar to that of the Bayes(L) across all sample sizes, 

and it was also shorter than the AL of the MLE and Bootstrap methods. 

Tables 7 and 9 present the 95% coverage probability (CP) and the average length (AL) for Scenario 2, where 

explanatory variables exhibit multicollinearity, at correlation values of 0.3, 0.5, and 0.7, respectively. The CP for all 

methods generally approximates the nominal confidence level across different sample sizes. Furthermore, as sample 

sizes increase, the AL of the 95% confidence intervals decreases for all methods. When the values are set at 𝑛 = 50 and 

100, the AL of the Bayes(N) method is observed to be the lowest compared to other methods, with the Bayes(L) method 

following closely behind. In the scenario where 𝑛 = 200, the AL of the Bayes(N) method was found to be comparable 

to that of the Bayes(L) across all sample sizes, and it also demonstrated a shorter AL than both the MLE and Bootstrap 

methods. 

Table 10 reports the 95% coverage probability (CP) and the average length (AL) for Scenario 2, which is defined by 

the presence of multicollinearity among explanatory variables, specifically at correlation values of 0.95. The CP for all 

methods generally approximates the nominal confidence level across different sample sizes. Furthermore, as sample 

sizes increase, the AL of the 95% confidence intervals decreases for all methods. The observation indicates that the AL 

of the Bayes(N) method is the shortest, with the Bayes(L) method following closely behind. Moreover, the AL of the 

MLE and Bootstrap methods demonstrates remarkably similar behaviors. 

Table 6. CP and AL for Scenario 1: 𝜽 = (0.2, -0.1, 0.1, -0.3, 0.2, 0.1). 

𝒏 𝜽 

MLE Bootstrap Bayes(L) Bayes(N) 

CP AL CP AL CP AL CP AL 

50 

0.2 95.4 1.0450 93.7 1.0405 94.9 1.0097 95.3 1.0131 

-0.1 94.0 0.4466 93.6 0.4557 94.2 0.4380 94.2 0.4422 

0.1 94.9 0.1587 94.1 0.1594 93.9 0.1539 94.8 0.1548 

-0.3 96.2 0.8896 94.8 0.8913 95.5 0.8623 95.6 0.8550 

0.2 94.8 0.3450 92.8 0.3569 94.0 0.3410 94.1 0.3403 

0.1 95.7 0.1274 95.0 0.1292 96.0 0.1241 95.2 0.1231 

100 

0.2 94.7 0.7268 94.8 0.7170 94.6 0.7096 95.2 0.7120 

-0.1 95.9 0.3058 94.6 0.3042 95.1 0.3023 95.3 0.3040 

0.1 95.9 0.1097 93.9 0.1087 94.7 0.1072 95.1 0.1077 

-0.3 95.7 0.6195 95.2 0.6147 95.8 0.6102 95.7 0.6075 

0.2 94.6 0.2336 93.1 0.2362 94.2 0.2326 94.5 0.2318 

0.1 95.5 0.0880 95.5 0.0875 95.4 0.0867 95.2 0.0863 

200 

0.2 94.5 0.5112 93.6 0.5032 93.8 0.5014 93.7 0.5045 

-0.1 95.9 0.2139 95.1 0.2133 96.2 0.2127 95.5 0.2126 

0.1 94.3 0.0769 93.9 0.0762 93.6 0.0756 95.0 0.0759 

-0.3 95.9 0.4353 95.3 0.4307 95.0 0.4303 95.1 0.4288 

0.2 95.7 0.1625 94.9 0.1620 94.9 0.1615 95.3 0.1615 

0.1 95.0 0.0616 95.6 0.0611 94.2 0.0612 94.8 0.0608 
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Table 7. CP and AL for Scenario 2 (correlation level is 0.3): 𝜽 = (1.2, -0.45, 0.2, -0.63, 0.21, 0.12). 

𝒏 𝜽 
MLE Bootstrap Bayes(L) Bayes(N) 

CP AL CP AL CP AL CP AL 

50 

1.2 95.9 1.2994 93.3 1.2998 95.4 1.2507 95.5 1.2127 

-0.45 95.9 1.2936 94.5 1.2951 95.4 1.2346 96.5 1.2112 

0.2 95.2 1.1094 92.6 1.1304 95.8 1.0466 96.6 0.9943 

-0.63 95.6 1.6745 93.0 1.7278 96.2 1.5548 96.0 1.4969 

0.21 94.3 1.6814 93.4 1.7199 95.9 1.5654 96.0 1.5000 

0.12 95.9 1.2994 93.3 1.2998 95.4 1.2507 95.5 1.2127 

100 

1.2 96.8 0.5750 94.7 0.5707 95.0 0.5669 94.5 0.5603 

-0.45 94.6 0.9015 94.7 0.8990 94.3 0.8813 94.1 0.8706 

0.2 96.5 0.8950 95.1 0.8910 95.5 0.8664 95.9 0.8649 

-0.63 94.6 0.7658 92.8 0.7701 94.7 0.7399 94.1 0.7216 

0.21 94.1 1.1481 93.3 1.1522 94.2 1.0937 94.9 1.0856 

0.12 94.0 1.1490 92.5 1.1530 94.3 1.0938 93.5 1.0768 

200 

1.2 95.1 0.4019 94.3 0.3999 93.6 0.3970 94.0 0.3956 

-0.45 93.8 0.6297 93.3 0.6235 93.3 0.6222 93.3 0.6163 

0.2 95.2 0.6250 94.5 0.6199 95.1 0.6102 94.8 0.6112 

-0.63 95.4 0.5337 94.5 0.5282 96.0 0.5205 94.9 0.5166 

0.21 95.6 0.7992 95.3 0.7954 95.4 0.7756 95.0 0.7758 

0.12 95.2 0.8005 94.1 0.7979 95.2 0.7713 94.7 0.7759 

Table 8. CP and AL for Scenario 2 (correlation level is 0.5): 𝜽 = (1.2, -0.45, 0.2, -0.63, 0.21, 0.12). 

𝒏 𝜽 
MLE Bootstrap Bayes(L) Bayes(N) 

CP AL CP AL CP AL CP AL 

50 

1.2 94.5 0.7733 93.7 0.7736 93.4 0.7636 94.1 0.7452 

-0.45 96.1 1.4230 93.2 1.4282 95.7 1.3579 95.4 1.3087 

0.2 95.6 1.4159 94.7 1.4212 95.9 1.342 96.2 1.3036 

-0.63 94.7 1.0485 92.6 1.0708 94.5 0.9983 96.1 0.9489 

0.21 95.3 1.8378 91.9 1.8974 95.9 1.6892 96.7 1.5969 

0.12 94.4 1.8401 93.1 1.8827 96.2 1.6841 96.7 1.5977 

100 

1.2 96.6 0.5411 94.1 0.5376 94.6 0.5347 95.1 0.5299 

-0.45 94.7 0.9853 94.3 0.9814 93.2 0.9565 94.7 0.9410 

0.2 96.0 0.9791 94.9 0.9733 96.6 0.9412 96.1 0.9380 

-0.63 94.7 0.7244 93.2 0.7278 94.6 0.7025 95.0 0.6883 

0.21 94.0 1.2568 93.2 1.2589 95.1 1.1896 94.6 1.1697 

0.12 94.3 1.2572 92.6 1.2595 95.2 1.1917 94.7 1.1698 

200 

1.2 95.0 0.3783 93.7 0.3762 94.1 0.3750 93.9 0.3728 

-0.45 94.5 0.6878 93.0 0.6808 93.9 0.6752 93.7 0.6696 

0.2 95.4 0.6838 94.9 0.6781 94.9 0.6659 95.2 0.6635 

-0.63 95.6 0.5048 95.0 0.5012 95.3 0.4947 95.8 0.4905 

0.21 95.5 0.8742 94.9 0.8692 95.5 0.8390 95.5 0.8418 

0.12 94.8 0.8756 93.5 0.8729 94.6 0.8372 95.0 0.8414 
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Table 9. CP and AL for Scenario 2 (correlation level is 0.7): 𝜽 = (1.2, -0.45, 0.2, -0.63, 0.21, 0.12). 

𝒏 𝜽 
MLE Bootstrap Bayes(L) Bayes(N) 

CP AL CP AL CP AL CP AL 

50 

1.2 94.7 0.7333 93.8 0.7352 94.3 0.7226 94.2 0.7102 

-0.45 95.0 1.7077 93.9 1.7193 96.1 1.5818 96.5 1.4962 

0.2 95.9 1.7011 94.4 1.7091 96.2 1.5574 97.1 1.4929 

-0.63 95.1 0.9992 92.7 1.0223 95.0 0.9604 95.5 0.9105 

0.21 93.9 2.2116 92.1 2.2757 95.4 1.9597 96.7 1.7997 

0.12 94.6 2.2122 92.7 2.2672 96.1 1.9566 96.7 1.7898 

100 

1.2 95.1 0.5131 93.9 0.5115 93.8 0.5064 93.5 0.5031 

-0.45 95.4 1.1789 93.5 1.1709 95.2 1.1132 95.2 1.0991 

0.2 94.2 1.1765 94.2 1.1658 94.5 1.1089 94.5 1.096 

-0.63 94.3 0.6946 93.1 0.6938 94.2 0.6750 94.6 0.6605 

0.21 95.0 1.5081 93.3 1.4954 96.1 1.3859 96.4 1.3459 

0.12 95.8 1.5133 95.0 1.5133 97.0 1.3892 96.9 1.3531 

200 

1.2 93.9 0.3589 92.3 0.3559 92.7 0.3537 92.6 0.3548 

-0.45 94.4 0.8238 93.6 0.8113 93.8 0.7970 95.0 0.7905 

0.2 95.4 0.8218 94.4 0.8094 95.2 0.7892 95.1 0.7877 

-0.63 95.6 0.4814 94.5 0.4781 95.6 0.4728 95.2 0.4677 

0.21 95.3 1.0496 94.4 1.0403 95.4 0.9881 96.2 0.9882 

0.12 95.8 1.0508 94.9 1.0373 95.7 0.9898 95.7 0.9854 

Table 10. CP and AL for Scenario 2 (correlation level is 0.95): 𝜽 = (1.2, -0.45, 0.2, -0.63, 0.21, 0.12). 

𝒏 𝜽 
MLE Bootstrap Bayes(L) Bayes(N) 

CP AL CP AL CP AL CP AL 

50 

1.2 95.4 0.6914 93.5 0.696 91.4 0.6594 90.9 0.6384 

-0.45 96.2 3.8378 93.9 3.8500 97.1 2.8120 97.6 2.2013 

0.2 96.1 3.8367 94.5 3.8429 97.3 2.8087 99.1 2.1904 

-0.63 95.2 0.9472 92.6 0.9745 93.6 0.8834 93.2 0.8278 

0.21 93.4 4.9930 92.9 5.0174 97.4 3.3571 99.0 2.4024 

0.12 94.9 4.9942 94.0 5.0064 97.8 3.346 99.5 2.4189 

100 

1.2 95.6 0.4837 94.5 0.4844 92.5 0.4627 91.3 0.4575 

-0.45 96.0 2.6453 95.2 2.6095 95.6 2.1221 96.3 1.8667 

0.2 96.3 2.6436 94.5 2.6105 95.7 2.1074 96.9 1.8602 

-0.63 94.9 0.6544 94.2 0.6628 92.8 0.6219 92.1 0.6056 

0.21 95.0 3.3946 92.8 3.3333 96.6 2.5710 98.6 2.1190 

0.12 94.3 3.3934 93.1 3.3255 97.2 2.5678 99.1 2.1244 

200 

1.2 94.3 0.3376 94.1 0.3374 92.2 0.3243 91.6 0.3235 

-0.45 95.3 1.8477 95.1 1.8169 93.1 1.5645 94.4 1.4741 

0.2 95.3 1.8474 94.7 1.8187 94.5 1.5658 94.9 1.4743 

-0.63 95.2 0.4554 95.3 0.4549 93.8 0.4359 93.2 0.4277 

0.21 94.5 2.3598 93.7 2.3189 95.4 1.9320 96.3 1.7546 

0.12 94.7 2.3611 93.2 2.3188 95.4 1.9240 97.0 1.7482 
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7- Application 

To illustrate the application of the proposed parameter estimations, this study considers two data sets; Allegheny 

County Crash Data (Data1) [35] and the fatal railway accidents and fatalities in Britain (Data2) [36]. It calculates the 

parameter estimates and constructs the 95% confidence intervals via the maximum likelihood estimation method, 

bootstrapping method as well as 95% credible confidence intervals based on Bayesian method under the two prior 

distributions. Besides, the three information criteria, namely the Akaike information criterion (AIC), the Bayesian 

information criterion (BIC), and the deviance information criterion (DIC) are applied to compare estimations. All results 

are reported in Tables 11 and 12. 

Data 1:  This study considers a dataset of injuries and fatalities from crash reports in Allegheny County, USA, for 

the years 2019 to 2021, provided by the Pennsylvania Department of Transportation.  The dataset included 66 

observations. The response variables under consideration were the number of all injuries from the accident (𝑌1) and the 

number of fatalities (𝑌2). The explanatory variables included the number of all motor vehicles involved in the accident 

(𝑋1)  and the posted speed limit in miles per hour (𝑋2) .  The variables 𝑋1 and 𝑋2 are not correlated, with a correlation 

coefficient of -0.0926 (p-value = 0.4592). The chi-square goodness-of-fit test (GOT) for the response variables using 

the ZTBVP distribution yielded a p- value of 0. 4069, suggesting that the data can be modelled by the ZTBVP 

distribution. 

Data 2:  It considers a dataset of fatal railway accidents and fatalities in Britain from 1967 to 2003 with 54 

observations.  The response variables under consideration wrer the number of accidents due to Train/ road vehicle 

collision (𝑌1)  and the number of fatalities due to Train/road vehicle collision fatalities (𝑌2). The explanatory variables 

considered were the number of movements and non-movement accidents ( 𝑋1)  and movements and non-movement 

accidents fatalities (𝑋2). The correlation coefficient between the explanatory variables 𝑋1 and 𝑋2 stood at 0.9998 (p-

value < 0.05) .  Thus, two variables are correlated.  The p-value for the chi-square goodness of fit (GOT)  test using 

the ZTBVP distribution of the response variable was 0. 9998.  Thus, this data can be modelled by the ZTBVP 

distribution. 

The results from Table 11 suggest that Bayes(N) method provides better fitting than Bayes(L) method in terms of 

DIC. Regarding the AIC and BIC, all methods exhibit remarkably similar behavior. Moreover, the results of significant 

explanatory variables that were selected from the two explanatory variables. It was only reported that 𝑋1 show significant 

for 𝑌1 in all methods while 𝑋2 is significant for 𝑌2 in only bootstrap method. 

Table 11. Parameter estimates, the 95% confidence intervals (in parentheses), and the three information criteria for Data 1 

Parameters MLE Bootstrap Bayes(L) Bayes(N) 

𝛽10 
-0.4906 

(-1.8579,0.8767) 

-0.5511 

(-1.9934,0.893) 

-0.4859 

(-1.7151,0.5689) 

-0.4755 

(-1.3203,0.6381) 

𝛽11 
0.4694* 

(0.1823,0.7564) 

0.5225* 

(0.2467,1.0965) 

0.4368* 

(0.1442,0.6852) 

0.4624* 

(0.2639,0.6568) 

𝛽12 
-0.0192 

(-0.0519,0.0135) 

-0.0223 

(-0.0699,0.0071) 

-0.0190 

(-0.0527,0.0152) 

-0.0202 

(-0.0462,0.0022) 

𝛽20 
0.0136 

(-4.9301,4.9573) 

-0.2270 

(-2.3306,1.3978) 

-0.5566 

(-3.8453,2.3075) 

-0.2970 

(-2.0581,1.4493) 

𝛽21 
-0.2340 

(-1.6878,1.2198) 

-0.3375 

(-0.8647,0.3182) 

-0.5013 

(-1.6211,0.4726) 

-0.3966 

(-1.5967,0.4935) 

𝛽22 
-0.0694 

(-0.2141,0.0754) 

-0.0734* 

(-0.449,-0.0102) 

-0.0445 

(-0.1542,0.0291) 

-0.0558 

(-0.1547,0.0213) 

AIC 156.2135 157.1081 156.2997 156.1241 

BIC 169.3514 170.2461 169.4376 169.2620 

DIC   144.2997 144.1241 

Note: (*) denotes the 95% confidence interval for the ZTBVP regression model does not contain zero (statistically significant) and 

the boldface identifies the minimum value of each information criteria. 
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The results from Table 12 suggest that Bayes(N) method provides better fitting than Bayes(L) method in term of 

DIC. In terms of AIC and BIC, the Bayes(N) method demonstrates superior fitting compared to all other methods, with 

Bayes(L) closely trailing. Meanwhile, the Bootstrap method outperforms the MLE methods in fitting quality.  Moreover, 

the results of significant explanatory variables that were selected from the three explanatory variables. It was only reports 

that 𝑋2 show significant for 𝑌2 in Bayes(L) and Bayes(N) methods. Moreover, it was found that the MLE method was 

unable to estimate confidence intervals at the 95% confidence level. This may be due to the extremely high collinearity 

among the explanatory variables, thus results in the inability to compute the inverse of the observed Fisher information. 

Table 12. Parameter estimates, the 95% confidence intervals (in parentheses), and the three information criteria for Data 2 

Parameters MLE Bootstrap Bayes(L) Bayes(N) 

𝛽10 
0.7927 

 

0.7276* 

(0.1216,1.3756) 

0.7507* 

(0.7136,0.8058) 

0.7914* 

(0.7710,0.8143) 

𝛽11 
0.0263 

 

-0.0028 

(-0.1770,0.1535) 

0.0148 

(-0.0265,0.0389) 

-0.0088 

(-0.0328,0.0092) 

𝛽12 
-0.0200 

 

0.0091 

(-0.1453,0.1829) 

-0.0085 

(-0.032,0.0321) 

0.0146 

(-0.0030,0.0383) 

𝛽20 
0.0215 

 
-0.0714 

(-0.4789,0.3752) 
0.0223 

(-0.007,0.0512) 
-0.0120 

(-0.0494,0.0367) 

𝛽21 
-0.1240 

 
-0.0260 

(-0.1360,0.1085) 
-0.0530 

(-0.0917,-0.0135) 
-0.0474 

(-0.0905,-0.0277) 

𝛽22 
0.1234 

 
0.0274 

(-0.1059,0.1360) 
0.0537* 

(0.0148,0.0921) 
0.0483* 

(0.0290,0.0909) 

AIC 545.9418 530.4944 528.5201 524.4709 

BIC 557.8757 542.4283 540.4540 536.4048 

DIC   516.5201 512.4709 

Note: (*) denotes the 95% confidence interval for the ZTBVP regression model with multicollinearity does not contain zero 

(statistically significant) and the boldface identifies the minimum value of each information criteria. 

8- Discussion 

In statistics, classical and Bayesian inference differ significantly. One classical approach that is commonly employed 

in count regression models is the maximum likelihood method. For an asymptotically large sample size of data, the 

maximum likelihood estimate of parameters is valid, according to Wang et al. (2023) [12] and Kummaraka & 

Srisuradetchai (2023) [13]. Insufficient sample sizes can cause the maximum likelihood estimates to become unstable 

and show significant standard errors of the estimates, which has a detrimental effect on statistical inference. Chowdhury 

& Islam (2016) [11] introduced the maximum likelihood method for parameter estimation of the zero-truncated bivariate 

Poisson regression model. The other estimates in this model have yet to be discovered. The multicollinearity issue in 

regression models is addressed by the current bootstrapping techniques [19, 20]. 

As an alternative, the Bayesian technique incorporates empirical knowledge from the likelihood function as well as 

prior knowledge about the parameters from the prior probability distribution. Therefore, the defined prior distribution 

determines how well the Bayesian estimation performs. By using a Monte Carlo simulation, performance and sensitivity 

assessments are carried out to evaluate the Bayesian estimators' resilience to various prior distributions for every model, 

including estimations of the parameters, bias, mean square error, coverage probability, and average length. Along with 

the traceplot, autocorrelation for sampled values and posterior densities, as well as AIC, BIC, and DIC. In order to 

undertake performance assessments, this paper simply estimated the estimates of the parameters, mean square error, 

coverage probability, and average length for simulation studies, while AIC, BIC, and DIC were used for data 

applications.  

This study presents the Bayesian estimation for the zero-truncated bivariate Poisson regression model, employing 

the Metropolis-Hastings algorithm and utilizing two prior distributions for the regression coefficients: Laplace and 

normal distributions. Furthermore, the bootstrap method was proposed. The performance of the Bayes estimators was 

evaluated alongside the bootstrap and the maximum likelihood estimators. The findings in this study align with those of 

Choe et al. (2012) [22] and Chaiprasithikul & Duangsaphon [26], indicating that the normal prior distribution 

consistently outperforms the other methods, with the Laplace prior distribution method closely trailing behind. 

Nonetheless, certain computational challenges arise when applying the Bayesian approach, particularly regarding the 

selection of hyperparameter values for prior distributions, which can influence the parameter estimates. Additionally, 

the bootstrap estimators demonstrated strong performance when the explanatory variables were generated under 

conditions of multicollinearity, similar to the findings of Sudjai & Duangsaphon (2020) [19] and Perveen & Suhail 

(2021) [20].  
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9- Conclusion 

This paper provides the Bayesian estimation for the zero-truncated bivariate Poisson model, utilizing two distinct 

prior distributions: the normal prior and the Laplace prior. Under the squared error loss function, it is apparent that there 

is no explicit form of the posterior distribution. Consequently, the random walk Metropolis-Hastings algorithm is 

employed to estimate Bayes estimators. Additionally, a comparison is made between the maximum likelihood estimation 

and the bootstrap methods. The performance of all methods is evaluated through Monte Carlo simulation, focusing on 

the estimates of the parameters, the mean square error, the coverage probability, and average length criteria. The criteria 

are computed for various sample sizes, considering both scenarios of no multicollinearity and the presence of 

multicollinearity. According to the measures of accuracy for the estimators, the Bayesian method utilizing a normal 

prior distribution demonstrates superior performance compared to alternative approaches, with the Laplace prior 

distribution following closely behind. Furthermore, the Bayesian approaches derived from both prior distributions 

exhibit comparable behavior when the sample size is substantial. Additionally, the bootstrap estimators demonstrate 

effective performance for high levels of collinearity, particularly when the sample size is substantial. 

Two real data sets from the literature are used to illustrate how this model is implemented and to compare the 

proposed methods using the Akaike information criterion, the Bayesian information criterion, and the deviance 

information criterion. As a result, Bayesian estimation using a normal prior distribution is superior to other approaches. 

In addition, the bootstrap method performs better than maximum likelihood estimation under a high level of collinearity 

of explanatory variables. These results show that the simulated study and the real data analysis are consistent. Therefore, 

the Bayesian method utilizing a normal prior distribution is recommended for the zero-truncated bivariate Poisson 

regression model. 
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