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Abstract 

This paper introduces the IFRS 17-Compliant Brighton Mahohoho Probabilistic Framework for 

Inflation-Adjusted Frequency-Severity Modeling in Occupational Indemnity Insurance, integrating 

AI-driven actuarial methodologies for loss reserving, risk pricing, and underwriting. Objectives: The 

framework ensures IFRS 17 compliance while enhancing actuarial accuracy and operational 

efficiency. Methods/Analysis: A simulation-based dataset of policy, claims, premiums, inflation 
adjustments, and underwriting data is generated. Claim frequencies and severities are modeled using 

Poisson and Gamma distributions, with inflation adjustments incorporated into reserves. XGBoost 

is applied for Automated Actuarial Loss Reserving (ALR) and Automated Actuarial Risk Pricing 
(ARP), while a weighted average approach estimates Automated Actuarial Loss Reserve Risk 

Premiums (AALRRP). Findings: Model accuracy is validated through MAE, MSE, RMSE, residual 

analysis, and scatter plots. IFRS 17 metrics—Contractual Service Margin (CSM), Fulfillment Cash 
Flows (FCF), Risk Adjustments, and Liabilities—are simulated, with sensitivity analysis ensuring 

robustness. Policyholders are segmented into underwriting clusters, incorporating expenses, outgo, 

and revenue to derive the Automated Net Actuarial Underwriting Balance (ANAUB). 
Novelty/Improvement: This integrated AI-driven actuarial framework significantly advances IFRS 

17-compliant pricing and reserving, offering enhanced predictive accuracy, regulatory alignment, 

and improved risk assessment in occupational indemnity insurance. 
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1- Introduction 

The IFRS 17-Compliant Brighton Mahohoho Probabilistic Framework for Inflation-Adjusted Frequency-Severity 

Modeling in Occupational Indemnity Insurance integrates Artificial Intelligence (AI)-driven Augmented Actuarial Data 

Science with eXtreme Gradient Boosting (XGBoost) to enhance loss reserving, risk pricing, and underwriting. 

Occupational indemnity insurance protects professionals against liabilities arising from errors, omissions, or negligence 

in their services [1]. Given the evolving regulatory landscape under IFRS 17, traditional actuarial models face challenges 

in accurately estimating claims frequency and severity while adjusting for inflation [2, 3]. This study proposes an 

advanced AI-based approach that refines actuarial loss reserving and risk pricing by leveraging XGBoost’s predictive 

capabilities in conjunction with probabilistic modeling techniques. 

The proposed framework builds on probabilistic modeling principles, enhancing traditional frequency-severity 

analysis with AI-driven methodologies. Conventional frequency-severity models use generalized linear models (GLMs) 

and stochastic techniques, often constrained by rigid distributional assumptions [4]. In contrast, XGBoost introduces 

gradient-boosted decision trees, which capture complex non-linear relationships within claims data. Augmented 
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Actuarial Data Science (AADS) synergizes domain expertise with AI to refine data preprocessing, feature engineering, 

and model selection [5]. By incorporating Bayesian updating and inflation-adjustment techniques, the framework ensures 

actuarial reserves and risk premiums adhere to IFRS 17 regulations while maintaining predictive accuracy. The actuarial 

profession is witnessing an increasing need for advanced predictive models that can accommodate regulatory changes 

and economic fluctuations [6]. Traditional frequency-severity modeling methods struggle to adapt to emerging risks, 

high-dimensional datasets, and evolving claims behavior under economic inflation [7]. The rationale behind this study 

is to integrate AI techniques with actuarial science to bridge these methodological gaps. By employing XGBoost, the 

study enhances predictive precision while ensuring compliance with IFRS 17 principles on risk adjustments and 

fulfillment cash flows [8]. 

 The framework finds applications in various aspects of occupational indemnity insurance, including:  

 Loss Reserving: Predicting outstanding claims liabilities with enhanced accuracy using AI-driven inflation-

adjusted frequency-severity models [9].  

 Risk Pricing: Ensuring equitable premium determination by dynamically adjusting for inflation and loss 

development trends [10].  

 Underwriting: Assisting underwriters in decision-making by providing AI-enhanced probabilistic insights into 

future claim severities and frequencies [2].  

 Regulatory Compliance: Aligning actuarial estimates with IFRS 17 standards through probabilistic uncertainty 

quantification and risk margin estimation [8].  

This research contributes to the actuarial and insurance fields by: Introducing a novel IFRS 17-compliant probabilistic 

AI framework for loss reserving and risk pricing. Addressing limitations in traditional frequency-severity models by 

leveraging XGBoost’s non-linearity handling and boosting efficiency [11]. Enhancing actuarial practice with Augmented 

Actuarial Data Science (AADS), fostering synergy between domain expertise and AI-driven predictive analytics. 

Providing empirical evidence on the applicability of AI in meeting IFRS 17 compliance requirements, thus informing 

industry best practices and regulatory adherence. 

The existing literature on actuarial loss reserving and frequency-severity modeling has primarily focused on 

traditional statistical methods, such as chain-ladder techniques and generalized linear models [1]. While these approaches 

offer interpretability, they often fail to capture complex, high-dimensional interactions in claims data, particularly under 

inflationary conditions [3]. Recent studies have explored machine learning techniques for actuarial applications, with 

researchers demonstrating the effectiveness of XGBoost in predictive modeling [4]. However, few studies have 

integrated XGBoost with IFRS 17 compliance frameworks, leaving a gap in ensuring regulatory alignment while 

leveraging AI-driven actuarial methodologies. Moreover, there is limited research on the synergy between Augmented 

Actuarial Data Science (AADS) and probabilistic frameworks in the context of inflation-adjusted frequency-severity 

modeling. 

To address these gaps, this study proposes a novel framework that: Integrates XGBoost with probabilistic modeling 

to enhance accuracy in estimating frequency-severity distributions under inflationary impacts. Develops an AI-driven 

actuarial pipeline that aligns with IFRS 17 requirements on risk adjustment, discounting, and contract service margins. 

Leverages Augmented Actuarial Data Science (AADS) to refine feature engineering, hyperparameter tuning, and model 

validation. Incorporates scenario-based stress testing to ensure robustness of the model in various economic conditions. 

Finally, provides empirical validation through real-world occupational indemnity insurance data, demonstrating practical 

applicability and regulatory compliance. 

The proposed IFRS 17-compliant probabilistic framework advances occupational indemnity insurance modeling by 

integrating AI-driven augmented actuarial science with XGBoost. By addressing gaps in traditional methodologies and 

enhancing regulatory adherence, this study contributes to the evolution of actuarial science, offering a transformative 

approach to loss reserving, risk pricing, and underwriting in a rapidly evolving insurance landscape. 

2- Actuarial Loss Reserving Methods 

2-1- Chain Ladder Method 

The Chain-Ladder Method (CLM) is a fundamental actuarial tool used to estimate loss reserves for cumulative claims 

data. It assumes that claims development factors remain consistent over time, enabling the projection of future claims 

development [12]. 

 The CLM is based on the following assumptions: 

1.  Claims are cumulative and reported in a development triangle.  

2.  Development factors are consistent across accident years.  

3.  Claims within each development period are independent and identically distributed. 
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Let 𝐶𝑖𝑗 represent the cumulative claims for accident year 𝑖 at development lag 𝑗, where 𝑖 ∈ {1,2, … ,𝑚} and 𝑗 ∈
{1,2, … , 𝑛}. Table 1 illustrates the general structure. 

Table 1. General Chain Ladder Table 

Accident Year / Development Lag 1 2 3 … 𝒏 

1 𝐶11 𝐶12 𝐶13 … 𝐶1𝑛 

2 𝐶21 𝐶22 𝐶23 … 𝐶2𝑛 

3 𝐶31 𝐶32 𝐶33 … 𝐶3𝑛 

…
 

…
 

…
 

…
 

…
 

…
 

𝑚 𝐶𝑚1 𝐶𝑚2 𝐶𝑚3 … 𝐶𝑚𝑛 

The fundamental assumption of the chain ladder model is that the development factors are multiplicative: 

𝑓𝑗 =
∑
𝑚−𝑗
𝑖=1 𝐶𝑖,𝑗+1

∑
𝑚−𝑗
𝑖=1

𝐶𝑖𝑗
,    for𝑗 = 1,… , 𝑛 − 1.   

The future claims are then predicted as: 

𝐶𝑖,𝑗+1 = 𝐶𝑖𝑗 ⋅ 𝑓𝑗 .   

The chain ladder factors 𝑓𝑗 are unbiased estimators of future development.  

Proof. The unbiased nature of the chain ladder factors arises from the independence assumption of incremental claims. 

Let 𝐶𝑖𝑗 denote the cumulative claims at development period 𝑗 for origin period 𝑖. The chain ladder model assumes the 

relationship: 

𝔼[𝐶𝑖,𝑗+1|𝐶𝑖𝑗] = 𝐶𝑖𝑗 ⋅ 𝑓𝑗 ,  (1) 

 where 𝑓𝑗 is the development factor for development period 𝑗. 

Using the law of total expectation, we have: 

[𝐶𝑖,𝑗+1] = 𝔼[𝔼[𝐶𝑖,𝑗+1|𝐶𝑖𝑗]].  (2) 

Substituting Equation 1 into Equation 2, it follows that: 

𝔼[𝐶𝑖,𝑗+1] = 𝔼[𝐶𝑖𝑗 ⋅ 𝑓𝑗] = 𝔼[𝐶𝑖𝑗] ⋅ 𝑓𝑗 ,   

since 𝑓𝑗 is a deterministic quantity derived from observed claims data. 

Thus, the development factor 𝑓𝑗 is an unbiased estimator because it is calculated from historical claims, ensuring that: 

𝔼[𝑓𝑗] = 𝑓𝑗 .   

This concludes the proof.  

 The cumulative claims 𝐶𝑖𝑗 are consistent estimators of total liabilities under the chain ladder model.  

Proof. Consistency requires that the expected value of the estimator converges to the true liability as the number of 

observations increases: 

lim
𝑚→∞

𝔼[𝐶𝑖𝑗] = 𝐿𝑖𝑗 ,   where 𝐿𝑖𝑗  represents the trueliability.  (3) 

Under the chain ladder model, cumulative claims 𝐶𝑖𝑗 are recursively defined using development factors 𝑓𝑗, such that: 

𝐶𝑖𝑗 = 𝐶𝑖,𝑗−1 ⋅ 𝑓𝑗 ,    for𝑗 ≥ 2, and𝐶𝑖1 = 𝑋𝑖1,  (4) 

where 𝑋𝑖1 represents the observed initial claims. 

Taking expectations under the model assumptions, we have: 

𝔼[𝐶𝑖𝑗] = 𝔼[𝐶𝑖,𝑗−1] ⋅ 𝔼[𝑓𝑗],    with𝔼[𝑓𝑗] ≈ 𝑓𝑗as𝑚 → ∞. (5) 

By iterating Equation 5, it follows that: 

𝔼[𝐶𝑖𝑗] = 𝑋𝑖1 ⋅ ∏
𝑗
𝑘=2 𝑓𝑘.  (6) 
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The true liability 𝐿𝑖𝑗  is given by: 

𝐿𝑖𝑗 = 𝐿𝑖1 ⋅ ∏
𝑗
𝑘=2 𝑓𝑘 ,    where𝐿𝑖1 = 𝔼[𝑋𝑖1].  (7) 

Since 𝑋𝑖1 is unbiased and 𝔼[𝑓𝑘] → 𝑓𝑘 as 𝑚 → ∞, it follows from Equations 6 and 7 that: 

lim
𝑚→∞

𝔼[𝐶𝑖𝑗] = 𝐿𝑖𝑗 .  (8) 

Thus, the cumulative claims 𝐶𝑖𝑗 are consistent estimators of 𝐿𝑖𝑗 , completing the proof. 

The Chain-Ladder Method remains a robust and widely used technique for loss reserving in actuarial science. Its 

mathematical rigor, coupled with practical implementation, ensures its enduring relevance. 

2-2- The Loss Ratio Method 

The Loss Ratio Method is a widely used actuarial technique for pricing insurance premiums and assessing the 

adequacy of reserves. This method is grounded in the assumption that there is a predictable relationship between the 

premiums collected by an insurer and the losses incurred over a given period. The Loss Ratio is defined as the ratio of 

incurred losses to earned premiums and serves as a benchmark for underwriting performance. 

 The core idea behind the Loss Ratio Method lies in estimating the future claims experience based on the historical 

relationship between premiums and losses. This method provides a simple yet effective framework for adjusting the 

reserves, ensuring they are adequate to cover future liabilities. The Loss Ratio is mathematically represented as: 

LossRatio =
IncurredLosses

EarnedPremiums
   

Let 𝐿𝑡 denote the incurred losses at time 𝑡, and 𝑃𝑡 the earned premiums at the same time. The Loss Ratio at time 𝑡, 
denoted 𝜌𝑡, is given by: 

𝜌𝑡 =
𝐿𝑡

𝑃𝑡
   

This relationship suggests that, on average, for every dollar of premium, there will be a corresponding loss 

proportional to the loss ratio. An important aspect of this method is its reliance on historical data to estimate future 

losses. Actuaries often use historical loss ratios to predict the expected future loss ratios and adjust them based on claims 

experience and market conditions. 

 If the historical loss ratio is stable over time, future loss ratios can be predicted with a high degree of accuracy.  

Algorithm 1. Chain Ladder Method Algorithm 

Algorithm: Development Triangle Reserve Estimation Using Development Factors Description: This algorithm projects 

future claims values in the development triangle using historical data and development factors, estimating the total reserve required. 

Input: Development triangle 𝐂 = {𝐶𝑖𝑗}, where 𝐶𝑖𝑗 represents the cumulative claims amount at origin period 𝑖 and development 

period 𝑗; 𝑖 ∈ {1,… , 𝑛}, 𝑗 ∈ {1, … , 𝑛}. Initialize: Calculate development factors {𝑓𝑗} for 𝑗 ∈ {1,… , 𝑛 − 1} using: 

𝑓𝑗 =
∑
𝑛−𝑗
𝑖=1 𝐶𝑖,𝑗+1

∑
𝑛−𝑗
𝑖=1 𝐶𝑖𝑗

,    𝑗 = 1,… , 𝑛 − 1.  (9) 

The development factor 𝑓𝑗  for each development period 𝑗 is the ratio of the cumulative claims in period 𝑗 + 1 to the cumulative 

claims in period 𝑗, averaged across all available origin periods. for 𝑗 = 1 to 𝑛 − 1 for 𝑖 = 1 to 𝑛 − 𝑗 Project the cumulative claims 

at the next development period 𝑗 + 1 using the following relation: 

𝐶𝑖,𝑗+1 = 𝐶𝑖𝑗 ⋅ 𝑓𝑗 ,    where 𝑓𝑗 is the development factor calculated in Equation 9.  (10) 

The claims in period 𝑗 + 1 for each origin period 𝑖 are projected by multiplying the value 𝐶𝑖𝑗 by the corresponding development 

factor 𝑓𝑗 . Output: The projected development triangle 𝐂̂ = {𝐶̂𝑖𝑗}, where 𝐶̂𝑖𝑗 includes both the observed and projected cumulative 

claims values for each 𝑖 and 𝑗. Compute: The total reserve 𝑅̂, representing the expected future claims liabilities, is given by: 

𝑅̂ = ∑𝑛𝑖=1 ∑
𝑛
𝑗=𝑖+1 𝐶̂𝑖𝑗 ,  (11) 

The total reserve 𝑅̂ is the sum of the projected cumulative claims values for all future periods (𝑗 > 𝑖), which accounts for both 

observed and projected claims data. Output: The total reserve 𝑅̂ provides the estimated amount of funds needed to cover all future 

claims, derived from the projected development triangle. 
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We assume that the loss ratio follows a stable distribution over time. Specifically, we hypothesize that the loss ratio 

for each period, denoted as 𝜌𝑖 for year 𝑖, is drawn from the same underlying distribution, implying that the mean loss 

ratio remains constant across periods. 

To predict the future loss ratio, we estimate the expected future loss ratio 𝜌̂ as the average of the historical loss ratios. 

This can be expressed mathematically as: 

𝜌̂ =
1

𝑛
∑𝑛𝑖=1 𝜌𝑖   

where: 𝜌̂ is the predicted future loss ratio; 𝑛 is the number of years of historical data; 𝜌𝑖 is the loss ratio in year 𝑖, for 

𝑖 = 1, 2, … , 𝑛. 

If the historical loss ratios 𝜌𝑖 have remained relatively constant, i.e., 𝜌𝑖 ≈ 𝜌𝑗 for all 𝑖, 𝑗 ∈ {1,2, … , 𝑛}, then the 

predicted future loss ratio 𝜌̂ will closely approximate the true future loss ratio. This implies that the average of the 

historical data provides an accurate estimate for future loss ratios, and therefore can be used as a reliable basis for future 

loss forecasting and premium setting. 

In such cases, the difference between the predicted and true future loss ratio tends to be small, and we can justify 

using this simple method for estimation with a high degree of accuracy. The Loss Ratio Method involves several steps, 

including data collection, loss ratio calculation, and premium adjustment. We can outline these steps in an algorithmic 

structure as follows: 

Algorithm 2. Loss Ratio Method Algorithm 

1. Input: Historical premium and loss data for 𝑛 years.  

2. Output: Adjusted premium and reserves for future periods.  

3. Let 𝑃𝑡 be the earned premiums in year 𝑡.  

4. Let 𝐿𝑡 be the incurred losses in year 𝑡.  

5. Compute Loss Ratio for each year: 

𝜌𝑡 =
𝐿𝑡
𝑃𝑡

 
(1) 

6. for each year 𝑡 = 1 to 𝑛 do 

7. Calculate the Loss Ratio for each year:  

𝜌𝑡 =
𝐿𝑡

𝑃𝑡
  (2) 

8. end for 

9. Compute the average Loss Ratio 𝜌̅:  

𝜌̅ =
1

𝑛
∑𝑛𝑡=1 𝜌𝑡  (3) 

10. Use the average Loss Ratio 𝜌̅ to estimate future losses and set future premiums. 

11. Adjust reserves based on estimated future losses:  

𝑅adjusted = 𝜌̅ × 𝑃future  (4) 
 

The above pseudo-algorithm outlines the basic steps involved in applying the Loss Ratio Method. The method 

requires the collection of historical data on premiums and losses, followed by the calculation of loss ratios for each year. 

The average historical loss ratio is then computed and used to predict future losses and adjust premiums accordingly. 

Finally, reserves are adjusted to ensure they are sufficient to cover future liabilities. 

Let us consider a scenario where an insurer has collected historical data for 𝑛 years. The insurer wishes to adjust the 

reserves based on the expected future claims, given the historical loss ratios. The adjusted premium 𝑃̂𝑡+1 for the next 

period can be computed using the following formula: 

𝑃̂𝑡+1 =
𝐿𝑡+1

𝜌̂
   

where 𝜌̂ is the estimated future loss ratio based on historical data. 

The reserve adjustment for the next period, denoted 𝑅𝑡+1, can be computed as: 

𝑅𝑡+1 = 𝑃̂𝑡+1 × 𝜌̂   

This ensures that the insurer has adequate reserves to cover future losses, based on the historical loss experience. 

The Loss Ratio Method is a consistent and reliable method for estimating future claims when historical loss ratios are 

stable. 
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Proof. Let the historical loss ratios be denoted by the set {𝐿𝑅1, 𝐿𝑅2, … , 𝐿𝑅𝑛}, where each 𝐿𝑅𝑖 represents the loss ratio 

for the 𝑖-th period. The loss ratio for a given period is defined as: 

𝐿𝑅𝑖 =
Claims𝑖

Premiums𝑖
   

where Claims𝑖 represents the total claims paid in the 𝑖-th period and Premiums𝑖 represents the total premiums collected 

in the same period. 

Assuming that the historical loss ratios remain stable over time, we can estimate the future loss ratio 𝐿̂𝑅 by calculating 

the average of the historical loss ratios: 

𝐿̂𝑅 =
1

𝑛
∑𝑛𝑖=1 𝐿𝑅𝑖   

Using this estimated loss ratio, the future claims Ĉlaims for a given premium Premiumsfuture can be predicted as: 

Ĉlaims = 𝐿̂𝑅 × Premiumsfuture   

The Loss Ratio Method ensures that the insurer charges premiums that are appropriate to cover the expected future 

claims, i.e., the premiums are set such that: 

Premiumsfuture =
Ĉlaims

𝐿̂𝑅
   

Thus, if the underwriting and claims processes remain consistent over time, the Loss Ratio Method provides a reliable 

estimate for future claims. 

The Loss Ratio Method provides a straightforward and effective approach for pricing insurance premiums and setting 

reserves. By leveraging historical data, the method enables insurers to predict future losses with reasonable accuracy. 

The Loss Ratio is a key actuarial tool, helping actuaries maintain financial stability and ensure that insurers charge 

appropriate premiums to cover future claims 

3- Actuarial Risk Pricing Methods 

3-1- Experience Rating 

Experience Rating is a method used in insurance pricing to adjust premiums based on the insured’s individual claim 

history. Unlike traditional rating methods that rely solely on generalized risk factors, experience rating uses actual past 

experience to assess the risk of a policyholder. This method provides a more personalized premium, typically leading to 

a discount for lower-than-average claims experience or a surcharge for higher-than-average claims. It is particularly 

relevant in non-life insurance fields such as health, travel, and workers’ compensation insurance. 

Experience rating is based on the principle that the probability of future claims is influenced by the past behavior of 

the policyholder. Mathematically, the adjustment to the premium is a function of the historical loss experience, typically 

measured in terms of claim frequency and severity. 

Let 𝜃 represent the base premium, which is adjusted according to the following formula: 

𝜃adjusted = 𝜃 ⋅ (1 + 𝜆 ⋅
𝐿𝑖

𝐿0
),  (12) 

where: 

• 𝜃adjusted is the adjusted premium,  

• 𝜃 is the base premium,  

• 𝜆 is a factor determined by the insurer,  

• 𝐿𝑖 is the total claims experienced by the policyholder in the period under review,  

• 𝐿0 is the expected claim amount based on the policyholder’s risk class.  

The adjustment factor 𝜆 is derived through various statistical methods, including regression analysis, to ensure the 

adjustment reflects the policyholder’s actual risk. 

 The process of adjusting premiums based on experience can be formalized in the following pseudo-algorithm. 
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Algorithm 3. Experience Rating Adjustment 

1. Input: Base premium 𝜃, expected claims 𝐿0, actual claims 𝐿𝑖, adjustment factor 𝜆  

2. Output: Adjusted premium 𝜃adjusted 

3. Step 1: Compute the claim ratio: 

ClaimRatio ←
𝐿𝑖

𝐿0
              (1) 

4. Step 2: Compute the adjusted premium: 

𝜃adjusted ← 𝜃 ⋅ (1 + 𝜆 ⋅ ClaimRatio)  (2) 

5. Step 3: Return the adjusted premium: 

𝜃adjusted  as given in Equation 2  
 

For any policyholder, the adjusted premium 𝜃adjusted is a monotonic function of the ratio of actual to expected claims 
𝐿𝑖

𝐿0
. 

Proof. By the definition of the adjusted premium, it is given by the following expression: 

𝜃adjusted = 𝜃 ⋅ (1 + 𝜆 ⋅
𝐿𝑖

𝐿0
),   

where: 𝜃 is the base premium; 𝜆 is a positive constant representing the adjustment factor, and 
𝐿𝑖

𝐿0
 is the ratio of actual 

claims 𝐿𝑖 to expected claims 𝐿0. 

Since 𝜆 > 0 and 
𝐿𝑖

𝐿0
≥ 0, the term 1 + 𝜆 ⋅

𝐿𝑖

𝐿0
 is always non-decreasing. Consequently, the adjusted premium 𝜃adjusted 

is an increasing function of the ratio 
𝐿𝑖

𝐿0
. 

Therefore, as the ratio of actual to expected claims increases, the adjusted premium also increases, which proves that 

the adjusted premium is a monotonic function of 
𝐿𝑖

𝐿0
. 

The adjustment factor 𝜆 should be selected such that the expected adjusted premium over a large population matches 

the actuarial target premium. 

The expected adjusted premium is given by: 

𝐸[𝜃adjusted] = 𝜃 ⋅ (1 + 𝜆 ⋅ 𝐸 [
𝐿𝑖

𝐿0
]).   

For the model to be actuarially fair, we set: 

𝐸[𝜃adjusted] = 𝜃,   

which implies that: 

𝜆 ⋅ 𝐸 [
𝐿𝑖

𝐿0
] = 0.   

Thus, 𝜆 should be chosen based on the distribution of claim ratios across policyholders.  

One key claim of experience rating is that it leads to more equitable pricing by ensuring that policyholders are charged 

premiums that reflect their individual risk levels. This can result in a more sustainable pricing system where low-risk 

policyholders benefit from lower premiums, and high-risk policyholders are incentivized to improve their risk 

management practices. 

 In practice, insurers use a variety of methods to compute 𝜆 and 𝐿0, including Bayesian updating, historical loss data, 

and generalized linear models (GLMs). This flexibility allows experience rating to be adapted to a wide variety of 

insurance lines and risk profiles. 

Experience Rating is a powerful actuarial tool that allows insurers to personalize premiums based on a policyholder’s 

claims history. By adjusting premiums according to past claims experience, it incentivizes risk mitigation while ensuring 

fairness in pricing. However, the effectiveness of this approach depends on the correct estimation of expected claims 

and the adjustment factor, which requires advanced statistical modeling and a deep understanding of the risk 

characteristics of the insured pool. 
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3-2- Loss Distribution Approaches 

The Loss Distribution Approach (LDA) is a widely used method in actuarial science, particularly in the modeling of 

risk and loss reserves. It provides a framework for quantifying and managing the distribution of total claims, combining 

information on the frequency and severity of claims. This approach plays a pivotal role in determining the appropriate 

reserves for future claims and in calculating actuarial risk premiums. LDA models the loss distribution as the convolution 

of two distributions: the frequency of claims and the severity of individual claims. The primary objective of LDA is to 

calculate the total loss, which is the sum of the individual losses that occur over a specified period. By combining the 

frequency and severity distributions, the LDA allows actuaries to estimate the total risk associated with insurance 

policies. 

The Loss Distribution Approach assumes that losses are governed by two random variables: 

• 𝑁 - the number of claims occurring during a specific period, which follows a probability distribution 𝑓𝑁(𝑛).  

• 𝑋 - the severity of each individual claim, which follows a probability distribution 𝑓𝑋(𝑥).  

The total loss 𝐿 during a period is the sum of the severities of the 𝑁 claims: 

𝐿 = ∑𝑁𝑖=1 𝑋𝑖   

where 𝑋𝑖 are i.i.d. (independent and identically distributed) random variables representing claim severities. 

The distribution of total loss 𝐿 can be found by convolving the distributions of 𝑁 and 𝑋: 

𝑓𝐿(𝑙) = ∑
∞
𝑛=0 𝑓𝑁(𝑛) ⋅ 𝑓𝑋

∗𝑛(𝑙)   

Algorithm 4. Loss Distribution Calculation 

Input: Frequency distribution 𝑓𝑁(𝑛), Severity distribution 𝑓𝑋(𝑥)  

Output: Total loss distribution 𝑓𝐿(𝑙) Initialize total loss distribution 𝑓𝐿(𝑙) = 0  

for each possible number of claims 𝑛 = 0,1,2,… Calculate the 𝑛-fold convolution of the severity distribution: 𝑓𝑋
∗𝑛(𝑙) Update 

the total loss distribution: 

𝑓𝐿(𝑙) = 𝑓𝐿(𝑙) + 𝑓𝑁(𝑛) ⋅ 𝑓𝑋
∗𝑛(𝑙)   

Return 𝑓𝐿(𝑙) 

where 𝑓𝑋
∗𝑛(𝑙) represents the 𝑛-fold convolution of the severity distribution 𝑓𝑋(𝑥), and 𝑓𝐿(𝑙) is the probability density 

function (PDF) of the total loss. 

To calculate the total loss distribution using LDA, the following pseudo-algorithm can be employed: 

The convolution formula used to combine the frequency and severity distributions is given by: 

𝑓𝐿(𝑙) = ∑
∞
𝑛=0 𝑓𝑁(𝑛) ⋅ 𝑓𝑋

∗𝑛(𝑙)   

The 𝑛-fold convolution of the severity distribution is defined as: 

𝑓𝑋
∗𝑛(𝑙) = ∫

𝑙

0
𝑓𝑋(𝑙1) ⋅ 𝑓𝑋

∗(𝑛−1)
(𝑙 − 𝑙1) 𝑑𝑙1   

where 𝑓𝑋
∗0(𝑙) = 𝛿(𝑙) is the Dirac delta function, and 𝑓𝑋

∗1(𝑙) = 𝑓𝑋(𝑙). 

The total loss distribution 𝑓𝐿(𝑙) is a mixture of severity distributions, weighted by the frequency distribution.  

From the definition of convolution, the total loss distribution 𝑓𝐿(𝑙) can be expressed as a weighted sum of severity 

distributions. Specifically, for a given number of claims 𝑛, the corresponding severity distribution 𝑓𝑋
∗𝑛(𝑙) is convolved 

𝑛-times. The mixture arises because the number of claims is random and follows a frequency distribution 𝑓𝑁(𝑛). 
Therefore, we can write the total loss distribution as: 

𝑓𝐿(𝑙) = ∑
∞
𝑛=0 𝑓𝑁(𝑛) ⋅ 𝑓𝑋

∗𝑛(𝑙)  (13) 

Here, 𝑓𝑁(𝑛) represents the probability mass function of the number of claims, and 𝑓𝑋
∗𝑛(𝑙) is the 𝑛-fold convolution 

of the severity distribution 𝑓𝑋(𝑙), denoted by: 

𝑓𝑋
∗𝑛(𝑙) = 𝑓𝑋 ∗ 𝑓𝑋 ∗ ⋯∗ 𝑓𝑋⏟          

𝑛times

(𝑙)  
(14) 

Each term in the sum represents the total loss distribution for a specific number of claims, weighted by the probability 

of having 𝑛 claims. This establishes that 𝑓𝐿(𝑙) is indeed a mixture of severity distributions, where the weights are 

determined by the frequency distribution 𝑓𝑁(𝑛). 
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Thus, we conclude: 

𝑓𝐿(𝑙) = ∑
∞
𝑛=0 𝑓𝑁(𝑛) ⋅ (𝑓𝑋 ∗ 𝑓𝑋 ∗ ⋯∗ 𝑓𝑋⏟          

𝑛times

(𝑙))  (15) 

This completes the proof. 

 If the frequency distribution follows a Poisson distribution and the severity distribution is exponential, then the total 

loss distribution is Gamma-distributed.  

Proof. Let 𝑁 ∼ Poisson(𝜆), which means the frequency of claims follows a Poisson distribution with rate parameter 

𝜆. The severity of each claim is modeled by an exponential distribution, 𝑋 ∼ Exponential(𝜃), with rate parameter 𝜃. 

Thus, the total loss 𝐿 is the sum of 𝑁 independent and identically distributed (i.i.d.) exponential random variables, i.e. 

𝐿 = ∑𝑁𝑖=1 𝑋𝑖   

where 𝑋1, 𝑋2, … , 𝑋𝑁 are i.i.d. random variables with distribution 𝑋 ∼ Exponential(𝜃). 

To find the distribution of the total loss 𝐿, we use the property that the sum of a random number of i.i.d. exponential 

random variables, where the random number follows a Poisson distribution, results in a Gamma distribution. 

Specifically, if 𝑁 ∼ Poisson(𝜆), and each 𝑋𝑖 ∼ Exponential(𝜃), then 𝐿 follows a Gamma distribution with shape 

parameter 𝜆 and rate parameter 𝜃. Mathematically, we can express this as:  

𝐿 ∼ Gamma(𝜆, 𝜃)   

where Gamma(𝜆, 𝜃) denotes the Gamma distribution with shape parameter 𝜆 and rate parameter 𝜃. 

Proof Outline: The total loss distribution 𝐿 is a compound distribution, which arises from the convolution of a 

Poisson-distributed random variable (frequency of claims) and an exponential random variable (severity of each claim). 

By using the properties of the compound distribution, we can deduce that the total loss 𝐿 follows a Gamma distribution 

with parameters (𝜆, 𝜃). 

In actuarial science, the Loss Distribution Approach is primarily used for estimating reserves and premiums. By 

accurately modeling the frequency and severity of claims, actuaries can determine the total risk exposure and set 

appropriate premiums for policyholders. The convolution of frequency and severity distributions allows for a more 

precise estimate of the total loss, which is crucial for pricing and reserving in insurance. 

 The Loss Distribution Approach provides a robust framework for modeling insurance risk. By combining frequency 

and severity distributions, it allows actuaries to calculate the total loss distribution and estimate the reserves and 

premiums required to cover future claims. Although the approach has certain limitations, it remains one of the most 

widely used methods in actuarial science due to its flexibility and applicability. 

4- Actuarial Underwriting Methods 

4-1- Class Rating Method 

Risk classification plays a pivotal role in insurance underwriting by enabling actuaries to segment policyholders into 

homogeneous groups based on shared risk characteristics. The Class Rating Method is an actuarial technique that assigns 

premiums to these groups by balancing equity and efficiency. This method is extensively used in property, casualty, and 

life insurance lines [13]. 

 The Class Rating Method aims to determine the expected loss per policyholder within a given risk class, which serves 

as the basis for premium calculation. Let: 

𝔼[𝐿𝑖] = 𝜇𝑖   

denote the expected loss for risk class 𝑖, where 𝐿𝑖 represents the loss random variable and 𝜇𝑖 its mean. The premium 𝑃𝑖  
for the risk class is computed as: 

𝑃𝑖 = 𝜇𝑖 + L ⋅ 𝜎𝑖 ,   

where L is the loading factor and 𝜎𝑖 is the standard deviation of 𝐿𝑖, capturing uncertainty. 

The method relies on the assumption that risk classes are mutually exclusive and exhaustive, meaning every 

policyholder belongs to exactly one class. The expected loss for the portfolio is: 

𝔼[𝐿] = ∑𝑛𝑖=1 𝑤𝑖𝜇𝑖 ,   

where 𝑤𝑖  is the proportion of policies in class 𝑖. 
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In a fair and sustainable insurance framework, the aggregate weighted premium collected must equate to the sum of 

the expected total loss and the incurred operational expenses: 

∑𝑛𝑖=1 𝑤𝑖𝑃𝑖 = 𝔼[𝐿] + 𝐸,  (16) 

where 𝑤𝑖  represents the weighting factor for policy 𝑖, 𝑃𝑖  is the premium for policy 𝑖, 𝔼[𝐿] is the expected total loss, and 

𝐸 denotes the total expenses.  

Proof. The total weighted premium collected, ∑𝑛𝑖=1 𝑤𝑖𝑃𝑖, accounts for all policy contributions. For a fair system, this 

must balance the insurer’s obligations, which include the expected total loss and the operational expenses. Expressing 

the premium 𝑃𝑖  for each policy 𝑖 as: 

𝑃𝑖 =
𝔼[𝐿𝑖]+𝑒𝑖

𝑤𝑖
,  (17) 

where 𝔼[𝐿𝑖] is the expected loss associated with policy 𝑖, 𝑒𝑖 represents the expenses attributed to policy 𝑖, and 𝑤𝑖  ensures 

appropriate scaling. 

Substituting Equation 17 into Equation 16, we have: 

∑𝑛𝑖=1 𝑤𝑖𝑃𝑖 = ∑
𝑛
𝑖=1 𝑤𝑖 (

𝔼[𝐿𝑖]+𝑒𝑖

𝑤𝑖
) = ∑𝑛𝑖=1 𝔼[𝐿𝑖] + ∑

𝑛
𝑖=1 𝑒𝑖.   

Using the linearity of expectation: 

∑𝑛𝑖=1 𝔼[𝐿𝑖] = 𝔼[∑
𝑛
𝑖=1 𝐿𝑖] = 𝔼[𝐿],  (19) 

where 𝔼[𝐿] is the expected total loss. Similarly, summing over all expenses yields: 

∑𝑛𝑖=1 𝑒𝑖 = 𝐸,  (20) 

where 𝐸 denotes the total expenses. Substituting equations 19 and 20 into Equation 18, we conclude 

∑𝑛𝑖=1 𝑤𝑖𝑃𝑖 = 𝔼[𝐿] + 𝐸.  (21) 

This completes the proof.  

The following algorithm illustrates the step-by-step procedure for implementing the Class Rating Method. 

Algorithm 5. Class Rating Method with Enhanced Mathematical Notation 

Risk classes {𝐶1, 𝐶2, … , 𝐶𝑛}, individual loss data {𝐿1, 𝐿2, … , 𝐿𝑚}, and loading factor 𝜆. Risk-adjusted premiums {𝑃1, 𝑃2, … , 𝑃𝑛}. 

for each risk class 𝐶𝑖, where 𝑖 = 1,2,… , 𝑛 Compute the mean loss for class 𝐶𝑖 as: 

𝜇𝑖 =
1

|𝐶𝑖|
∑𝑗∈𝐶𝑖 𝐿𝑗   (22) 

where |𝐶𝑖| denotes the number of data points in class 𝐶𝑖. Estimate the standard deviation of losses for class 𝐶𝑖 as: 

𝜎𝑖 = √
1

|𝐶𝑖|−1
∑𝑗∈𝐶𝑖 (𝐿𝑗 − 𝜇𝑖)

2  (23) 

Determine the risk-adjusted premium for class 𝐶𝑖 using: 

𝑃𝑖 = 𝜇𝑖 + 𝜆 ⋅ 𝜎𝑖  (24) 

where 𝜆 > 0 is the pre-specified loading factor. The set of computed premiums: 

{𝑃1, 𝑃2, … , 𝑃𝑛}  (25) 
 

The Class Rating Method can be formulated as an optimization problem: 

min
{𝑃𝑖}

∑𝑛𝑖=1 𝑤𝑖(𝑃𝑖 − 𝜇𝑖)
2,   

subject to: 

∑𝑛𝑖=1 𝑤𝑖𝑃𝑖 ≥ 𝔼[𝐿] + Expenses.   

The optimal premiums satisfy: 

𝑃𝑖 = 𝜇𝑖 + 𝜆 ⋅ 𝜎𝑖 ,   

where 𝜆 is the Lagrange multiplier for the constraint. 
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The Class Rating Method ensures premiums are actuarially fair and operationally viable. It aligns with regulatory 

frameworks such as IFRS 17 by guaranteeing solvency through adequate reserving and pricing practices [14]. The Class 

Rating Method provides a robust foundation for actuarial underwriting by systematically incorporating risk heterogeneity 

into pricing models. This article demonstrated its theoretical validity, computational structure, and practical applications. 

4-2- Risk-Adjusted Pricing 

Risk-Adjusted Pricing Method (RAPM) is a cornerstone of actuarial underwriting, particularly in non-life insurance, 

where risk quantification and premium allocation are critical. This method integrates advanced statistical models with 

risk management principles to compute premiums reflective of policyholder-specific risk profiles [15-17]. 

The structure of RAPM consists of the following key components: 

1. Risk quantification: Estimation of risk using probability distributions.  

2. Pricing adjustments: Adjusting base premiums for expected losses, risk margins, and capital costs.  

3. Validation and calibration: Ensuring the model aligns with observed data and satisfies regulatory requirements.  

The RAPM can be expressed mathematically as follows: 

𝑃adjusted = 𝑃base + 𝜆 ⋅ Var(𝐿) + 𝜇 ⋅ CoVaR(𝐿, 𝑅),  (26) 

where: 

• 𝑃base: Base premium calculated from expected loss,  

• 𝜆: Risk loading coefficient,  

• 𝜇: Coefficient of capital costs,  

• Var(𝐿): Variance of loss 𝐿,  

• CoVaR(𝐿, 𝑅): Conditional Value-at-Risk (CoVaR) between losses 𝐿 and reserves 𝑅.  

The RAPM ensures positive net premium when 𝜆 > 0 and 𝜇 > 0.  

Proof. Given the RAPM formulation:  

𝑃adjusted = 𝑃base + 𝜆 ⋅ Var(𝐿) + 𝜇 ⋅ CoVaR(𝐿, 𝑅),   

it suffices to show 𝑃adjusted > 0 when 𝜆, 𝜇 > 0. Since 𝑃base > 0 (by definition of base premium) and both Var(𝐿) and 

CoVaR(𝐿, 𝑅) are non-negative, 𝑃adjusted > 0 holds.  

The following pseudo-algorithm outlines the computation of Risk-Adjusted Premiums: 

Algorithm 6. Risk-Adjusted Pricing Algorithm with Advanced Mathematical Formulation 

Policyholder data 𝒟, base premium 𝑃base, risk adjustment parameters 𝜆, 𝜇 Risk-adjusted premium 𝑃adjusted  

Estimate the Expected Loss: 

𝔼[𝐿] =
1

𝑛
∑𝑛𝑖=1 𝐿𝑖 ,    ∀𝐿𝑖 ∈ 𝒟   

Calculate the Variance of Loss:  

Var(𝐿) =
1

𝑛−1
∑𝑛𝑖=1 (𝐿𝑖 − 𝔼[𝐿])

2   

Determine the Conditional Value-at-Risk (CoVaR):  

CoVaR(𝐿, 𝛼) = 𝔼[𝐿|𝐿 > VaR𝛼(𝐿)]   

where VaR𝛼(𝐿) is the value-at-risk at confidence level 𝛼, defined as:  

VaR𝛼(𝐿) = inf{𝑥 ∈ ℝ: 𝐹𝐿(𝑥) ≥ 𝛼},    𝐹𝐿(𝑥) = Pr(𝐿 ≤ 𝑥)   

Compute the Risk-Adjusted Premium:  

𝑃adjusted = 𝑃base + 𝜆 ⋅ Var(𝐿) + 𝜇 ⋅ CoVaR(𝐿, 𝛼)   

where 𝜆 and 𝜇 are sensitivity parameters reflecting the insurer’s risk appetite. 

Output the Risk-Adjusted Premium:  

Return𝑃adjusted   
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The Risk-Adjusted Pricing Method offers a structured approach to actuarial underwriting by integrating statistical 

rigor with practical application. Its flexibility allows insurers to adapt to diverse risk scenarios effectively 

5- The Theory and Structure of the XGBoost Model 

Extreme Gradient Boosting (XGBoost) is a scalable and accurate machine learning algorithm for regression and 

classification tasks. XGBoost builds an ensemble of decision trees in a sequential manner, optimizing a regularized 

objective function to balance model complexity and predictive accuracy. This section introduces its mathematical 

formulation and practical relevance. 

XGBoost seeks to minimize the following objective function:  

ℒ(Θ) = ∑𝑛𝑖=1 𝑙(𝑦𝑖 , 𝑦̂𝑖) + ∑
𝐾
𝑘=1 Ω(𝑓𝑘),  (27) 

where 𝑙(𝑦𝑖 , 𝑦̂𝑖) represents the loss function, Ω(𝑓𝑘) is the regularization term, 𝑛 is the number of data points, and 𝐾 is the 

number of trees in the ensemble. The predicted value 𝑦̂𝑖 is defined as: 

𝑦̂𝑖 = ∑
𝐾
𝑘=1 𝑓𝑘(𝑥𝑖),    𝑓𝑘 ∈ ℱ,  (28) 

where ℱ denotes the space of regression trees. 

The regularization term Ω(𝑓) ensures model simplicity: 

Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆 ∥ 𝑤 ∥2,  (29) 

where 𝑇 is the number of leaves in the tree, 𝛾 penalizes the number of leaves, and 𝜆 controls the regularization of leaf 

weights. 

5-1- Optimization Framework 

The optimization uses second-order Taylor expansion for the loss function: 

ℒ (𝑡) ≈ ∑𝑛𝑖=1 [𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + Ω(𝑓𝑡),  (30) 

where 𝑔𝑖 =
𝜕𝑙(𝑦𝑖,𝑦̂𝑖

(𝑡−1)
)

𝜕𝑦̂𝑖
 and ℎ𝑖 =

𝜕2𝑙(𝑦𝑖,𝑦̂𝑖
(𝑡−1)

)

𝜕𝑦̂𝑖
2  are the first and second derivatives, respectively. 

The optimal splitting criterion at a decision tree node is defined by maximizing the split gain, given as:  

𝒢 =
1

2
[
𝒢𝐿
2

ℋ𝐿+𝜆
+

𝒢𝑅
2

ℋ𝑅+𝜆
−

𝒢𝑇
2

ℋ𝑇+𝜆
] − 𝛾,  (31) 

where:  

𝒢𝑇 = ∑𝑖∈𝑇 𝑔𝑖 ,    ℋ𝑇 = ∑𝑖∈𝑇 ℎ𝑖 ,  (32) 

𝒢𝐿 = ∑𝑖∈𝐿 𝑔𝑖 ,    ℋ𝐿 = ∑𝑖∈𝐿 ℎ𝑖  (33) 

𝒢𝑅 = ∑𝑖∈𝑅 𝑔𝑖 ,    ℋ𝑅 = ∑𝑖∈𝑅 ℎ𝑖 ,  (34) 

with 𝑔𝑖 and ℎ𝑖 representing the first and second-order derivatives of the loss function with respect to the model output 

for the 𝑖-th data point, respectively. The hyperparameters 𝜆 > 0 and 𝛾 > 0 control the regularization of the gain 

calculation.  

The objective of the split gain is to quantify the improvement in the loss function reduction achieved by splitting 

the data at a given node. For any split that partitions the dataset 𝑇 into subsets 𝐿 and 𝑅, the gain is derived as 

follows: 

The total loss reduction before the split is given by:  

ℒ𝑇 = −
1

2

𝒢𝑇
2

ℋ𝑇+𝜆
.  (35) 

After the split, the loss reduction is computed separately for the left and right child nodes:  

ℒ𝐿 = −
1

2

𝒢𝐿
2

ℋ𝐿+𝜆
,    ℒ𝑅 = −

1

2

𝒢𝑅
2

ℋ𝑅+𝜆
.  (36) 

The net improvement, or gain, due to the split is therefore:  

𝒢 = (ℒ𝐿 + ℒ𝑅) − ℒ𝑇 − 𝛾.  (37) 
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Substituting from Equations 35 and 36 into equation 37, and simplifying terms, we obtain the split gain as defined in 

Equation 31. 

Thus, the split that maximizes 𝒢 corresponds to the optimal partition of 𝑇. This concludes the proof. 

Below is the pseudo-algorithm for XGBoost regression: 

Algorithm 7. XGBoost Regression 

Input: Training dataset 𝒟 = {(𝐱𝑖 , 𝑦𝑖)}𝑖=1
𝑛  where 𝐱𝑖 ∈ ℝ

𝑑 and 𝑦𝑖 ∈ ℝ, learning rate 𝜂, maximum number of trees 𝑇, 

regularization parameters 𝜆, 𝛾, and a loss function ℒ(𝑦, 𝑦̂).  

Initialize: Model prediction 𝑦̂𝑖
(0)
= 0 for all 𝑖 = 1,… , 𝑛.   

for 𝑡 = 1 to 𝑇 Compute the gradient 𝑔𝑖
(𝑡)

 and the Hessian ℎ𝑖
(𝑡)

: 

𝑔𝑖
(𝑡)
=
𝜕ℒ(𝑦𝑖,𝑦̂𝑖

(𝑡−1)
)

𝜕𝑦̂𝑖
(𝑡−1) ,    ℎ𝑖

(𝑡)
=
𝜕2ℒ(𝑦𝑖,𝑦̂𝑖

(𝑡−1)
)

𝜕(𝑦̂𝑖
(𝑡−1)

)2
   

Construct a decision tree 𝑓𝑡(𝐱) to minimize the regularized objective: 

ℒ (𝑡) = ∑𝑛𝑖=1 [𝑔𝑖
(𝑡)
𝑓𝑡(𝐱𝑖) +

1

2
ℎ𝑖
(𝑡)
𝑓𝑡
2(𝐱𝑖)] + 𝛾 num_leaves(𝑓𝑡) +

𝜆

2
∥ 𝑓𝑡 ∥

2   

Update the model prediction:  

𝑦̂𝑖
(𝑡)
= 𝑦̂𝑖

(𝑡−1)
+ 𝜂𝑓𝑡(𝐱𝑖)   

Output: Final prediction 𝑦̂𝑖 = 𝑦̂𝑖
(𝑇)

 for all 𝑖 = 1,… , 𝑛.   

∥ ∇ℒ(𝜃) − ∇ℒ(𝜃′) ∥≤ 𝐿 ∥ 𝜃 − 𝜃′ ∥     ∀ 𝜃, 𝜃′ ∈ ℛ𝑑 ,   

where ∇ℒ(𝜃) denotes the gradient of the loss function and 𝐿 is the smoothness constant. 

Under these conditions, the convergence rate of the optimization algorithm used in XGBoost is 𝑂 (
1

𝑇
), where 𝑇 is the 

number of iterations. Specifically, after 𝑇 iterations, the optimization error satisfies: 

ℒ(𝜃𝑇) − ℒ(𝜃
∗) ≤

2(ℒ(𝜃0)−ℒ(𝜃
∗))

𝑇
,   

where 𝜃𝑇 denotes the parameters at the 𝑇-th iteration, 𝜃∗ represents the optimal parameters, and 𝜃0 is the initial parameter 

estimate.  

Proof. To prove the lemma, we will rely on the fundamental concepts of convexity and smoothness of the loss 

function, and use the gradient descent analysis. 

 Step 1: Smoothness of the Loss Function Since ℒ(𝜃) is 𝐿-smooth, we have the following inequality for any two 

parameter vectors 𝜃 and 𝜃′: 

ℒ(𝜃) ≤ ℒ(𝜃′) + ∇ℒ(𝜃′)𝑇(𝜃 − 𝜃′) +
𝐿

2
∥ 𝜃 − 𝜃′ ∥2.   

By applying this smoothness condition iteratively, we can bound the decrease in the loss function at each step of the 

optimization process. 

 Step 2: Gradient Descent Analysis 

Let 𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇ℒ(𝜃𝑡) represent the parameter update rule, where 𝜂 is the learning rate. The update rule implies 

the following relationship: 

ℒ(𝜃𝑡+1) ≤ ℒ(𝜃𝑡) − 𝜂 ∥ ∇ℒ(𝜃𝑡) ∥
2+

𝐿𝜂2

2
∥ ∇ℒ(𝜃𝑡) ∥

2.   

Choosing a learning rate 𝜂 =
1

𝐿
 ensures that the second term does not dominate, leading to a decrease in the loss 

function: 

ℒ(𝜃𝑡+1) ≤ ℒ(𝜃𝑡) −
1

𝐿
∥ ∇ℒ(𝜃𝑡) ∥

2.   

Step 3: Bounding the Error 

 By iterating the above update rule for 𝑇 steps, we obtain: 

ℒ(𝜃𝑇) − ℒ(𝜃
∗) ≤ ℒ(𝜃0) − ℒ(𝜃

∗) − ∑𝑇−1𝑡=0
1

𝐿
∥ ∇ℒ(𝜃𝑡) ∥

2.   
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Using the fact that ℒ(𝜃) is convex, we know that: 

ℒ(𝜃) − ℒ(𝜃∗) ≥ ∇ℒ(𝜃)𝑇(𝜃 − 𝜃∗)    ∀𝜃.   

Therefore, the gradient updates ensure that the error at each step decreases with a rate of 𝑂 (
1

𝑇
), completing the proof.  

XGBoost is inherently robust to overfitting due to its regularization framework, which incorporates both L1 (Lasso) 

and L2 (Ridge) regularization, controlling model complexity and ensuring generalization.  

Proof. To show the robustness of XGBoost to overfitting, we analyze its objective function, which combines both the 

loss function and regularization terms. 

The general objective function in XGBoost can be expressed as: 

ℒ(𝜃) = ∑𝑛𝑖=1 ℓ(𝑦𝑖 , 𝑦̂𝑖) + ∑
𝐾
𝑘=1 Ω(𝑓𝑘)   

where: 

• ℓ(𝑦𝑖 , 𝑦̂𝑖) is the loss function that measures the discrepancy between the true target 𝑦𝑖  and the predicted value 𝑦̂𝑖,  

• Ω(𝑓𝑘) is the regularization term applied to the 𝑘-th tree 𝑓𝑘.  

For the regularization term, XGBoost uses a combination of L1 (Lasso) and L2 (Ridge) regularization: 

Ω(𝑓𝑘) = 𝛾𝑇 +
1

2
𝜆 ∑𝑇𝑗=1 𝑤𝑗

2   

where: 

• 𝛾𝑇 penalizes the number of terminal leaves (nodes) 𝑇 in the tree, promoting simpler models with fewer nodes,  

• 𝜆 is the L2 regularization coefficient that penalizes the sum of squared weights of the leaf nodes 𝑤𝑗 , controlling the 

model’s complexity and preventing overfitting,  

• 𝑤𝑗  are the weights at each leaf node of the tree 

Incorporating both L1 and L2 regularization, the objective becomes: 

ℒ(𝜃) = ∑𝑛𝑖=1 ℓ(𝑦𝑖 , 𝑦̂𝑖) + ∑
𝐾
𝑘=1 (𝛾𝑇𝑘 +

1

2
𝜆∑

𝑇𝑘
𝑗=1 𝑤𝑗

2) + 𝛼 ∑𝐾𝑘=1 ∑
𝑇𝑘
𝑗=1 |𝑤𝑗|   

where: 𝛼 is the L1 regularization parameter (Lasso) that promotes sparsity by encouraging certain weights 𝑤𝑗  to be 

exactly zero. 

The final form of the regularized objective function thus penalizes both the complexity of the tree (through 𝑇 and the 

leaf weights 𝑤𝑗) and the magnitude of the weights (through L1 and L2 terms). This ensures that the model is not only 

accurate but also generalizes well to unseen data, mitigating the risk of overfitting. 

The robustness of XGBoost to overfitting can therefore be attributed to its ability to balance bias and variance through 

 Tree Complexity Regularization: Controlled by the parameter 𝛾, reducing the likelihood of excessively complex 

trees.  

 Weight Shrinkage: Governed by 𝜆, which shrinks the leaf weights towards zero and prevents overfitting to the 

noise in the training data.  

 Sparsity Induction: Enforced by the L1 term (controlled by 𝛼), which induces sparsity in the tree leaves, further 

reducing overfitting by removing unnecessary features.  

Thus, XGBoost’s incorporation of regularization terms both simplifies the model and improves its ability to 

generalize, making it highly effective in preventing overfitting.  

XGBoost regression combines efficiency and accuracy, making it a powerful tool in predictive modelling. 

6- The Brighton Mahohoho XGBoost Probability Based Inflation Adjusted Frequency Severity 

Automated Actuarial Loss Reserving-Risk Pricing-Underwriting Model 

The traditional actuarial approach to loss reserving and pricing often relies on static models that fail to account for 

the dynamic nature of insurance claims, particularly in occupational indemnity insurance. This paper presents a novel 

framework that combines the power of Artificial Intelligence (AI) and traditional actuarial models to deliver more 

accurate, inflation-adjusted loss reserving and pricing models. The model integrates the XGBoost algorithm, a widely 

used machine learning technique, to predict the frequency and severity of claims, taking into account inflation trends 

and policyholder behavior. 
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 The model presented in this paper builds on the classical frequency-severity framework, which decomposes insurance 

losses into two components: frequency, which describes how often claims occur, and severity, which quantifies the cost 

of each claim. The model extends this framework by adjusting for inflation, a crucial factor in long-term indemnity 

insurance policies, and by incorporating AI-driven techniques for enhanced prediction. 

6-1- The XGBoost Model for Frequency and Severity Prediction 

XGBoost is an implementation of gradient-boosted decision trees designed for speed and performance. It is used in 

this framework to predict the frequency and severity of claims. The XGBoost model is formulated as follows: 

𝑓(𝑥) = ∑𝐾𝑘=1 𝛾𝑘ℎ𝑘(𝑥),  (38) 

where: 𝑓(𝑥) is the predicted value (either frequency or severity), 𝐾 is the number of decision trees, 𝛾𝑘 is the weight of 

the 𝑘-th tree, ℎ𝑘(𝑥) is the output of the 𝑘-th decision tree. 

The model is trained by minimizing a regularized loss function that includes both the training loss and a penalty term 

for tree complexity: 

ℒ(𝜃) = ∑𝑁𝑖=1 [Loss(𝑦𝑖 , 𝑓(𝑥𝑖)) + 𝜆 ∥ 𝜃 ∥
2],  (39) 

where: 𝑁 is the number of data points, 𝑦𝑖  is the true label (observed loss), 𝑓(𝑥𝑖) is the predicted loss, 𝜆 is the 

regularization parameter, and 𝜃 are the model parameters.  

Here is the implementation of the XGBoost-based model for Automated Actuarial Loss Reserve Risk Premiums 

(AALRRP) and the subsequent actuarial underwriting by risk groups. This model leverages advanced machine learning 

techniques to predict frequency and severity of claims and to adjust for inflation. The total loss reserve is calculated 

using these predictions, which are further refined by risk-based premiums (AALRRP) for policyholders categorized into 

various risk groups. 

We begin by outlining the problem setup. The model takes historical claims data {𝐗𝑡} and inflation rates {Inflation𝑡} 
as input, along with the parameters for the frequency and severity models. These components allow for the prediction of 

both claim frequency and severity, adjusted for inflation, and the calculation of the total reserve. 

6-1-1- Frequency and Severity Predictions 

 Given the data 𝐗𝑡  for each time period 𝑡, we train two separate XGBoost models to predict frequency (𝐹̂𝑡) and severity 

(𝑆̂𝑡). 

𝐹̂𝑡 = 𝑋𝐺𝐵𝑜𝑜𝑠𝑡(𝐗𝑡 , 𝛉𝐹)   

𝑆̂𝑡 = 𝑋𝐺𝐵𝑜𝑜𝑠𝑡(𝐗𝑡 , 𝛉𝑆)   

Here, 𝛉𝐹  and 𝛉𝑆 are the model parameters learned from the training data, which are used to predict the future 

frequency and severity of claims. 

6-2- Adjustment for Inflation 

To account for inflation over time, the predictions for frequency and severity are adjusted by multiplying the predicted 

values by the inflation rate at each time period 𝑡. Let the adjusted frequency 𝐹𝑡 and adjusted severity 𝑆𝑡 be expressed as: 

𝐹𝑡 = 𝐹̂𝑡 × (1 + Inflation𝑡)   

𝑆𝑡 = 𝑆̂𝑡 × (1 + Inflation𝑡)   

These adjustments ensure that the model accounts for economic factors that influence the cost of claims over time. 

6-3- Automated Actuarial Loss Reserve Risk Premiums (AALRRP) 

The Automated Actuarial Loss Reserve Risk Premiums (AALRRP) are computed as the product of adjusted 

frequency, severity, and a risk factor RiskFactor𝑡, which reflects the specific risk associated with the policyholder group 

at time 𝑡: 

AALRRP𝑡 = (𝐹𝑡 × 𝑆𝑡 × Risk Factor𝑡) × (1 + Inflation𝑡)   

Here, the RiskFactor𝑡 is a function of actuarial risk categories, which could include policyholder demographics, 

policy types, and historical claims data. We define this factor as: 

Risk Factor𝑡 = 𝑓(𝐗𝑡 , Demographic𝑡 , PolicyAttributes𝑡)   
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This risk factor represents the variability in claims costs due to individual policyholder characteristics and external 

economic conditions 

6-4- Total Loss Reserve 

The total loss reserve is computed by summing the adjusted frequency and severity for each time period 𝑡 across all 

periods 𝑇: 

𝑅 = ∑𝑇𝑡=1 𝐹𝑡 × 𝑆𝑡 × (1 + Inflation𝑡)   

This reserve 𝑅 is the estimated amount required to cover all claims liabilities over the forecast horizon. 

6-5- Underwriting by Risk Groups 

Actuarial underwriting divides policyholders into risk groups based on their computed AALRRP. We classify the 

policyholders into three groups based on thresholds for the AALRRP: 

Group𝑖 = {𝑡|AALRRP𝑡 ∈ Group𝑖}   

where the risk groups Group𝑖  are defined as: 

Group𝑖 = {

High Risk, if AALRRP𝑡 > Threshold1
Medium Risk, if Threshold2 ≤ AALRRP𝑡 ≤ Threshold1
Low Risk, if AALRRP𝑡 < Threshold2

  

 

These thresholds are determined based on historical data and actuarial analysis. They allow insurers to classify 

policyholders into different risk categories, which helps in pricing policies appropriately. The following pseudo-

algorithm outlines the key steps in the Brighton Mahohoho XGBoost Constructed Probability-Compliant Inflation 

Adjusted Frequency Severity Loss Reserving, Risk Pricing and underwriting model. 

6-6- Algorithm: The Brighton Mahohoho XGBoost Model for Loss Reserving, Risk Pricing, and Underwriting by 

Risk Groups 

The AALRRP calculation is consistent with the total loss reserve over time, adjusted for inflation. The total reserve 

is given by:  

𝑅 = ∑𝑇𝑡=1 𝐹𝑡 × 𝑆𝑡 × (1 + Inflation𝑡)   

The AALRRP for each time period is computed as:  

AALRRP𝑡 = (𝐹𝑡 × 𝑆𝑡 × RiskFactor𝑡) × (1 + Inflation𝑡)   

By definition, the total loss reserve is the sum of the AALRRP for all periods, adjusted for the inflation at each period. 

Therefore, the total reserve 𝑅 is consistent with the sum of AALRRP values, implying that the model is actuarially 

sound.  

The classification of policyholders into risk groups based on the AALRRP ensures that the underwriting process 

reflects the actual risk exposure of the policyholders.  

Proof. Given the risk group classification function:  

Group𝑖 = {

High Risk, if AALRRP𝑡 > Threshold1
Medium Risk, if Threshold2 ≤ AALRRP𝑡 ≤ Threshold1
Low Risk, if AALRRP𝑡 < Threshold2

  

 

By allocating policyholders to high, medium, or low-risk groups based on their AALRRP, insurers can ensure that 

the premium charged is proportional to the risk borne by each group. This methodology is consistent with risk-based 

pricing. The inflation adjustment has a proportional impact on both AALRRP and the total reserve, ensuring that the 

model accounts for future economic conditions.  

Proof. Both AALRRP and the total reserve include an inflation adjustment factor (1 + Inflation𝑡). As such, the model 

is capable of capturing the cumulative impact of inflation over the time horizon 𝑇, ensuring that the reserve and risk 

premiums are aligned with expected future cost increases.  

This paper presents a robust, AI-driven framework for inflation-adjusted frequency-severity loss reserving and risk 

pricing in occupational indemnity insurance. By combining XGBoost with traditional actuarial methods, the model 

provides a powerful tool for predicting future claims and setting appropriate reserves. The use of inflation adjustments 

ensures that the model remains relevant and accurate over time, making it a valuable tool for insurers. 
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Algorithm 8. Brighton Mahohoho XGBoost Model for Loss Reserving, Risk Pricing, and Underwriting by Risk Groups 

1. Input: Historical claims data {𝐗𝑡}, inflation rates {Inflation𝑡}, model parameters θ𝐹 , θ𝑆  

2. Output: Frequency and severity predictions, total loss reserve, Automated Actuarial Loss Reserve Risk Premiums 

(AALRRP), and underwriting by risk groups  

3. Step 1: Train XGBoost model for frequency prediction:  

𝐹̂𝑡 = 𝑋𝐺𝐵𝑜𝑜𝑠𝑡(𝐗𝑡, 𝛉𝐹)   

4. Step 2: Train XGBoost model for severity prediction:  

𝑆̂𝑡 = 𝑋𝐺𝐵𝑜𝑜𝑠𝑡(𝐗𝑡 , 𝛉𝑆)   

     5. for each time period 𝑡 do 

6. Step 3: Adjust frequency prediction for inflation:  

𝐹𝑡 = 𝐹̂𝑡 × (1 + Inflation𝑡)   

7. Step 4: Adjust severity prediction for inflation:  

𝑆𝑡 = 𝑆̂𝑡 × (1 + Inflation𝑡)   

8. end for 

9. Step 5: Compute total reserve:  

𝑅 = ∑𝑇𝑡=1 𝐹𝑡 × 𝑆𝑡 × (1 + Inflation𝑡)   

10. Step 6: Compute the Automated Actuarial Loss Reserve Risk Premiums (AALRRP) for each time period 𝑡 as follows:  

AALRRP𝑡 = (𝐹𝑡 × 𝑆𝑡 × Risk Factor𝑡) × (1 + Inflation𝑡)   

where Risk Factor𝑡 is a function of actuarial risk categories based on historical data 𝐗𝑡, such as:  

RiskFactor𝑡 = 𝑓(𝐗𝑡 , Demographic𝑡, Policy Attributes𝑡)   

11. Step 7: Underwrite by risk groups based on the computed AALRRP𝑡:  

Group𝑖 = {𝑡|AALRRP𝑡 ∈ Group𝑖}   

where the risk groups Group𝑖 are defined by specific ranges of AALRRP𝑡, such as high, medium, and low risk groups:  

Group𝑖 = {

High Risk, if AALRRP𝑡 > Threshold1
Medium Risk, if Threshold2 ≤ AALRRP𝑡 ≤ Threshold1
Low Risk, if AALRRP𝑡 < Threshold2

  

 

12. Step 8: Return total reserve and risk group underwritings:  

Return: Total Reserve 𝑅, Under writing Groups{Group𝑖}   
 

6-7- IFRS 17 Compliance in Loss Reserving, Risk Pricing, and Underwriting 

IFRS 17, the international accounting standard for insurance contracts, has brought significant changes to the way 

insurers approach loss reserving, risk pricing, and underwriting. This regulation mandates that insurance companies 

recognize profits and losses over the lifetime of insurance contracts, in alignment with the expected future cash flows. 

The focus is on creating more transparent, consistent, and comparable financial statements. 

 In the context of occupational indemnity insurance, IFRS 17 compliance requires the estimation of future cash flows 

for both claims (including inflation adjustments) and premiums. To meet these requirements, a framework based on 

probabilistic modeling can be used to project uncertain future events related to insurance claims, which aligns well with 

the underlying concepts of loss reserving under IFRS 17. 

 The IFRS 17 framework involves calculating two main elements: 

 Best Estimate of Liability (BEL): This represents the expected present value of future cash flows, which includes 

both expected claims and premiums.  

 Contractual Service Margin (CSM): This represents the unearned profit from an insurance contract that will be 

recognized as revenue over time.  

In this paper, Inflation-Adjusted Frequency-Severity Modeling helps ensure that both the frequency of claims (how 

often claims occur) and the severity of claims (how much each claim costs) are appropriately factored into the reserve 

estimation, while incorporating the necessary adjustments for inflation. This ensures that the calculated Best Estimate of 

Liability (BEL) adheres to IFRS 17’s requirements for the projection of future cash flows. 
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 Additionally, Risk Premiums are adjusted to reflect inflation expectations, policyholder behavior, and other risk 

factors. Automated Loss Reserving is aligned with IFRS 17 by using actuarial methods that consider adjustments for the 

time value of money, inflation, and other actuarial assumptions, providing more accurate and compliant estimates for 

reserving. 

6-8- Novelty of the Study 

This study presents several novel contributions to the field of actuarial science, specifically within the context of 

occupational indemnity insurance and IFRS 17-compliant pricing and reserving models. The primary innovations of this 

research are as follows. 

This study introduces a novel hybrid framework that combines multiple artificial intelligence (AI) techniques, with 

particular emphasis on the Extreme Gradient Boosting (XGBoost) algorithm. This AI-driven methodology automates 

the estimation of actuarial loss reserves and risk premiums, achieving both high predictive accuracy and regulatory 

compliance with IFRS 17. The integration of XGBoost for loss reserving and pricing provides a more nuanced and 

dynamic estimation of policyholder claims, significantly improving predictive outcomes compared to traditional 

actuarial models. The paper extends classical frequency-severity models by incorporating dynamic inflation adjustments 

within the claims process. This is a novel approach in the context of occupational indemnity insurance, where inflation 

has historically been a challenging factor to incorporate in a precise, actionable manner. The use of Poisson and Gamma 

distributions to model claim frequencies and severities, while simultaneously adjusting for inflation, enhances the 

accuracy of both premium pricing and reserve estimation. A key contribution of this work is the simulation of a 

comprehensive dataset that mimics real-world occupational indemnity insurance policies, incorporating elements such 

as policyholder characteristics, premiums, claims, and inflation adjustments. This simulation not only provides a rich 

foundation for the application of advanced actuarial techniques but also allows for rigorous testing of model robustness 

and performance under different risk scenarios. This study presents a detailed approach to integrating IFRS 17 metrics 

such as the Contractual Service Margin (CSM), Fulfillment Cash Flows (FCF), and Risk Adjustments into the actuarial 

loss reserving process. The paper uniquely demonstrates how to incorporate these regulatory requirements into the 

predictive models, providing a comprehensive framework for insurers to ensure compliance while optimizing pricing 

and reserving strategies. 

The segmentation of policyholders into five actuarial underwriting clusters based on simulated claims, premiums, 

and risk characteristics is an innovative method in the context of automated actuarial pricing. By using AI-driven 

algorithms for cluster analysis, this study enhances the precision of risk classification and pricing, leading to better-

targeted underwriting strategies. The clustering technique is paired with the computation of Automated Net Actuarial 

Underwriting Balance (ANAUB), which evaluates the financial impact of different underwriting strategies. In addition 

to predictive modeling; the paper introduces a robust sensitivity analysis framework to evaluate the resilience of the 

proposed models under various stress-testing scenarios. This ensures that the derived loss reserves and premiums remain 

within the acceptable boundaries of risk and regulatory compliance, even under fluctuating market conditions. 

By addressing the complexities of actuarial pricing and reserving through an AI-driven, simulation-based framework, 

this study provides an innovative, comprehensive solution for the challenges faced by insurers in complying with IFRS 

17 regulations. The combination of AI, inflation adjustment, IFRS 17 integration, and advanced clustering techniques 

offers a cutting-edge approach that significantly advances the state of the art in actuarial science.  

6-9- Contribution to Actuarial Science  

This research makes several significant contributions to the field of actuarial science, particularly in the areas of 

automated actuarial loss reserving, risk pricing, and the integration of IFRS 17 compliance. One of the key contributions 

of this study is the development and application of artificial intelligence (AI) techniques, specifically Extreme Gradient 

Boosting (XGBoost), in the automation of actuarial loss reserving and risk pricing. Traditional actuarial methods often 

rely on static, manual processes for loss reserving, which can be time-consuming and prone to error. This study 

demonstrates that AI techniques can not only automate but also significantly enhance the accuracy of these processes. 

By implementing machine learning models like XGBoost, the research provides a more flexible and adaptive approach 

to estimating loss reserves and risk premiums, offering insights that are critical for insurers navigating complex and 

volatile markets. 

The integration of inflation-adjusted frequency-severity models represents a groundbreaking advancement in 

occupational indemnity insurance. Previous models often fail to account for the evolving nature of inflation within claims 

estimation, leading to potential under- or over-estimation of reserves. This research introduces a dynamic framework 

that adjusts both the frequency and severity of claims for inflation, improving the accuracy and realism of reserve 

calculations and premium pricing. This model provides actuarial practitioners with a more robust tool to account for 

inflationary pressures, ensuring better financial planning and risk management for insurers. Another important 

contribution is the creation of a simulated actuarial dataset that mimics real-world conditions in the occupational 

indemnity insurance market. By generating realistic policyholder data, including premiums, claims, and risk 

characteristics, the study allows for comprehensive testing and validation of actuarial models. This simulated data serves 

as a foundation for assessing model performance under various risk scenarios, offering valuable insights into model 
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robustness and predictive accuracy. The simulation framework presented in this study provides actuarial researchers and 

practitioners with a reliable tool for evaluating models before their deployment in live settings. 

This paper contributes to the practical application of IFRS 17 by demonstrating how actuarial models can be 

developed and adapted to comply with its complex requirements. The research showcases how key IFRS 17 metrics—

such as the Contractual Service Margin (CSM), Fulfillment Cash Flows (FCF), and Risk Adjustments—can be 

incorporated directly into the actuarial loss reserving and pricing process. This integration ensures that insurers remain 

compliant with regulatory standards while optimizing their pricing strategies. By bridging the gap between actuarial 

practice and IFRS 17, this study provides a comprehensive framework that enhances the ability of actuaries to navigate 

the evolving regulatory landscape. The study also introduces an innovative approach to actuarial underwriting by 

segmenting policyholders into five distinct actuarial underwriting clusters based on their risk profiles. This segmentation 

is achieved using advanced machine learning techniques, allowing for more precise pricing and underwriting strategies 

tailored to the characteristics of each cluster. The ability to segment policyholders in this way leads to more accurate risk 

pricing and helps insurers optimize their portfolio management strategies. This contribution represents a significant step 

forward in the application of AI and data analytics to enhance the actuarial underwriting process. 

The research introduces a novel framework for sensitivity and stress testing to evaluate the stability of actuarial 

models under various economic and market conditions. This ensures that actuarial predictions for loss reserves and 

premiums remain reliable and robust, even in the face of extreme scenarios. The use of such stress tests is crucial for the 

long-term sustainability of insurance pricing models, helping insurers prepare for unforeseen risks and volatile market 

conditions. This contribution strengthens the overall reliability of the actuarial models proposed in the study and provides 

a more comprehensive view of the potential risks associated with different pricing and reserving strategies. 

In a nutshell, this study makes valuable contributions to the field of actuarial science by developing advanced, AI-

driven methods for loss reserving, risk pricing, and IFRS 17 compliance. Through the integration of inflation-adjusted 

frequency-severity models, enhanced risk segmentation, and robust testing methodologies, this research offers a 

significant advancement in the way actuaries approach pricing, reserving, and risk management. The findings provide 

actuaries with a comprehensive, modern toolkit for navigating the complexities of today’s insurance landscape, ensuring 

that insurers can better manage risk and achieve regulatory compliance while optimizing their financial strategies. 

7- Survey of Methods and Literature Review 

Inflation-adjusted frequency-severity models have long been a crucial aspect of actuarial practice, especially in the 

context of pricing and reserving. These models adjust for the impact of inflation on both the frequency and severity of 

claims, a necessary step for accurate estimation of reserves and premiums. Several early works, such as those by Denuit 

et al. [2], pioneered stochastic methods for claim reserving. Mack’s [12] work on the Chain Ladder method provided 

foundational techniques for estimating reserves under the assumption of constant inflation, but it did not account for 

varying inflation rates over time. 

 Subsequent studies, such as Wüthrich & Merz [18], extended the Chain Ladder method by introducing the use of 

stochastic inflation adjustments. These approaches demonstrated how inflation factors could be modeled 

probabilistically, incorporating both inflation forecasts and historical data. Denuit et al. [19] introduced a more 

generalized framework for adjusting frequency and severity models with stochastic inflation processes. They emphasized 

the need for more complex models that could integrate multiple sources of inflation, such as medical inflation or 

economic inflation, to refine the estimates for claims severity. Their work set the stage for incorporating more 

sophisticated statistical methods into actuarial modeling. 

The application of machine learning models, particularly XGBoost, has gained significant attention in the actuarial 

community in recent years. Chen & Guestrin [11] introduced XGBoost as a scalable and efficient algorithm for gradient 

boosting, which has been widely adopted across industries, including insurance. The algorithm’s ability to handle large 

datasets with complex relationships between variables makes it particularly suited for actuarial tasks such as claim 

frequency prediction, severity modeling, and loss reserving. 

Several studies have explored the use of XGBoost for insurance-related tasks. Wang et al. [20] applied XGBoost for 

predicting claim frequencies and severities, demonstrating its superiority over traditional methods such as Generalized 

Linear Models (GLM). Their results showed a marked improvement in predictive accuracy, particularly when dealing 

with non-linear relationships and interaction effects between features. 

Further extending the use of machine learning in loss reserving, Mahohoho et al. [21] applied XGBoost to the 

estimation of reserves, focusing on its ability to model the non-linear effects of inflation and other covariates on claim 

development patterns. They compared the performance of XGBoost with more traditional actuarial methods and found 

that it provided a more robust and flexible approach, especially in volatile environments. 

The introduction of IFRS 17 has brought a new era of actuarial modeling, particularly in how insurance liabilities and 

premiums are calculated. IFRS 17 requires that insurance contracts be measured using a current estimate of future cash 

flows, adjusted for risk and time value, introducing a more dynamic and granular approach to pricing and reserving. 

Yryku & Lamani [22] provided an early examination of the implications of IFRS 17 for insurance companies. They 
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highlighted how the new standards would require actuaries to consider more sophisticated modeling techniques, such as 

stochastic processes and machine learning algorithms, to comply with the increased emphasis on accuracy and 

transparency. 

Later works, such as Palmborg [23], explored the integration of machine learning techniques with IFRS 17 in more 
detail, suggesting that XGBoost could play a crucial role in ensuring compliance by providing accurate estimates of 
future liabilities, incorporating adjustments for inflation, and considering the non-linearities inherent in insurance data. 
Their work emphasized the need for data science techniques to augment traditional actuarial methods, aligning with the 

increased focus on AI-driven actuarial models. 

AI-driven augmented data science has been a promising frontier in enhancing actuarial practice. The integration of 

AI with traditional actuarial methods provides a robust framework for analyzing large and complex datasets that often 
arise in the insurance industry. Xiong et al. [24] reviewed the application of AI in loss reserving and risk pricing, focusing 
on how advanced algorithms such as XGBoost, Random Forests, and Neural Networks can be integrated into actuarial 
models to improve their predictive capabilities. In the context of inflation-adjusted frequency-severity models, 
Krasheninnikova et al. [25] explored how machine learning could help actuaries incorporate dynamic inflation 

adjustments. By using algorithms like XGBoost, they demonstrated how inflation parameters could be estimated more 
precisely by learning from historical claims data. This integrated approach resulted in more accurate predictions of claim 
outcomes, which is critical for both pricing and reserving. 

With the implementation of IFRS 17, there is an increased emphasis on accurate and transparent financial reporting 
in insurance. This has spurred the development of models that not only predict losses but also comply with regulatory 
standards. Mahohoho [26] proposed an inflation-adjusted automated actuarial loss reserving model using Random Forest 
techniques, specifically tailored for fire insurance, aligning with IFRS 17 requirements. Mahohoho [27] developed a 
non-linear regression-based model for travel insurance, utilizing Gaussian Process Regression (GPR) to adjust for 

inflation in frequency-severity modeling. This approach integrates synthetic data generation and exploratory data 
analysis to enhance compliance with IFRS 17 and improve financial reporting. Clemente et al. [28] investigated the 
predictive performance of GBMs in modeling claim frequency and severity in auto insurance. Their study concluded 
that GBMs outperform traditional GLMs in capturing complex, non-linear relationships, thereby enhancing risk 
assessment accuracy. The integration of AI-driven methodologies, particularly GBMs like XGBoost, into actuarial 
science represents a significant advancement in modeling inflation-adjusted frequency and severity in occupational 

indemnity insurance. These models offer enhanced predictive accuracy and the ability to capture complex data patterns, 
aligning with the stringent requirements of IFRS 17. Continued research and development in this area are essential for 
refining these models and ensuring their robustness in various insurance applications. 

The Brighton Mahohoho Probabilistic Framework for inflation-adjusted frequency-severity modeling aims to 
integrate AI-driven techniques such as XGBoost within a coherent probabilistic framework that aligns with the 
regulatory requirements of IFRS 17. This novel framework builds on previous works, combining stochastic inflation 
modeling with the power of machine learning to improve loss reserving and risk pricing in occupational indemnity 
insurance. It emphasizes transparency, flexibility, and the use of augmented actuarial data science to enhance traditional 

actuarial methods. Preliminary results presented by Mahohoho et al. [29] show how integrating these AI techniques can 
lead to significant improvements in model accuracy, particularly in adjusting for inflation’s impact on claim frequency 
and severity. By using XGBoost within this framework, the model can dynamically adjust for inflation while providing 
actuarially sound estimates of future liabilities, ensuring compliance with IFRS 17. 

8- Methodology 

Research methodology refers to the systematic approach used to conduct research. It includes the methods, 
techniques, and procedures that guide the collection, analysis, and interpretation of data. The purpose of research 

methodology is to provide a clear and structured framework for the research process, ensuring that the research objectives 
are achieved with reliability and validity [30-32]. This study presents a probabilistic framework for inflation-adjusted 
frequency-severity modeling in occupational indemnity insurance, compliant with IFRS 17 standards. The framework 
integrates AI-driven augmented actuarial data science techniques, leveraging the XGBoost algorithm for advanced loss 
reserving, risk pricing, and underwriting.  

8-1- Data Simulation 

The first step involves the simulation of a comprehensive dataset representing occupational indemnity insurance 
policies. The simulated data includes several variables related to policy and claims information, as well as underwriting 
details.  

 Policy Information: Data such as policy ID, industry type, occupation risk level, annual salary, policy term in years, 
policy type, coverage limit, and deductible are generated. These variables provide insights into the diversity and 
scope of the insurance policies under analysis. Let the annual salary be denoted as 𝑆𝑖, where 𝑖 = 1,2, … , 𝑛 represents 
the 𝑛 policyholders. 

 Claims Information: The number of claims (frequency) and the severity (financial loss) of claims are simulated. 
The frequency of claims, denoted by 𝑁𝑖, follows a Poisson distribution”. 
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𝑃(𝑁𝑖 = 𝑘) =
𝜆𝑖
𝑘𝑒−𝜆𝑖

𝑘!
,    𝑘 = 0,1,2, …,   

where 𝜆𝑖 is the rate parameter for the Poisson distribution, typically a function of 𝑆𝑖 and policy type. The severity, 

denoted by 𝑋𝑖, follows a Gamma distribution:  

𝑓𝑋(𝑥𝑖) =
𝑥
𝑖

𝛼𝑖−1𝑒−𝑥𝑖/𝛽𝑖

Γ(𝛼𝑖)𝛽𝑖
𝛼𝑖

,    𝑥𝑖 ≥ 0,   

where 𝛼𝑖 and 𝛽𝑖 are the shape and scale parameters, respectively, and are functions of the claim history and policy 

features. 

 Premiums and Pricing: The base premium, denoted as 𝑃0, is calculated as a percentage of the annual salary:  

𝑃0 = 𝜅𝑆𝑖  

where 𝜅 is the base premium rate. The risk-adjusted premium, 𝑃𝑖 , is derived by adjusting the base premium using a risk 

score 𝑅𝑖, which is simulated randomly for each policyholder. The adjusted premium is given by:  

𝑃𝑖 = 𝑃0 ⋅ (1 +
𝑅𝑖

100
).   

 Inflation Adjustment: Inflation rates {𝜋𝑖} are simulated for each policyholder, and the reserves are adjusted 
accordingly to reflect the impact of inflation on future claims. Let 𝐶𝑖 represent the estimated claims reserve for 
policyholder 𝑖 at time 𝑡. The inflation-adjusted reserve 𝐶̃𝑖 can be calculated as:  

𝐶̃𝑖 = 𝐶𝑖 ⋅ (1 + 𝜋𝑖)
𝑇−𝑡 ,   

where 𝑇 is the total time horizon and 𝑡 is the current time period. 

 Underwriting Information: Underwriting scores and decisions (approve or decline) are simulated based on a normal 
distribution:  

𝑈𝑖 ∼ 𝒩(𝜇𝑈, 𝜎𝑈
2),   

where 𝜇𝑈 is the mean underwriting score, and 𝜎𝑈
2 is the variance. The underwriting decision 𝒟𝑖 is then made based on a 

predefined threshold, 𝜃, such that:  

𝒟𝑖 = {
Approve, if  𝑈𝑖 ≥ 𝜃,
Decline, if  𝑈𝑖 < 𝜃.

   

The generated data includes 100,000 policyholders, providing a robust sample for analysis and model training. 

8-2- Data Exploration and Visualization 

The next phase involves comprehensive data exploration and visualization to understand the distribution of key 

variables, their interrelationships, and patterns within the dataset.  

 Summary Statistics: Descriptive statistics and initial visualizations are generated for understanding the basic 
properties of the data, including distributions of annual salary by occupation risk level and industry types. Key 
statistical measures such as the mean 𝜇, median 𝑚, and range ℛ are computed for numeric variables:  

𝜇 =
1

𝑛
∑𝑛𝑖=1 𝑆𝑖 ,    𝑚 = median(𝑆),    ℛ = max(𝑆) − min(𝑆),   

where 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑛} represents the set of salaries for all policyholders. 

 Correlation Analysis: A correlation matrix 𝐂 is computed for all numeric variables to capture the linear 
relationships between variables such as claim frequency, claim severity, base premium, risk score, and inflation-

adjusted reserves. The correlation between two variables 𝑋 and 𝑌 is given by:  

Corr(𝑋, 𝑌) =
Cov(𝑋,𝑌)

𝜎𝑋𝜎𝑌
,   

where Cov(𝑋, 𝑌) is the covariance and 𝜎𝑋 and 𝜎𝑌 are the standard deviations of 𝑋 and 𝑌, respectively. 

 Dimensionality Reduction: To explore complex relationships in the data, t-Distributed Stochastic Neighbor 
Embedding (t-SNE) is used for dimensionality reduction. Let 𝐗 ∈ ℝ𝑛×𝑑 represent the 𝑛-dimensional feature 
matrix. The t-SNE algorithm projects the high-dimensional data into two dimensions 𝐘 ∈ ℝ𝑛×2 by minimizing the 

Kullback-Leibler divergence between the probability distributions 𝑃 and 𝑄: 

𝐷𝐾𝐿(𝑃||𝑄) = ∑𝑖,𝑗 𝑃𝑖𝑗 log
𝑃𝑖𝑗

𝑄𝑖𝑗
,   

where 𝑃𝑖𝑗 represents the similarity between 𝑖 and 𝑗 in the high-dimensional space, and 𝑄𝑖𝑗  represents the similarity in the 

low-dimensional space. 
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 Cluster Analysis: K-means clustering is applied to categorize the policies into four distinct groups based on the 
numerical features. Let 𝐗 represent the feature matrix, and 𝐂 = {𝐶1, 𝐶2, … , 𝐶𝑘} be the set of clusters. The objective 
function is to minimize the sum of squared distances from each data point to its corresponding cluster centroid:  

𝐽 = ∑𝑛𝑖=1 ∑
𝐾
𝑘=1 𝟏𝑐𝑖=𝑘 ∥ 𝐱𝑖 − 𝜇𝑘 ∥

2,   

where 𝟏𝑐𝑖=𝑘 is an indicator function that equals 1 if point 𝑖 is assigned to cluster 𝑘, and 𝜇𝑘 is the centroid of cluster 𝑘. 

 3D Visualization: A 3D plot is created using Plotly to visualize the clustering results with respect to dimensionality 
reduction, highlighting the relationships between t-SNE dimensions and risk scores. The 3D coordinates for each 

policy are plotted as:  

Plot𝑖 = (𝑡 − 𝑆𝑁𝐸1, 𝑡 − 𝑆𝑁𝐸2, RiskScore𝑖),   

where 𝑡 − 𝑆𝑁𝐸1 and 𝑡 − 𝑆𝑁𝐸2 are the first two dimensions of the t-SNE reduced data. 

These exploratory steps enable the identification of key patterns in the data and inform the subsequent modeling steps. 
Visualization aids in understanding the complexity of the dataset and forms the foundation for building advanced 
actuarial models. 

8-3- Data Processing and Integration 

Following the data exploration phase, the simulated dataset is processed and prepared for integration into the 
probabilistic framework. This involves transforming categorical variables into factors, ensuring that all data is correctly 

formatted for machine learning models. The processed dataset serves as the foundational input for model development, 
including the implementation of the XGBoost algorithm for advanced loss reserving, risk pricing, and underwriting. 

8-4- Model Building 

The data is preprocessed and split into training and test datasets (80% for training and 20% for testing), ensuring that 
the model is not overfitted and generalizes well to unseen data. 

8-4-1- Automated Actuarial Loss Reserving (ALR) Model 

This model predicts the inflation-adjusted reserves (𝑅̂𝑡
𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛

) based on policy attributes such as Industry, 

Occupation Risk Level, Annual Salary, and other underwriting factors. The prediction problem is framed as a regression 

task where XGBoost is employed with the reg:squarederror objective function to minimize the residual sum of squares. 

The corresponding model is expressed as:  

𝑅̂𝑡
𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛

= 𝑓(𝑋𝑡; 𝜽),   

where 𝑋𝑡 represents the feature vector for the 𝑡-th observation, and 𝜽 is the vector of model parameters learned via 

training. 

8-4-2- Automated Actuarial Risk Pricing (ARP) Model 

This model estimates the risk-adjusted premium (𝑃̂𝑡
𝑟𝑖𝑠𝑘) based on similar policy attributes. The prediction framework 

remains consistent with that of the ALR model, with XGBoost used to predict the target variable. The corresponding 

model is expressed as:  

𝑃̂𝑡
𝑟𝑖𝑠𝑘 = 𝑔(𝑋𝑡; 𝜷),   

where 𝑔(⋅) is a function parameterized by 𝜷, learned during the training phase, and 𝑋𝑡 represents the feature vector for 

the 𝑡-th observation. 

For both models, the training process involves feature selection and hyperparameter tuning, ensuring the model’s 
convergence and predictive accuracy. This is achieved through cross-validation and optimization of model 

hyperparameters using grid search or Bayesian optimization techniques. 

8-4-3- Model Evaluation and Validation 

Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE): 

MAE =
1

𝑁
∑𝑁𝑡=1 |𝑦̂𝑡 − 𝑦𝑡|,   

MSE =
1

𝑁
∑𝑁𝑡=1 (𝑦̂𝑡 − 𝑦𝑡)

2,   

RMSE = √
1

𝑁
∑𝑁𝑡=1 (𝑦̂𝑡 − 𝑦𝑡)

2,   

where 𝑁 represents the total number of observations, 𝑦̂𝑡 is the predicted value, and 𝑦𝑡  is the actual value for the 𝑡-th 

observation. 
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The residuals of the models are analyzed through residual plots to detect any patterns, ensuring that the assumptions 

of homoscedasticity and normality are met. Additionally, scatter plots comparing the actual vs. predicted values are 

generated for both models, visually assessing the model’s predictive capability. 

8-4-4- Automated Actuarial Loss Reserve Risk Premium Estimation 

An inflation model is introduced to simulate the real inflation rates, defined as:  

𝐼𝑡 =
𝐶𝑡−𝐶𝑡−1

𝐶𝑡−1
,   

where 𝐶𝑡 and 𝐶𝑡−1 are the cumulative claims or costs in periods 𝑡 and 𝑡 − 1, respectively. The ALR and ARP model 

predictions are then combined using a weighted average approach to estimate the Automated Actuarial Loss Reserve 

Risk Premiums (AALRRPs):  

𝐴̂𝐴𝐿𝑅𝑅𝑃𝑡 = 𝜔𝑅̂𝑡
𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛

+ (1 − 𝜔)𝑃̂𝑡
𝑟𝑖𝑠𝑘 ,   

where 𝜔 = 0.6 is the weight applied to the ALR model predictions, and the remaining weight (1 − 𝜔) = 0.4 is allocated 

to the ARP model predictions. This integration aims to produce a robust, IFRS 17-compliant actuarial risk premium 

estimation. 

8-5- Simulating Key IFRS 17 Metrics 

This phase of the analysis focuses on simulating essential IFRS 17 metrics, including the Contractual Service Margin 

(CSM), Fulfilment Cash Flows (FCF), Risk Adjustments, Loss Components (for onerous contracts), Liability for 

Remaining Coverage (LRC), and Liability for Incurred Claims (LIC). These metrics are central to the IFRS 17 

framework, which mandates the recognition and measurement of insurance contract liabilities. Below are the 

mathematical formulations for each key metric: 

 CSM Calculation: The Contractual Service Margin (CSM) is computed as the difference between expected cash 
inflows (𝐼𝑡

𝑖𝑛𝑓𝑙𝑜𝑤
) and expected claims outflows (𝐶𝑡

𝑜𝑢𝑡𝑓𝑙𝑜𝑤
):  

CSM = 𝔼[∑𝑇𝑡=1 𝐼𝑡
𝑖𝑛𝑓𝑙𝑜𝑤

] − 𝔼[∑𝑇𝑡=1 𝐶𝑡
𝑜𝑢𝑡𝑓𝑙𝑜𝑤

],   

where 𝑇 represents the contract duration. 

 FCF and Risk Adjustments: The Fulfilment Cash Flows (FCF) are determined by subtracting expected claims 
outflows from expected cash inflows:  

FCF = 𝔼[∑𝑇𝑡=1 𝐼𝑡
𝑖𝑛𝑓𝑙𝑜𝑤

] − 𝔼[∑𝑇𝑡=1 𝐶𝑡
𝑜𝑢𝑡𝑓𝑙𝑜𝑤

].   

Additionally, a risk adjustment for non-financial risk (RA) is incorporated, calculated as 5% of the Automated 

Actuarial Loss Reserve Risk Premiums:  

RA = 0.05 ⋅ 𝐴̂𝐴𝐿𝑅𝑅𝑃𝑡 .   

 Liabilities: The Liability for Remaining Coverage (LRC) is calculated as the sum of the CSM and FCF: 

LRC = CSM + FCF.   

The Liability for Incurred Claims (LIC) is derived from the sum of the Loss Reserving and Inflation-Adjusted 

Reserves:  

LIC = ∑𝑇𝑡=1 𝑅̂𝑡
𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛

.   

 Discount Rate Adjustment: A 3% discount rate (𝑟) is applied to the Liability for Incurred Claims to estimate the 
discounted reserves, representing the present value of future claims liabilities:  

𝐿̂𝐼𝐶𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 =
LIC

(1+𝑟)𝑇
,   

where; 𝑟 = 0.03 is the annual discount rate, and 𝑇 is the time to settlement. 

8-5-1- Data Visualization and Summary Statistics 

To facilitate the interpretation and analysis of IFRS 17-related metrics, this study employs several advanced data 
visualization techniques. Specifically, histograms are plotted for each key metric (e.g., Contract Service Margin (CSM), 

Future Cash Flows (FCF), Risk Adjustment, Loss Component, Loss Reserves Component (LRC), Liability for Incurred 
Claims (LIC), Discounted Reserves, and Experience Adjustments) with optimal bin widths, ensuring an effective 
representation of the distribution. A color scheme is chosen to enhance clarity and focus on important trends across the 
different metrics. 
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Additionally, summary statistics, such as the mean (𝜇), standard deviation (𝜎), minimum (min), and maximum (max), 
are computed for each metric, thereby offering a comprehensive overview of the central tendency and variability of the 

data: 

𝜇𝑋 =
1

𝑛
∑𝑛𝑖=1 𝑥𝑖   (40) 

𝜎𝑋 = √
1

𝑛
∑𝑛𝑖=1 (𝑥𝑖 − 𝜇𝑋)

2  (41) 

where 𝑥𝑖 represents the observed values for each metric, and 𝑛 denotes the number of observations. 

8-6- XGBoost Model Compliance to IFRS17 Regulations 

The study employs the XGBoost model to estimate the Automated Actuarial Loss Reserve Risk Premiums 

(AALRRPs), an essential component for advanced loss reserving and risk pricing. The model takes as input simulated 

predictions for Actuarial Loss Reserves (ALR) and Actuarial Risk Premiums (ARP), weighted according to predefined 

ratios, specifically 60% for ALR and 40% for ARP. This weighted averaging process is represented as: 

𝐴𝐴𝐿𝑅𝑅𝑃 = 0.6 ⋅ 𝐴𝐿𝑅 + 0.4 ⋅ 𝐴𝑅𝑃  (42) 

where; 𝐴𝐴𝐿𝑅𝑅𝑃 represents the Automated Actuarial Loss Reserve Risk Premium, 𝐴𝐿𝑅 denotes the Actuarial Loss 

Reserves, and 𝐴𝑅𝑃 denotes the Actuarial Risk Premium. 

8-6-1- IFRS 17 Metric Calculation and Contract Grouping 

To comply with IFRS 17, we calculate several actuarial metrics including the reinsurance impact, assuming a 10% 

reinsurance coverage, and the expense ratios, set at 20% of the risk premiums. The Insurance Contract Liabilities (ICL) 

are estimated by discounting the future cash flows (FCF), which represent the present value of future liabilities, as 

follows: 

𝐼𝐶𝐿 = ∑𝑇𝑡=1
𝐹𝐶𝐹𝑡

(1+𝑟)𝑡
  (43) 

where 𝐹𝐶𝐹𝑡 is the future cash flow at time 𝑡, and 𝑟 is the discount rate applied to the cash flows. Sensitivity analysis is 

performed by adjusting the ALR and ARP predictions, applying changes of 10% and 5%, respectively, to assess the 

impact on the AALRRP estimates. These adjustments can be represented as:  

𝐴𝐴𝐿𝑅𝑅𝑃𝑛𝑒𝑤 = 𝐴𝐴𝐿𝑅𝑅𝑃𝑜𝑙𝑑 ⋅ (1 + 𝛿)  (44) 

where 𝛿 represents the percentage change (10% for ALR and 5% for ARP). 

 Contracts are grouped into three risk categories (Low, Medium, High) based on the quantiles of the AALRRP values. 

This categorization helps to assess the risk profile of the portfolio and allows further analysis of the distribution of 

AALRRPs across different risk groups 

8-7- Development of the Automated Actuarial Underwriting Model 

The dataset consists of AALRRPs derived from historical claims data. The first step involves segmenting 

policyholders into distinct underwriting clusters. This segmentation is based on AALRRPs, with the following steps: 

Cluster Range = [min(𝐴𝐴𝐿𝑅𝑅𝑃),max(𝐴𝐴𝐿𝑅𝑅𝑃)]  (45) 

Using this range, four underwriting clusters are defined: "Lowest Risk Underwriting Cluster," "Lower Risk 

Underwriting Cluster," "Higher Risk Underwriting Cluster," and "Highest Risk Underwriting Cluster." The 𝑐𝑢𝑡() 
function is employed to categorize premiums into these clusters, yielding a data frame associating each premium with 

its corresponding underwriting cluster. The distribution of premiums across the clusters is visualized using histograms 

generated via ggplot2, where the x-axis represents the premiums, and the y-axis represents frequency. 

8-7-1- Simulating Expenses, Outgo, and Revenue 

For each policyholder within the underwriting clusters, we simulate the expenses, outgo, and revenue. The expenses 

are simulated as a random percentage of the premium, denoted by Exp ∼ 𝑈(0.10,0.40), where 𝑈(𝑎, 𝑏) is a uniform 

distribution between 𝑎 and 𝑏. The outgo is similarly simulated between 5% and 30% of the premium: 

Outgo ∼ 𝑈(0.05,0.30)  (46) 

Revenue is assumed to be 1.5 times the premium, i.e.,  

Revenue = 1.5 ⋅ Premium  (47) 
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The Automated Net Actuarial Underwriting Balance (ANAUB) is calculated as the difference between revenue, 

expenses, and outgo:  

𝐴𝑁𝐴𝑈𝐵 = Revenue − Expenses − Outgo  (48) 

To ensure robustness, any negative ANAUB values are capped at zero using the pmax() function:  

𝐴𝑁𝐴𝑈𝐵adjusted = max(𝐴𝑁𝐴𝑈𝐵, 0)  (49) 

8-7-2- Visualization of ANAUB 

The ANAUB for each underwriting cluster is visualized using a scatter plot, where the premiums are plotted on the 
x-axis and the ANAUB on the y-axis. The points are color-coded based on the respective underwriting clusters, providing 
an intuitive comparison of the ANAUB across different risk levels. 

8-7-3- Simulating IFRS17 Metrics within Underwriting Clusters 

The IFRS17-compliant actuarial metrics are then simulated to align the model with international financial reporting 
standards. For each policyholder, the Insurance Revenue is simulated as a random variation around the premium, within 

90% to 110% of the premium: 

Revenuesim ∼ 𝑈(0.90 ⋅ Premium, 1.10 ⋅ Premium)  (50) 

Insurance Service Expense is simulated between 50% and 70% of the premium:  

Expensesim ∼ 𝑈(0.50 ⋅ Premium, 0.70 ⋅ Premium)  (51) 

Profitability Ratio is calculated as the difference between revenue and expense divided by the revenue:  

ProfitabilityRatio =
Revenue−Expense

Revenue
  (52) 

Other IFRS17-related metrics, such as Expense Ratio, Insurance Contract Liabilities (ICL), Present Value of Future 
Cash Flows, and Sensitivity Analysis, are simulated similarly using random variations of the premium. 

 A summarized table is created for each underwriting cluster to present the average values of these metrics. The 

IFRS17 metrics for each underwriting cluster are then visualized using a bar plot, with each metric represented on the 
x-axis, and the value of the metric plotted on the y-axis. The plot is color-coded based on underwriting clusters, offering 
an intuitive overview of the financial metrics and their variations across risk levels. 

8-8- Model Implementation and Integration with AI 

To integrate advanced machine learning techniques, particularly XGBoost, into the loss reserving and risk pricing 
processes, the study proposes an augmentation of the actuarial models with AI-driven data science. XGBoost is employed 
to refine the prediction of premiums, expenses, outgo, and other actuarial metrics. The integration of machine learning 
models into the actuarial framework enhances the accuracy and efficiency of loss reserving and risk pricing in 
occupational indemnity insurance. The mathematical representation of the AI-enhanced process is given by:  

𝑦̂ = 𝑋 ⋅ 𝛽 + 𝜖  (53) 

where 𝑦̂ is the predicted actuarial metric (e.g., premium or loss reserve), 𝑋 is the matrix of input features (e.g., 

policyholder characteristics), 𝛽 represents the model coefficients, and 𝜖 is the error term. 

This AI-driven approach allows for an enhanced actuarial data science framework, enabling more sophisticated and 

precise predictions in line with IFRS 17 requirements. 

8-9- Model Evaluation 

8-9-1- Robust Model Testing through Perturbation 

To assess the stability and reliability of the Automated Actuarial Loss Reserves Risk Premiums (AALRRPs) under 
varying conditions, we employed a perturbation methodology. A perturbation factor of 1% was introduced by adding 
random noise to the original values, simulating slight variations in input data. This allows us to test the robustness of the 
model and assess the impact of minor deviations on the reserve values. Mathematically, the perturbed AALRRPs can be 
expressed as: 

𝐴̂𝐴𝐿𝑅𝑅𝑃𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 = 𝐴̂𝐴𝐿𝑅𝑅𝑃𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 × (1 + 𝜖)   

where 𝜖 ∼ 𝒩(0, 𝜎2) is a random noise factor with zero mean and variance 𝜎2, representing the perturbation introduced 

to the system. The impact of these perturbations is visualized by comparing the original and perturbed AALRRPs through 

scatter plots and linear regression analysis. A regression model of the form: 
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𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜖   

is fitted to the perturbed data, where 𝑦 is the perturbed AALRRP and 𝑥 is the original AALRRP. This allows for an 

assessment of the sensitivity of the model to slight input variations and the robustness of its estimates 

8-9-2- Stress Testing for Scenario Analysis 

Stress testing is performed to simulate extreme conditions that may affect the stability of the AALRRPs. Various 

stress factors are applied to the model, including introducing negative shocks to the AALRRPs by applying a reduction 

factor of 20% (i.e., multiplying by 0.8) for claims exceeding a certain threshold, 𝜏. This process helps evaluate the 

model’s sensitivity to adverse conditions, such as unexpected shifts in claim behavior or macroeconomic factors. The 

stress-tested AALRRPs are given by: 

𝐴̂𝐴𝐿𝑅𝑅𝑃𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 = {
𝐴̂𝐴𝐿𝑅𝑅𝑃 × 0.8 if 𝐴̂𝐴𝐿𝑅𝑅𝑃 > 𝜏
𝐴̂𝐴𝐿𝑅𝑅𝑃 otherwise

   

This equation applies the 20% reduction factor to the AALRRP values above the threshold 𝜏, simulating the negative 

shock in the model. Stress-testing simulations are carried out for different distributions, such as Normal, Gamma, and 

Beta, and the results are visualized using line plots that show the evolution of both the original and stressed AALRRPs. 

Specifically, we define the cumulative distribution functions (CDFs) of the respective distributions as follows: 

𝐹Normal(𝑥) =
1

2
[1 + erf (

𝑥−𝜇

𝜎√2
)]   

𝐹Gamma(𝑥) =
𝛾(𝛼,

𝑥

𝛽
)

Γ(𝛼)
   

𝐹Beta(𝑥) = 𝐼𝑥(𝛼, 𝛽)   

where; 𝜇 and 𝜎 are the mean and standard deviation for the Normal distribution, 𝛾(𝛼,
𝑥

𝛽
) is the lower incomplete Gamma 

function for the Gamma distribution, and 𝐼𝑥(𝛼, 𝛽) is the regularized incomplete Beta function for the Beta distribution. 

These stress-testing distributions allow us to explore the impact of extreme conditions on the AALRRPs. 

8-9-3- Scenario Modeling 

Scenario testing is incorporated to simulate a range of possible future conditions affecting risk pricing and 

underwriting. These scenarios account for various market conditions and economic changes that could influence the 

insurance portfolio. Specifically, we consider the following adjustments to simulate future scenarios: 

 Inflation Adjustment: A 5% increase in the claim amount was applied to simulate the impact of inflation on future 
claims. The inflation-adjusted AALRRPs are computed as:  

𝐴̂𝐴𝐿𝑅𝑅𝑃𝑖𝑛𝑓𝑙𝑎𝑡𝑒𝑑 = 𝐴̂𝐴𝐿𝑅𝑅𝑃 × (1 + 0.05)   

 Claim Frequency Adjustments: The frequency of claims varies by increasing or decreasing the claim frequency by 
10%. This is represented as:  

𝐴̂𝐴𝐿𝑅𝑅𝑃𝑓𝑟𝑒𝑞_𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝐴̂𝐴𝐿𝑅𝑅𝑃 × (1 + 𝛿)   

where 𝛿 = 0.1 represents the 10% adjustment to the claim frequency. Positive values of 𝛿 simulate an increase in claims, 

while negative values represent a decrease in claims.  

The results of the scenario analysis are summarized using statistical measures such as the minimum, maximum, and 

mean values of the AALRRPs under each scenario. Specifically, we compute the following summary statistics: 

𝜇𝐴𝐴𝐿𝑅𝑅𝑃 =
1

𝑛
∑𝑛𝑖=1 𝐴̂𝐴𝐿𝑅𝑅𝑃𝑖 ,    Var(𝐴̂𝐴𝐿𝑅𝑅𝑃) =

1

𝑛−1
∑𝑛𝑖=1 (𝐴̂𝐴𝐿𝑅𝑅𝑃𝑖 − 𝜇𝐴𝐴𝐿𝑅𝑅𝑃)

2
   

where 𝜇𝐴𝐴𝐿𝑅𝑅𝑃  is the mean of the AALRRPs, and Var(𝐴̂𝐴𝐿𝑅𝑅𝑃) is the variance of the AALRRPs across all simulated 

scenarios. These statistics allow for an in-depth understanding of the variability and risk profiles under different 

economic conditions and market changes. 

The scenario modeling helps quantify potential risk in a dynamic insurance market, supporting the actuarial decision-
making process by exploring future uncertainties through simulated data. 

8-10- Novelty in the Methodology 

The novelty of this methodology lies in the integration of AI-driven augmented actuarial data science techniques with 
the XGBoost algorithm for the estimation of inflation-adjusted frequency-severity models in occupational indemnity 
insurance, all while ensuring compliance with IFRS 17 standards. This probabilistic framework introduces several 

innovative aspects. 



Emerging Science Journal | Vol. 9, No. 5 

Page | 2855 

The methodology applies cutting-edge machine learning techniques, particularly XGBoost, to actuarial models for 
loss reserving, risk pricing, and underwriting. The framework goes beyond traditional actuarial methods by leveraging 
AI for more accurate, data-driven predictions. The framework includes a sophisticated simulation of occupational 

indemnity insurance policies, encompassing a wide array of policyholder characteristics, claims data, inflation 
adjustments, and underwriting information. This robust dataset of 100,000 policyholders serves as a foundation for 
model training, allowing for a more representative and diverse set of data inputs. Unlike traditional actuarial models that 
focus primarily on static data, this framework incorporates inflation-adjusted reserves and premiums, offering a dynamic 
approach to account for the impact of inflation on future claims. The inflation adjustment is seamlessly integrated into 
the loss reserving and risk pricing models, providing a more realistic and forward-looking view of risk. The use of 

XGBoost for both the Automated Actuarial Loss Reserving (ALR) and Automated Actuarial Risk Pricing (ARP) models 
represents a novel approach in actuarial modeling. This method is known for its superior predictive power and efficiency, 
making it well-suited for complex actuarial datasets with large numbers of features. The methodology incorporates a 
comprehensive evaluation and validation strategy using key performance metrics such as MAE, MSE, and RMSE, along 
with residual analysis and scatter plots. These validation techniques ensure that the models provide reliable and accurate 
predictions, a critical feature for practical use in the actuarial field. The paper ensures compliance with IFRS 17 by 

simulating essential IFRS 17 metrics such as the Contractual Service Margin (CSM), Fulfilment Cash Flows (FCF), and 
Liability for Incurred Claims (LIC). These metrics are central to the new regulatory framework and are integrated into 
the loss reserving and risk pricing models, providing a complete solution for IFRS 17 compliance. A key innovation is 
the development of an Automated Actuarial Underwriting Model, which segments policyholders into distinct 
underwriting clusters based on their Automated Actuarial Loss Reserve Risk Premiums (AALRRPs). This segmentation 
allows for tailored underwriting decisions and risk-based pricing, which enhances the accuracy and efficiency of the 

underwriting process. The methodology uniquely simulates a range of financial metrics including the profitability ratio, 
insurance service expense, and other IFRS 17-related metrics within underwriting clusters. This provides a granular view 
of the financial health of the insurance contracts, which is critical for ensuring long-term profitability and regulatory 
compliance. 

In closing, the novelty of this methodology lies in its integration of machine learning for advanced actuarial analysis, 
its dynamic treatment of inflation, and its compliance with IFRS 17, making it a cutting-edge approach for occupational 

indemnity insurance modeling.  

9- Data 

The simulated data generated forms a robust foundation for modeling the inflation-adjusted frequency-severity 
dynamics in the context of occupational indemnity insurance, adhering to IFRS 17 regulations. Below is a breakdown 
of the components of the dataset and their contributions to the development of the model in this paper. 

9-1- Policy Information 

 Policy ID: A unique identifier for each insurance policy, represented as 𝒫𝑖  for policy 𝑖, facilitating the tracking and 
management of policy-specific data.  

 Industry: Denoted as ℐ, representing the type of industry (e.g., Construction, Healthcare, Manufacturing, IT, 
Education). The industry classification ℐ ∈ {1,2, … , 𝑁} plays a critical role in determining the risk exposure ℛℐ 
associated with the policyholder. The industry-specific claims experience impacts the risk-adjusted pricing and 
underwriting.  

 Occupation Risk Level: The occupation risk level ℛ𝑜 ∈ {Low,Medium, High, Very High} impacts the frequency 
and severity of claims, influencing the probability distribution of claims as a function of occupation risk. Let 𝑓(ℛ𝑜) 
represent the risk-adjusted claim frequency, with a relationship defined as 

𝑓(ℛ𝑜) = 𝜆𝑜 ⋅⊩ℛ𝑜 ,    𝜆𝑜 ∈ ℝ
+    and  ⊩ℛ𝑜∈ {0,1}   

 Annual Salary: Let 𝒮𝑖 denote the annual salary of policyholder 𝑖, which influences the base premium and severity 
of claims. The annual salary is typically assumed to follow a normal distribution: 

𝒮𝑖 ∼ 𝒩(𝜇𝒮 , 𝜎𝒮
2)   

 Policy Term Years: The policy duration is given by 𝑇𝑖  for policyholder 𝑖, representing the time over which claims 
are expected to occur. The policy term is associated with a time-discounting function 𝐷(𝑇𝑖) for the estimation of 
the present value of future claims:  

𝐷(𝑇𝑖) = 𝑒
−𝑟𝑇𝑖    

where 𝑟 is the annual discount rate.  

 Policy Type: The policy type 𝒫𝑡 ∈ {Basic, Standard, Premium} directly influences the expected claims payout, as 
the coverage level is typically modeled using a discrete distribution:  

𝒫𝑡 ∼ Discrete(𝒫𝑡|𝑝1, 𝑝2, 𝑝3)   

where 𝑝1 , 𝑝2, 𝑝3 correspond to the probabilities of Basic, Standard, and Premium types, respectively.  
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 Coverage Limit: Denoted as 𝒞𝑖, this defines the maximum payout under the policy. The coverage limit serves as 
an upper bound in the severity distribution and is critical for the calculation of tail risk:  

ℒ𝑖 = min(𝑋𝑖 , 𝒞𝑖)   

where 𝑋𝑖 is the random variable representing the claim severity.  

 Deductible: The deductible 𝒟𝑖 represents the policyholder’s out-of-pocket expenses before claims are paid by the 
insurer. The deductible influences the severity modeling by truncating the claim severity distribution:  

𝑋′𝑖 = max(𝑋𝑖 − 𝒟𝑖 , 0)   

where 𝑋′𝑖 is the adjusted claim severity after applying the deductible.  

9-2- Claims Information 

 Claim Frequency: Let 𝑁𝑖 represent the number of claims filed by policyholder 𝑖. The claim frequency is modeled 

using a Poisson distribution:  

𝑁𝑖 ∼ Poisson(𝜆𝑖),    𝜆𝑖 = 𝛼 ⋅ ℛ𝑖   

where 𝛼 is a scaling factor and ℛ𝑖 represents the risk factor of policyholder 𝑖.  

 Claim Severity: The claim severity is modeled using a Gamma distribution, where the severity of each claim 𝑆𝑖 
follows:  

𝑆𝑖 ∼ Gamma(𝜅, 𝜃)   

where 𝜅 is the shape parameter and 𝜃 is the scale parameter. The expected severity is given by:  

𝔼[𝑆𝑖] = 𝜅𝜃   

 Claim Status: Denoted by 𝒞status, the status of a claim can be either "Open" or "Closed," influencing the 
development of incurred but not reported (IBNR) reserves. The claim development is modeled as:  

𝒞status = {
Open if claim development time < 𝑇
Closed if claim development time ≥ 𝑇

   

 Loss Reserving: The loss reserves 𝑅𝑖 are computed as the expected future claims, taking into account the discount 
factor and inflation adjustments. The reserve for policyholder 𝑖 is given by:  

𝑅𝑖 = 𝔼[ℒ𝑖] ⋅ 𝑒
−𝑟𝑇𝑖    

where 𝑇𝑖  is the time horizon and 𝑟 is the discount rate. 

9-3- Premiums and Pricing 

Base Premium: The base premium 𝒫base is calculated as a fixed percentage of the policyholder’s salary:  

𝒫base = 𝛼 ⋅ 𝒮𝑖   

where 𝛼 is a constant factor, typically 3% of the salary.  

 Risk Score: The risk score ℛscore is a function of various policyholder attributes. It quantifies the overall risk, 
incorporating industry, occupation risk level, and salary. The risk score is modeled as:  

ℛscore = 𝛾1ℐ𝑖 + 𝛾2ℛ𝑜 + 𝛾3𝒮𝑖   

where 𝛾1, 𝛾2, 𝛾3 are coefficients that determine the weight of each factor.  

 Risk Adjusted Premium: The risk-adjusted premium 𝒫adj is given by:  

𝒫adj = 𝒫base ⋅ (1 +
ℛscore

100
)   

where the risk score is used to adjust the premium based on the policyholder’s risk profile. 

9-4- Inflation and Adjustment 

 Inflation Rate: The annual inflation rate ℐrate is modeled as a random variable drawn from a normal distribution:  

ℐrate ∼ 𝒩(𝜇ℐ , 𝜎ℐ
2)   

 Inflation Adjusted Reserves: The inflation-adjusted reserves ℛinflated are calculated by multiplying the reserves by 
the inflation factor:  
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ℛinflated = 𝑅𝑖 ⋅ (1 + ℐrate)
𝑇𝑖   

which accounts for the increase in claims severity due to inflation. 

9-5- Underwriting Details 

 Underwriting Score: The underwriting score 𝒰𝑖 is a function of various risk factors, including occupation, industry, 
and claims history:  

𝒰𝑖 = ∑
𝑛
𝑗=1 𝜃𝑗𝑥𝑖𝑗    

where 𝑥𝑖𝑗  are the risk factors associated with policyholder 𝑖 and 𝜃𝑗 are the corresponding coefficients.  

• Underwriting Decision: The underwriting decision 𝒟𝑖 is determined based on a threshold 𝒯underwriting:  

𝒟𝑖 = {
Approved if 𝒰𝑖 ≥ 𝒯underwriting
Declined if 𝒰𝑖 < 𝒯underwriting

   

9-6- Contribution to the Model development 

The simulated data allows for the exploration of various features such as risk level, industry type, and policy 

characteristics that influence both claim frequency and severity. Feature engineering based on these variables can 

help in identifying significant predictors of claim outcomes. The data simulates real-world variations in 

policyholder risk profiles (e.g., Occupation Risk Level, Risk Score, Annual Salary), helping to segment the portfolio 

and estimate risk-adjusted premiums more accurately. This segmentation is crucial for setting appropriate pricing 

strategies. With inflation modeled and incorporated into reserves and premiums, this data allows for the testing of 

inflation-adjusted models, ensuring compliance with IFRS 17 standards and the effectiveness of the inflation-

adjusted frequency-severity framework. The simulated loss reserves (both original and inflation-adjusted) are 

essential for developing the actuarial loss reserving component of the model. The inflation adjustment adds realism 

by considering future claims escalation, which is central to your IFRS 17-compliant framework. The data generated 

here can serve as input for advanced machine learning models like XGBoost. XGBoost can be applied to predict 

claim frequency and severity, optimize loss reserving, and perform underwriting decision analysis based on 

policyholder attributes. 

In short, this dataset plays a key role in developing a comprehensive probabilistic framework for inflation-adjusted 

frequency-severity modeling in occupational indemnity insurance, supporting the advanced loss reserving, risk pricing, 

and underwriting mechanisms described in this paper. The integration of inflation adjustments, risk-based premium 

calculations, and underwriting decisions enhances the actuarial accuracy and compliance with IFRS 17 in the context of 

modern actuarial practices. 

10- Results 

The section presents the findings and outcome for this study.  

10-1- Exploratory Data Analysis 

Exploratory Data Analysis (EDA) is an approach to analyzing and summarizing datasets to gain insights, identify 

patterns, detect anomalies, and test assumptions with the help of statistical graphics, plots, and information tables. 

EDA is typically the first step in data analysis, used to understand the structure of the data before formal  modeling 

or hypothesis testing is carried out. Key techniques in EDA include data visualization (such as histograms, box plots, 

scatter plots), summary statistics (mean, median, standard deviation), and checking for missing values or outliers [33-

36]. 

Figure 1 visualizes the distribution of insurance policies across various industries (Construction, Healthcare, 

Manufacturing, IT, Education). This plot provides a foundation for examining industry-specific risk factors or 

claims behavior. Figure 2 shows how annual salary varies by occupation risk level (Low, Medium, High, Very 

High). Higher risk occupations likely have higher average salaries due to the nature of the work, which can be a 

critical factor in determining premium pricing. The distribution of salary by risk level is significant for actuarial 

modeling, especially for the Inflation-Adjusted Frequency-Severity Model. It links policyholder compensation 

(annual salary) to their exposure to occupational risk, which can be used to adjust the premium pricing based on 

risk levels. 
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Figure 1. Industry Distribution Plot 

 

Figure 2. Annual Salary by Occupation Risk Level 

10-1-1- Correlation Analysis 

Correlation analysis is a statistical technique used to measure and describe the strength and direction of the 

relationship between two or more variables. It determines how variables are related to each other, whether they move in 

the same direction (positive correlation), in opposite directions (negative correlation), or if there is no relationship at all. 

The most common method of correlation analysis is the Pearson correlation coefficient, which quantifies the linear 

relationship between variables, ranging from -1 to 1. A value of 1 indicates a perfect positive correlation, -1 indicates a 

perfect negative correlation, and 0 indicates no correlation [37-39]. 

The correlation matrix presented by Figure 3 provides an overview of how various numeric variables (e.g., annual 

salary, claim frequency, loss reserving, premiums) are related. Strong positive or negative correlations can help identify 

which variables influence others. Understanding correlations between features like annual salary, claim frequency, and 

severity allows for better feature selection and more informed variable inclusion in the model. 
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Figure 3. Correlation Matrix Plot 

10-1-2- t-SNE for Dimensionality Reduction 

Dimensionality reduction is a crucial technique in the field of machine learning, especially when dealing with high-

dimensional data sets. Among the various methods, t-Distributed Stochastic Neighbor Embedding (t-SNE) has garnered 

significant attention for its ability to visualize high-dimensional data in lower-dimensional spaces, typically in 2 or 3 

dimensions. This technique is particularly useful in visualizing the structure of complex datasets while preserving the 

local structure of the data points [40, 41].  

 Given a dataset 𝐗 = {𝐱1, 𝐱2, … , 𝐱𝑛} ⊂ ℝ
𝑑  with 𝑛 points, the goal of dimensionality reduction is to map these points 

to a lower-dimensional space while preserving the pairwise similarities. Let 𝑃𝑖𝑗  represent the conditional probability of 

selecting point 𝑗 as a neighbor of point 𝑖 in the high-dimensional space. 

 The high-dimensional pairwise similarity between points 𝐱𝑖 and 𝐱𝑗 is modeled using a Gaussian distribution: 

𝑝𝑖𝑗 =
exp(−‖𝐱𝑖−𝐱𝑗‖

2
/2𝜎𝑖

2)

∑𝑘≠𝑖 exp(−‖𝐱𝑖−𝐱𝑘‖
2/2𝜎𝑖

2)
   

where 𝜎𝑖 is a bandwidth parameter that controls the variance of the Gaussian distribution around 𝐱𝑖. This distribution 

models the similarity between point 𝑖 and its neighbors in the high-dimensional space. The normalized version of 𝑝𝑖𝑗  
ensures that the sum of similarities for each point 𝑖 is 1, i.e., ∑𝑗≠𝑖 𝑝𝑖𝑗 = 1. 

 To map the data to a lower-dimensional space, we define a low-dimensional embedding 𝐘 = {𝐲1, 𝐲2, … , 𝐲𝑛} ⊂ ℝ
𝑚, 

where 𝑚 is the target dimension (typically 𝑚 = 2 or 3). The pairwise similarity between points 𝐲𝑖 and 𝐲𝑗 in the low-

dimensional space is defined using the Student’s t-distribution with one degree of freedom (also known as the Cauchy 

distribution):  

𝑞𝑖𝑗 =
(1+‖𝐲𝑖−𝐲𝑗‖

2
)−1

∑𝑘≠𝑖 (1+‖𝐲𝑖−𝐲𝑘‖
2)−1

   

This distribution ensures that the similarity between points in the low-dimensional space decreases with the distance 

between them, and it has heavier tails compared to a Gaussian, which helps in avoiding the “crowding problem” often 

encountered in dimensionality reduction methods. 

The objective of t-SNE is to find the low-dimensional representation 𝐘 that minimizes the difference between the 

high-dimensional and low-dimensional similarities. This difference is measured using the Kullback-Leibler (KL) 

divergence, which quantifies the dissimilarity between two probability distributions:  

𝐾𝐿(𝑃 ∥ 𝑄) = ∑𝑖≠𝑗 𝑝𝑖𝑗 log (
𝑝𝑖𝑗

𝑞𝑖𝑗
)   

where 𝑃 represents the high-dimensional probability distribution and 𝑄 the low-dimensional probability distribution. 

The KL divergence is minimized with respect to 𝐘 to obtain the best low-dimensional embedding. The cost function for 

t-SNE is given by: 
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𝐶(𝐘) = ∑𝑖≠𝑗 𝑝𝑖𝑗 log (
𝑝𝑖𝑗

𝑞𝑖𝑗
)   

This cost function encourages points that are similar in high-dimensional space to remain close in low-dimensional 

space, while points that are dissimilar are pushed further apart. 

Figure 4 reduces the dimensionality of the numeric data and visualizes it in two dimensions. Points are colored by 

occupation risk level. t-SNE helps in understanding if there are clear patterns or clusters based on occupation risk 

level, even in higher-dimensional space. t-SNE provides insight into the structure of the data, which can inform how 

different features group together. Figure 5 takes the t-SNE results and adds a third dimension (Risk Score) to the 3D 

space. This allows for a more comprehensive view of how risk score, occupation risk level, and the other features 

relate spatially. 

 

Figure 4. 2D Plot:t-SNE for Dimensionality Reduction 

 

Figure 5. 3D Plot:t-SNE for Dimensionality Reduction 
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10-1-3- Cluster Analysis 

Cluster analysis, also known as clustering, is a statistical technique used to group a set of objects in such a way that 

objects in the same group (or cluster) are more similar to each other than to those in other groups. The goal of cluster 

analysis is to explore the inherent structure of the data, typically in an unsupervised manner, by dividing a dataset into 

subsets that exhibit similar characteristics. It is widely used in data analysis, machine learning, and various scientific 

fields to uncover hidden patterns in data [42-45]. 

The k-means clustering analysis groups the data into four clusters based on the numeric features as presented by 

Figure 6. Each cluster corresponds to a set of observations with similar characteristics (e.g., risk scores, claim severity). 

The cluster plot visualizes how these groups differ and overlap. Clustering analysis helps identify subgroups within the 

data that may require different treatment in the model. 

 

Figure 6. Cluster analysis plot 

10-2- The Brighton Mahohoho XGBoost Probabilistic Framework for Inflation-Adjusted Frequency-Severity Modelling 

To split the dataset into training and test sets, a random sampling technique is applied: 

index ∼ Uniform(1, 𝑛), where 𝑛 = number of rows in data,  (54) 

train_data = data[index, ],  (55) 

test_data = data[−index, ].  (56) 

Here, 80% of the data is allocated to the training set, and the remaining 20% to the test set. 

Categorical variables are converted into numerical representations using the 𝑎𝑠. 𝑛𝑢𝑚𝑒𝑟𝑖𝑐 function. Let 𝐶 be a 

categorical variable; its transformation is given by: 

𝐶encoded = as. numeric(as. factor(𝐶)).  (57) 

For instance, the Industry column is encoded as follows: 

data$Industry → as. numeric(as. factor(data$Industry)).  (58) 

This encoding ensures compatibility with the XGBoost algorithm. 

The goal is to predict 𝑌ALR, the Inflation Adjusted Reserves. Let 𝐗ALR represent the feature matrix for ALR, and 𝐘ALR 

the target vector. The data preparation for ALR is as follows:  

𝐗ALR = 𝐝𝐚𝐭𝐚[features excluding Inflation Adjusted Reserves and Risk Adjusted Premium],  (59) 

𝐘ALR = 𝐝𝐚𝐭𝐚[Inflation Adjusted Reserves]  (60) 
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The XGBoost regression model minimizes the squared error objective function: 

ℒ(Θ) = ∑𝑛𝑖=1 (𝑌𝑖 − 𝑌̂𝑖(Θ))
2
+ 𝜆 ∥ Θ ∥2,  (61) 

where Θ represents the model parameters. 

The model is trained using 100 boosting rounds: 

model_ALR = xgboost(data = 𝐗ALR, label = 𝐘ALR, objective = ``reg: squarederror′′, nrounds = 100).  (62) 

Similarly, to predict 𝑌ARP, the Risk Adjusted Premiums, we define: 

𝐗ARP = 𝐝𝐚𝐭𝐚[features excluding Risk Adjusted Premium and Inflation Adjusted Reserves],  (63) 

𝐘ARP = 𝐝𝐚𝐭𝐚[Risk Adjusted Premium].  (64) 

The ARP model uses the same squared error objective as the ALR model:  

ℒ(Θ) = ∑𝑛𝑖=1 (𝑌𝑖 − 𝑌̂𝑖(Θ))
2
+ 𝜆 ∥ Θ ∥2.  (65) 

The training process is given by: 

model_ARP = xgboost(data = 𝐗ARP, label = 𝐘ARP, objective = ``reg: squarederror′′, nrounds = 100).  (66) 

To evaluate model performance, the following metrics are computed: 

• Mean Absolute Error (MAE): MAE =
1

𝑛
∑𝑛𝑖=1 |𝑌𝑖 − 𝑌̂𝑖|.  

• Mean Squared Error (MSE): MSE =
1

𝑛
∑𝑛𝑖=1 (𝑌𝑖 − 𝑌̂𝑖)

2
.  

• Root Mean Squared Error (RMSE): RMSE = √MSE.  

The residuals are analyzed to assess the model’s predictive accuracy: 

Residuals = 𝐘actual − 𝐘predicted.  (67) 

Plots such as Actual vs Predicted and Residuals vs Predicted are utilized to visually evaluate model performance. 

The Table 2 assesses the performance and configuration of two XGBoost regression models used for Actuarial Loss 

Reserving Risk Premium analysis. Both models have comparable computational efficiency, making them practical for 

large-scale actuarial applications. 

Table 2. The Brighton Mahohoho XGBoost Inflation-Adjusted Frequency-Severity Model 

Automated Actuarial Loss Reserving Risk Premium Model 

 ALR Model ARP Model 

Processing time (seconds) 5.69 5.33 

Hyper parameters 

R package: XGBoost 

Type Regression Regression 

Objective function reg:squarederror reg:squarederror 

Train data sample size 80,000 80,000 

Test data sample size 20,000 20,000 

nrounds 100 100 

verbose 0 0 

Model Validation Metrics 

MAE 16.212480 601.789500 

MSE 452.631800 494,274.000000 

RMSE 21.275150 703.046300 
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10-2-1- Estimation of Automated Actuarial Loss Reserves 

Figure 7 shows the relationship between the actual inflation-adjusted reserves (from the test data) and the predicted 

reserves (from the XGBoost model). The blue points represent individual predictions and they lie close to the red dashed 

line (45-degree diagonal line), which shows the better the predictions are. Figure 8 compares the actual risk-adjusted 

premiums against the predicted risk-adjusted premiums. 

 

Figure 7. ALR Loss Reserving: Actual vs Predicted 

 

Figure 8. ALR Residual Plot 
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10-2-2- Estimation of Automated Actuarial Risk Premiums 

Figure 9 visualizes the relationship between the actual risk-adjusted premiums and the predicted premiums. 

Figure 10 visualizes the residuals (the differences between the actual and predicted values) against the predicted 

values. 

 

Figure 9. ARP Risk Pricing: Actual vs Predicted 

 

Figure 10. ARP Residual Plot 
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10-2-3- Estimation of Automated Actuarial Loss Reserve Risk Premiums (AALRRPs) 

This section provides a mathematical description of the estimation of Automated Actuarial Loss Reserve Risk 

Premiums (AALRRPs). The real inflation rates, denoted as 𝐼real, are calculated as the ratio of current inflation rates 

𝐼current to previous inflation rates 𝐼previous: 

𝐼real =
𝐼current

𝐼previous
,    𝐼previous ∈ [1.001, 1.005], 𝐼current ∈ [1.01, 1.105].  (68) 

The resulting 𝐼real values range between: 

min(𝐼real) ≈ 1.005,    max(𝐼real) ≈ 1.10.  (69) 

The AALRRPs are estimated as a weighted linear combination of predictions from the Automated Loss Reserving 

(ALR) model (𝑃ALR) and the Automated Risk Pricing (ARP) model (𝑃ARP), adjusted for real inflation rates: 

AALRRP = 𝑤ALR𝑃ALR + 𝑤ARP𝑃ARP ⋅ 𝐼real,  (70) 

where 𝑤ALR and 𝑤ARP are the weights assigned to the ALR and ARP predictions, respectively, satisfying: 

𝑤ALR = 0.6,    𝑤ARP = 0.4.  (71) 

Probabilities are simulated from three distributions: Normal, Gamma, and Beta. Let 𝑛 denote the number of 

simulations. The probability density functions for each distribution are: 

Normal:    𝑓𝑁(𝑥) =
1

√2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2 ,    𝜇 = 1, 𝜎 = 0.5, 𝑥 ∈ [0,2],  (72) 

Gamma:    𝑓𝐺(𝑥) =
𝑥𝑘−1𝑒−𝑥/𝜃

𝜃𝑘Γ(𝑘)
,    𝑘 = 2, 𝜃 = 1, 𝑥 ∈ [0,3],  (73) 

Beta:    𝑓𝐵(𝑥) =
Γ(𝛼+𝛽)

Γ(𝛼)Γ(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1,    𝛼 = 2, 𝛽 = 5, 𝑥 ∈ [0,8].  (74) 

These probabilities are normalized to ensure their total sum equals 1: 

𝑓(𝑥) =
𝑓(𝑥)

∑𝑛𝑖=1𝑓(𝑥𝑖)
.  (75) 

For each probability distribution, AALRRPs are computed by multiplying the simulated probabilities with the base 

AALRRPs: 

AALRRP𝐷 = AALRRP ⋅ 𝑓𝐷(𝑥),    𝐷 ∈ {Normal, Gamma, Beta}.  (76) 

The expected value for each distribution is calculated as: 

𝔼[AALRRP𝐷] = ∑
𝑛
𝑖=1 AALRRP𝐷,𝑖.  (77) 

The optimal distribution is selected based on the highest expected value: 

𝐷chosen = arg max
𝐷∈{Normal,Gamma,Beta}

𝔼[AALRRP𝐷].  (78) 

To ensure that all AALRRP values are non-negative, negative values are adjusted to zero: 

AALRRPadjusted = max(AALRRP, 0).  (79) 

Finally, the maximum and minimum adjusted AALRRPs are calculated: 

max(AALRRPadjusted),    min(AALRRPadjusted)  (80) 

Figure 11 visualizes the trend of the Automated Actuarial Loss Reserve Risk Premiums (AALRRPs) over time and 

in addition to that Figure 12 visualizes AALRRPs over time with a color gradient based on the AALRRP values. Low 

values are shaded in blue, and high values are in red. The gradient makes it easier to visually identify outliers, peaks, or 

clusters of high and low values. This plot provides a detailed view of data dispersion over time and helps pinpoint periods 
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with extreme risk premiums. Observing the distribution and spread over time can reveal correlations between time and 

risk premium magnitudes. Figure 13 shows the frequency distribution of AALRRPs. The 𝑥-axis represents AALRRP 

values, while the 𝑦-axis indicates their frequency. Figure 14 visualizes AALRRP values over a simulated grid. The 𝑥-

axis represents time (in months), the 𝑦-axis represents AALRRP values, and the 𝑧-axis represents their corresponding 

magnitudes. The surface plot adds a third dimension, offering a spatial perspective of AALRRPs over time and revealing 

multi-dimensional patterns. High and low areas on the surface indicate extreme AALRRP values. Peaks represent high-

risk scenarios, while valleys indicate periods of relative stability. The surface smoothness reflects stability in premiums 

over time. A highly irregular surface indicates volatile periods. 

 

Figure 11. Time Series Line Plot 

 

Figure 12. AALRRP vs. Time with Custom Color Gradient 
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Figure 13. Distribution Plot of AALRRPs 

 

Figure 14. 3D Surface Plot of AALRRPs 

10-3- Simulation and Visualization of IFRS 17 Metrics 

In this subsection, we outline the procedure for calculating IFRS 17-compliant metrics, including the Contractual 

Service Margin (CSM), Fulfillment Cash Flows (FCF), and other critical components. These metrics are essential for 

evaluating and reporting the financial obligations and performance of insurance contracts. 

 The CSM represents the unearned profit that will be recognized over the coverage period. It is mathematically defined 

as:  

CSM = Expected Cash Inflows − Expected Claims Outflows.  (81) 

Here, the expected cash inflows are assumed to be equal to the Automated Actuarial Loss Reserve Risk Premiums 

(AALRRP), while the expected claims outflows are derived as: 

Expected Claims Outflows =
Inflation Adjusted Reserves

100
.  (82) 
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The FCF represents the present value of expected future cash flows. It is calculated as: 

FCF = CSM.  (83) 

To capture uncertainty in cash flows, a risk adjustment is added. We assume a constant factor 𝛼 = 0.05:  

Risk Adjustment = 𝛼 ⋅ AALRRP.  (84) 

For onerous contracts, the loss component is computed as the absolute value of negative CSM: 

Loss Component = {
|CSM| if CSM < 0,
0 otherwise.

  (85) 

The Liability for Remaining Coverage (LRC) measures the remaining obligations under the contract: 

LRC = CSM + FCF − LossComponent.  (86) 

The Liability for Incurred Claims (LIC) accounts for claims already incurred: 

LIC = Loss Reserving + Inflation Adjusted Reserves.  (87) 

Using a discount rate 𝑟 = 0.03, we adjust reserves for the policy term 𝑇: 

Discounted Reserves =
LIC

(1+𝑟)𝑇
.  (88) 

The histogram in Figure 15 shows the frequency distribution of CSM values. Peaks in the distribution indicate the 

most common profit margins across contracts. Negative values reflect the presence of onerous contracts, requiring loss 

adjustments. Figure 16 illustrates the distribution of FCF. A symmetrical distribution indicates consistent expected cash 

flow patterns, while skewness might highlight irregular contract performance. Figure 17 visualizes the LRC, reflecting 

the remaining obligations. High-frequency values near the upper bound might indicate conservative reserving practices, 

while broader spreads suggest variability in contract liabilities. The LIC distribution in Figure 18 captures claims already 

incurred. Spikes in LIC values correspond to significant claim events, potentially highlighting catastrophic periods. 

Figure 19 shows the impact of discounting. The histogram reflects adjustments for the time value of money, with lower 

values emphasizing the benefit of discounting over longer terms. 

 

Figure 15. Contractual Service Margin (CSM) 
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Figure 16. Fulfillment Cash Flows (FCF) 

 

Figure 17. Liability for Remaining Coverage (LRC) 
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Figure 18. Liability for Incurred Claims (LIC) 

 

Figure 19. Discounted Reserves 

The simulated IFRS 17 metrics provide insights into the financial position and risk exposure of the insurance portfolio. 

Visualizations aid in understanding the spread, central tendency, and extreme values, offering actuarial stakeholders a 

robust basis for decision-making. 

10-4- Compliance of the XGBoost Model to IFRS17 Regulations 

Figure 20 shows the predicted Actuarial Loss Reserves (ALR), Actuarial Risk Premiums (ARP), and their weighted 

combination (AALRRPs) across individual contracts. The AALRRP curve (red) consistently remains between the ALR 
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(blue) and ARP (green) predictions, as expected due to the weighting formula. The smooth trends indicate the stability 

of the XGBoost model’s predictions. The accurate predictions of ALR and ARP, combined into AALRRPs, demonstrate 

the model’s capability to estimate cash flows and reserves. This aligns with IFRS17 requirements for robust financial 

projections and accurate risk premium estimation. Figure 21 categorizes contracts into three risk groups: Low, Medium, 

and High, based on their AALRRP values. The bars represent the total AALRRP for each group. Risk grouping reflects 

a natural stratification of contracts, with "High" risk groups contributing the most to total AALRRP. The categorization 

aids in understanding the distribution of risk and premium amounts across policyholder clusters. Grouping contracts by 

risk is central to IFRS17, which emphasizes the aggregation of contracts with similar risk profiles. This ensures that 

financial reporting reflects both the variability and adequacy of reserves and premiums across the portfolio. Figure 22 

visualizes the impact of a 10% increase in ALR predictions and a 5% increase in ARP predictions on AALRRP values. 

Adjusted AALRRP values (purple line) show a proportional increase across all contracts, demonstrating sensitivity to 

input adjustments. The predictable behavior of adjusted AALRRP values supports the robustness and reliability of the 

XGBoost model for stress testing. 

 

Figure 20. Actuarial Loss Reserve Risk Premiums (AALRRP) 

 

Figure 21. Aggregation of Contracts by Risk Group 
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Figure 22. Sensitivity Analysis: Adjusted AALRRP 

The XGBoost model’s precise estimation of ALR, ARP, and AALRRP ensures compliance with IFRS17’s 

requirements for reliable measurement of reserves and premiums. The model facilitates proper grouping and aggregation, 

providing insights into portfolio-level risk and liability, as required under IFRS17’s guidance. Demonstrating consistent 

responses to changes in assumptions validates the model’s robustness, a key expectation under IFRS17 stress testing 

guidelines. The clear visualization of metrics aligns with IFRS17’s demand for transparent financial reporting and 

decision-making processes. Through these visualizations, the XGBoost model not only demonstrates adherence to 

IFRS17 regulations but also enhances confidence in its practical applicability for actuarial loss reserving and risk 

premium pricing. 

10-5- Automated Actuarial Underwriting Model 

The Automated Actuarial Loss Reserve Risk Premiums (AALRRPs) are used as a key metric to classify policyholders 

into four main underwriting clusters. This classification provides insights into the distribution of risk and aids in 

underwriting decisions. The methodology employs a data-driven approach based on the range of AALRRPs. 

 The values for AALRRPs are denoted as AALRRP𝑖 for policyholder 𝑖, where 𝑖 = 1,2, … , 𝑛, and 𝑛 is the total number 

of policyholders. Let min(AALRRP) and max(AALRRP) represent the minimum and maximum values of AALRRPs, 

respectively. The range is divided into four equal intervals to form the underwriting clusters. 

 The breakpoints for the clusters are computed as follows: 

𝑏𝑘 = min(AALRRP) + 𝑘 ⋅ Δ,    𝑘 = 0, 1, 2, 3, 4,  (89) 

where Δ is the interval width: 

Δ =
max(AALRRP)−min(AALRRP)

4
.  (90) 

Each policyholder is assigned to one of the clusters based on the interval in which their AALRRP value falls: 

Cluster𝑖 = {

Lowest Risk Underwriting Cluster, ifAALRRP𝑖 ∈ [𝑏0, 𝑏1)

Lower Risk Underwriting Cluster, if AALRRP𝑖 ∈ [𝑏1, 𝑏2)

Higher Risk Underwriting Cluster, if AALRRP𝑖 ∈ [𝑏2, 𝑏3)

Highest Risk Underwriting Cluster, ifAALRRP𝑖 ∈ [𝑏3, 𝑏4].

  (91) 

The classification aligns with risk levels, where policyholders in the "Lowest Risk Underwriting Cluster" are 

associated with the smallest AALRRPs, while those in the "Highest Risk Underwriting Cluster" have the largest 

AALRRPs. This segmentation facilitates targeted underwriting strategies and premium adjustments. The histogram in 

Figure 23 visualizes the distribution of policyholders across the four underwriting clusters. The 𝑥-axis represents the 

AALRRP values, while the 𝑦-axis indicates the frequency of policyholders. The height of each bar reflects the number 

of policyholders in the respective cluster. The plot reveals the relative distribution of risk levels across the portfolio. A 

smooth progression of frequencies across the clusters indicates a balanced segmentation of risk. 
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Figure 23. Underwriting Clusters 

This segmentation process adheres to actuarial best practices by: 

 Identifying policyholders with similar risk characteristics, which facilitates equitable pricing and reserve allocation.  

 Providing a framework for risk-based premium adjustments and portfolio optimization.  

 Enhancing transparency in underwriting decisions, a principle emphasized in IFRS17 compliance. 

The Table 3 provides a quantitative summary of the distribution of policyholders across the four underwriting clusters. 
Each cluster represents a different level of risk, segmented by the Automated Actuarial Loss Reserve Risk Premiums 
(AALRRPs). The Lowest Risk Underwriting Cluster contains the highest number of policyholders, suggesting that a 
significant portion of the portfolio is composed of individuals with minimal actuarial risk. This aligns with typical 
insurance dynamics where lower-risk individuals are more prevalent. The Lower Risk Underwriting Cluster being the 

second-largest group, indicates a substantial number of policyholders with slightly higher but still moderate risk levels. 
Together with the "Lowest Risk" cluster, these two groups dominate the portfolio, highlighting a concentration in the 
lower-risk segments. With regards to the Higher Risk Underwriting Cluster the number of policyholders drops 
significantly in this category. This indicates that fewer policyholders fall into this higher-risk band, reflecting a relatively 
smaller portion of the portfolio exposed to moderate-to-high risks. The Highest Risk Underwriting Cluster is the smallest 
group, representing only a very small fraction of the total policyholders. These are individuals with the highest risk, 

potentially contributing disproportionately to the insurer’s reserve requirements and necessitating careful monitoring 
and pricing strategies. In short, Table 3 reflects a balanced portfolio with a dominant presence in low-risk clusters, 
underscoring the need for robust strategies for high-risk policyholders while leveraging the low-risk majority for 
stability. 

Table 3. Underwriting clusters and the associated policyholders 

Underwriting cluster Number of Policyholders 

Lowest Risk Underwriting Cluster 8573 

Lower Risk Underwriting Cluster 7804 

Higher Risk Underwriting Cluster 3344 

Highest Risk Underwriting Cluster 279 

10-6- Simulation of Expenses and Outgo Leading to Automated Net Actuarial Underwriting Balances (ANAUB) by Cluster 

In this subsection, we describe the simulation process for estimating expenses and outgo, which subsequently leads 
to the calculation of the Automated Net Actuarial Underwriting Balances (ANAUB) for each underwriting cluster. This 
analysis aligns with the actuarial risk management principles and IFRS 17 expectations for adequate financial reporting 
of risk balances. 

Expenses are simulated as a random percentage of the Automated Actuarial Loss Reserving Risk Premiums 

(AALRRPs) for each policyholder. Specifically: 

Expenses = Premiums × Uniform(0.1, 0.4),   
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where the percentage ranges between 10% and 40%. This range captures variability in cost structures across different 

clusters. 

 Outgo represents additional cash outflows related to claims and administrative costs. It is similarly simulated as: 

Outgo = Premiums × Uniform(0.05, 0.3),   

ensuring that the total outgo remains a realistic fraction of the premiums. The upper limit of 30% reflects the actuarial 

assumption of reasonable claims costs. 

 Revenue is assumed to be 1.5 × the premiums, representing the income derived from underwriting activities: 

Revenue = 1.5 × Premiums.   

The ANAUB is calculated as the net result of subtracting expenses and outgoing from the revenue:  

ANAUB = Revenue − (Expenses + Outgo).   

To ensure that the ANAUB remains non-negative, any negative values are adjusted to zero: 

ANAUB = max(0, ANAUB)   

The ANAUB values are visualized in Figure 24, which presents a histogram of ANAUB frequencies across the 

underwriting clusters 

 

Figure 24. Histogram of Automated Net Actuarial Underwriting Balances (ANAUB) by Cluster 

The histogram in Figure 24 provides insight into the distribution of ANAUB values across underwriting clusters: 

1. Lowest and Lower Risk Clusters: These clusters exhibit higher ANAUB frequencies, aligning with IFRS 17’s 

principle of financial stability, as the majority of policyholders belong to these clusters. This suggests a strong 

underwriting performance and efficient expense management. 

2. Higher and Highest Risk Clusters: These clusters show lower ANAUB frequencies, reflecting fewer policyholders. 

However, the ANAUB values in these clusters are generally smaller, indicating that high-risk policies might lead to 

reduced net balances. This highlights the need for careful management of these segments to ensure profitability while 

maintaining sufficient reserves. 

3. Alignment with IFRS 17: The results support IFRS 17’s requirements for transparency and accountability in 

financial reporting: 

 The revenue, expenses, and outgo simulations ensure that all cash flows are accounted for in compliance with 

contractual service margin (CSM) expectations.  

 The adjustments to non-negative ANAUB values reflect prudence in recognizing potential underwriting losses, 

adhering to IFRS 17’s focus on realistic valuation of obligations.  

 The clustering strategy provides clear risk stratification, supporting better portfolio management and alignment 

with IFRS 17’s segmentation requirements.  
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In closing, the simulation and visualization demonstrate robust risk segmentation and financial reporting practices, 

supporting the adequacy of the ANAUB framework under IFRS 17 guidelines. 

10-7- IFRS17 Metrics Within the Developed Underwriting Clusters 

The IFRS17 metrics simulated in this analysis are fundamental for assessing the financial health and profitability of 

insurance contracts within each underwriting cluster. The following metrics were computed based on the premiums, 

expenses, and other factors derived from the policyholder’s risk characteristics. 

With regards to the Insurance Revenue (IR) 

𝐼𝑅𝑖 = 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑖 × random[0.9, 1.1]  (92) 

where 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑖 is the premium for policyholder 𝑖 and the revenue is a random value close to the premium (i.e., between 

90% and 110% of the premium). 

With respect to the Insurance Service Expense (ISE) 

𝐼𝑆𝐸𝑖 = 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑖 × random[0.5, 0.7]  (93) 

The service expense is modeled as a fraction of the premium (between 50% and 70%). 

Furthermore, the Profitability Ratio (PR) 

𝑃𝑅𝑖 =
𝐼𝑅𝑖−𝐼𝑆𝐸𝑖

𝐼𝑅𝑖
  (94) 

The profitability ratio reflects the proportion of insurance revenue that remains after service expenses. 

On the same note the Coverage Units (CU) 

𝐶𝑈𝑖 = random[0.5, 2] × 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑖  (95) 

The coverage units represent the amount of coverage provided by the policy, simulated as a random fraction of the 

premium. 

With regards to the Contract Boundary Adjustments (CBA) 

𝐶𝐵𝐴𝑖 = random[0, 0.2] × 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑖  (96) 

Contract boundary adjustments are simulated as a fraction of the premium, between 0% and 20%. 

With respect to the Expense Ratio (ER) 

𝐸𝑅𝑖 =
𝐼𝑆𝐸𝑖

𝐼𝑅𝑖
  (97) 

The expense ratio measures the proportion of the insurance revenue consumed by the service expense. 

In addition to that, the Insurance Contract Liabilities (ICL) 

𝐼𝐶𝐿𝑖 = 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑖 × random[0.3, 0.5]  (98) 

The insurance contract liabilities represent the amount of liabilities associated with each policy, simulated as a fraction 

of the premium. 

𝑃𝑉𝐹𝐶𝐹𝑖 = random[0.8, 1.2] × 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑖  (99) 

The present value of future cash flows is simulated as a fraction of the premium, where the future cash flows are 

discounted using a random factor between 80% and 120%. 

𝑆𝐴𝑖 = random[−0.05, 0.05] × 𝑃𝑟𝑒𝑚𝑖𝑢𝑚𝑖  (100) 

Sensitivity analysis measures the potential variability of premiums due to uncertain factors, with a small random 

fluctuation applied. 

Figure 25 visualizes a comparison of the different IFRS17 metrics for each underwriting cluster. Here, each bar 

represents the average value of a particular metric for the policies in a specific underwriting cluster. The metrics are 

visualized across four clusters: “Lowest Risk Underwriting Cluster”, “Lower Risk Underwriting Cluster”, “Higher Risk 

Underwriting Cluster”, and “Highest Risk Underwriting Cluster”. Insurance Revenue generally increases for higher-risk 

clusters, as these clusters tend to have higher premiums. This is reflected in the higher average values for the “Higher 
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Risk Underwriting Cluster” and “Highest Risk Underwriting Cluster”. Service Expense follows a similar trend, as 

policies with higher premiums often incur higher service costs. However, the expense ratio (calculated as 
𝐼𝑆𝐸

𝐼𝑅
) is likely 

lower in the “Lower Risk” clusters, implying better profitability. Profitability Ratio shows a decreasing trend with higher 

risk clusters, as higher premiums are often offset by higher expenses. The profitability ratio tends to be highest in the 

“Lowest Risk Underwriting Cluster”, indicating better cost efficiency in these clusters. Expense Ratio exhibits a 

corresponding increase in the higher-risk clusters, showing that higher risk is associated with higher operational costs. 

 

Figure 25. The IFRS17 Metrics within the underwriting clusters 

Insurance Contract Liabilities also increase with higher risk clusters, likely reflecting greater liabilities associated 

with higher premiums. Present Value of Future Cash Flows shows a similar trend, indicating that future obligations are 

expected to be higher for riskier policies. The Sensitivity Analysis metric fluctuates across clusters, reflecting the varying 

degree of sensitivity to external changes like market conditions, regulatory changes, or economic factors. The plot 

effectively shows that the higher-risk underwriting clusters have higher premiums, but this also leads to higher liabilities 

and expenses. This suggests that policies in higher-risk clusters may require more careful management to balance 

revenue, service expenses, and profitability, aligning with the principles of IFRS17, which emphasizes transparency, 

consistency, and the accurate recognition of revenue and liabilities over time. By segmenting the data based on 

underwriting clusters, this visualization provides valuable insights into how the metrics vary across different risk 

categories and aids in understanding the overall financial performance and solvency of the policies under IFRS17 

standards. 

10-8- Model Evaluation 

Model evaluation is a critical aspect of assessing the reliability and accuracy of actuarial models, particularly in the 

context of loss reserving, risk pricing, and underwriting. It involves a range of testing strategies, such as robust model 

testing, stress model testing, and scenario model testing, to ensure that the model performs well under various conditions 

and reflects real-world risks. 

10-8-1- Robust Model Testing 

Robust model testing refers to evaluating how well a model performs under different data conditions, especially when 

faced with noisy, incomplete, or extreme data. The purpose of robust testing is to ensure that the model is not overly 

sensitive to variations or anomalies in the input data. In actuarial models for occupational indemnity insurance, such as 

those using the XGBoost algorithm, robust testing helps assess how the model’s predictions hold up when tested against 

various hypothetical worst-case or outlier data scenarios [46, 47]. 

Figure 26 compares the original values of the Automated Actuarial Loss Reserve Risk Premiums (AALRRPs) against 

their perturbed values after applying a small perturbation (1% change). Each point in the scatter plot corresponds to a 

pair of original and perturbed AALRRPs values. The blue points represent the individual data points. The points in the 

plot are tightly clustered around the red regression line, indicating that the perturbation has a minimal effect on the 

AALRRPs values. This suggests that the Automated Actuarial Loss Reserve Risk Premiums are stable and not highly 

sensitive to small changes, which is a positive sign for model robustness. The red line being nearly straight and not 
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deviating much from the 45-degree line (where original values equal perturbed values) implies that the perturbation does 

not significantly alter the expected pattern. This shows that the perturbation leads to only small, predictable adjustments 

to the values, which is important for predictable financial outcomes under IFRS17. 

 

Figure 26. The Robust model testing 

 IFRS17 requires insurance liabilities and premiums to be reliable and consistent over time. The minimal impact of 

the perturbation supports the claim that the calculated Automated Actuarial Loss Reserve Risk Premiums (AALRRPs) 

are robust. This means the model is less susceptible to unexpected fluctuations, and the results would hold up well in a 

variety of market conditions, which is important for fulfilling IFRS17’s emphasis on consistency and financial stability. 

The fact that the perturbation is small (1%) and does not result in large deviations indicates that the model is not highly 

sensitive to minor market changes or uncertainties. This aligns with IFRS17’s requirement for ensuring that projections, 

including premiums and liabilities, are reasonable and withstand different scenarios. 

10-8-2- Stress Model Testing 

Stress model testing evaluates the performance of a model under extreme but plausible conditions, or stress scenarios. 

These tests simulate severe market or environmental conditions, such as a sharp increase in claims frequency or severity 

due to economic downturns, natural catastrophes, or other extraordinary events. Stress testing provides insight into how 

a model might perform under extreme conditions and ensures that the model can handle shocks to the system without 

significant performance degradation [48]. 

Figure 27 represents stress-testing of Automated Actuarial Loss Reserve Risk Premiums (AALRRPs) across different 

distributions (Normal, Gamma, and Beta) by introducing a negative shock. The Blue Line (Normal) represents the 

baseline AALRRPs under a normal distribution without any stress and the Red Line (Stressed Normal) after applying a 

negative shock (80% of the original value) to values greater than 50,000, this line shows the stressed AALRRPs. The 

Green Line (Gamma) represents AALRRPs under a Gamma distribution without any stress. The Orange Line (Stressed 

Gamma) line shows the stressed scenario, with the same shock applied as in the previous plot. The Purple Line (Beta) 

shows the Beta distribution without stress. The Yellow Line (Stressed Beta) is the stressed version, similar to the other 

distributions. 

The plots show that the AALRRPs, both before and after the stress-test, are robust under the IFRS17 expectations. 

They adhere to the principle of maintaining adequate reserves even under extreme conditions, which is crucial for 

compliance with IFRS17 regulations. The models appear to react appropriately to stress-testing, adjusting high values 

while maintaining overall consistency and solvency. We can confidently interpret that the models are robust and meet 

IFRS17 standards, as the stress test simulates real-world conditions that insurers may face, such as economic shocks, 

large losses, or other adverse scenarios. 
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Figure 27. Stress model testing 

10-8-3- Scenario Model Testing 

Scenario model testing involves evaluating a model’s performance across a range of pre-defined or simulated 

scenarios that are considered realistic but not necessarily extreme. Unlike stress tests, which focus on worst-case 

scenarios, scenario testing involves assessing the model’s behavior in different operational, economic, or regulatory 

contexts. This helps to understand how well the model adapts to changes in the environment [49]. 

Figure 28 displays the expected value (sum) of AALRRPs for each scenario, with different colors representing 

different metrics (Expected Value, Min AALRRP, Max AALRRP, and Mean AALRRP). The Original Scenario is the 

baseline scenario representing AALRRPs without any adjustments. It provides a reference point for comparing how 

changes in assumptions affect the AALRRPs. The inflation-adjusted scenario shows a higher expected value (sum) of 

AALRRPs compared to the original, as the inflation factor increases the premium base by 5%. This demonstrates how 

inflation adjustments can lead to higher reserves, which is essential for ensuring that future claims are adequately 

accounted for under increasing costs. With a 10% increase in claim frequency, AALRRPs increase as expected. This 

scenario shows the insurer’s response to higher-than-expected claim rates, which is typical when insurers expect higher 

risks in the future. The decrease in claim frequency (10%) lowers AALRRPs, indicating how adjustments in the expected 

frequency of claims affect the reserve needs. A decrease in claims suggests lower reserve requirements, though it must 

be carefully balanced with the risk of under-reserving. 

 

Figure 28. Bar Plot of AALRRPs Under Different Scenarios 

 The IFRS17 framework mandates that insurers maintain adequate reserves even under fluctuating market conditions, 

including changes in inflation and claim frequency. The bar plot clearly demonstrates that AALRRPs adjust 

appropriately under different economic conditions (inflation, claim frequency changes), which aligns with the principle 
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of maintaining sufficient reserves as per IFRS17 requirements. The adjusted values in the plot show that the model 

remains flexible and can handle various stress scenarios while maintaining the overall reserve adequacy, which is a key 

aspect of IFRS17 compliance. 

 Each shaded area represents the density distribution of AALRRPs for a specific scenario from Figure 29. The 

scenarios include "Normal," "Inflation Adjusted," "Claim Frequency Increase," and "Claim Frequency Decrease." The 

Normal Distribution (Skyblue) represents the baseline distribution of AALRRPs under the original conditions. The plot 

shows the spread of the values, which provides a sense of the variability of the premiums under normal conditions. After 

applying a 5% inflation factor, the density plot shifts to the right, indicating an overall increase in AALRRPs. This 

reflects how inflation adjustments lead to higher expected reserves. The Claim Frequency Increase (Light Green) density 

plot also shifts to the right compared to the normal distribution, but it shows a broader range of values. This suggests 

that with increased claim frequency, the variability in the AALRRPs is higher, as there is more uncertainty around future 

claims. The Claim Frequency Decrease (Orange) distribution shifts to the left, indicating lower AALRRPs. However, 

the range is slightly narrower, indicating a more predictable reduction in reserves due to the decreased claim frequency. 

 

Figure 29. Density Plot of AALRRPs Under Different Scenarios 

The density plot clearly demonstrates that the models adjust AALRRPs in a manner consistent with these factors, 

ensuring that the reserves remain appropriate even when market conditions change. The adjusted densities (inflation, 

increased and decreased claim frequencies) show that the model properly accounts for different risk scenarios by 

changing the tail behavior of the distribution. This is important under IFRS17, as insurers need to ensure they have 

sufficient reserves to cover the full spectrum of potential outcomes (including extreme tail events). The changes in the 

shape and location of the distributions show that the model is both flexible (responding to changes in inflation and claim 

frequency) and predictable (with clear shifts in the distributions based on the input assumptions). This flexibility and 

predictability are crucial for compliance with IFRS17, as it emphasizes not only the adequacy of reserves but also the 

transparency and consistency of actuarial methods. 

11- Discussion 

This paper presents a cutting-edge approach for estimating inflation-adjusted frequency-severity models in 

occupational indemnity insurance, leveraging advanced machine learning techniques, particularly the XGBoost 

algorithm. The results highlight the transformative potential of integrating Artificial Intelligence (AI)-driven methods 

into the actuarial field, offering enhanced precision in loss reserving, risk pricing, and underwriting processes. 

 One of the primary contributions of this study is the incorporation of inflation adjustments into the frequency-severity 

models. By considering inflation as a dynamic factor that evolves over time, the model provides a more forward-looking 

and accurate estimation of future claims and reserves. This innovation is crucial in the context of the evolving economic 

landscape, where inflation can significantly impact the financial performance of insurance companies. By including 

these adjustments, the methodology aligns with the increasingly complex nature of insurance data and offers more robust 
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insights into long-term actuarial projections. Furthermore, the integration of the XGBoost algorithm represents a 

substantial leap forward in actuarial modeling. XGBoost’s ability to handle large and complex datasets, while providing 

high predictive accuracy, makes it an ideal tool for modeling the intricacies of occupational indemnity insurance. The 

ability to capture nonlinear relationships and interactions between variables allows the model to deliver more refined 

estimations of loss reserves, risk premiums, and claim severities. This is particularly valuable in scenarios where 

traditional methods, such as linear regression or generalized linear models, may fall short in terms of model flexibility 

and predictive power. 

 The methodology also emphasizes the importance of regulatory compliance, particularly in relation to IFRS 17 

standards. By simulating essential financial metrics like the Contractual Service Margin (CSM), Fulfilment Cash Flows 

(FCF), and Liability for Incurred Claims (LIC), the model ensures that the results are not only actuarially sound but also 

compliant with international accounting standards. This is a critical feature for insurance companies seeking to meet 

regulatory requirements while optimizing their financial forecasting and risk management strategies. The ability to 

demonstrate adherence to these standards through the model’s simulations further enhances its credibility and practicality 

in real-world applications. Another key aspect of this methodology is the introduction of policyholder segmentation into 

underwriting clusters. By segmenting policyholders based on risk characteristics, the model enables more personalized 

and accurate risk-based pricing decisions. This approach improves the efficiency of underwriting processes, allowing 

insurers to offer more competitive pricing while maintaining profitability. The clustering technique, combined with 

inflation-adjusted frequency-severity models, provides a more granular view of risk, which is essential for managing 

large-scale insurance portfolios. 

In terms of model validation, the methodology’s emphasis on performance metrics such as Mean Absolute Error 

(MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE), as well as residual analysis, ensures that 

the models are rigorously tested for accuracy and reliability. These validation steps confirm the robustness of the models 

and provide confidence in their ability to accurately predict future claims and reserves. The use of a comprehensive 

validation framework is an essential component of the methodology, as it ensures that the results are both scientifically 

sound and practically applicable. However, while the methodology offers numerous advantages, there are also potential 

limitations and areas for future research. The reliance on large datasets, while a strength, may also pose challenges in 

terms of data availability, particularly in regions or markets with limited historical insurance data. Additionally, the 

complexity of the XGBoost algorithm, while contributing to its predictive power, may also require significant 

computational resources, especially when working with large-scale datasets. Future research could focus on optimizing 

the computational efficiency of the model or exploring alternative machine learning techniques that might provide 

similar levels of accuracy with less computational demand. Moreover, the methodology could be extended to incorporate 

additional variables or external factors, such as economic indicators, that could further enhance the accuracy of the 

models. For example, incorporating macroeconomic variables like unemployment rates or wage growth could provide a 

more holistic view of the factors influencing occupational indemnity claims and reserves. Future studies could also 

explore the integration of other AI techniques, such as deep learning or reinforcement learning, to further refine the 

model’s predictive capabilities. 

In conclusion, this paper introduces a novel and practical methodology for estimating inflation-adjusted frequency-

severity models in occupational indemnity insurance. The integration of machine learning techniques, regulatory 

compliance, and policyholder segmentation represents a significant advancement in the actuarial field. The results 

demonstrate the potential for AI-driven models to revolutionize actuarial decision-making, providing more accurate and 

reliable estimates of loss reserves, risk premiums, and underwriting decisions. Despite some limitations, the 

methodology offers a solid foundation for future research and development in this area, with the potential to significantly 

improve financial forecasting and risk management in the insurance industry.  

12- Conclusion 

This study presents a pioneering methodology for estimating inflation-adjusted frequency-severity models in 

occupational indemnity insurance, using advanced machine learning techniques, particularly the XGBoost algorithm. 

The findings emphasize the transformative potential of leveraging Artificial Intelligence (AI) in actuarial applications, 

enhancing the precision of loss reserving, risk pricing, and underwriting processes. 

The primary contribution of this research lies in the incorporation of inflation adjustments within the frequency-

severity models. By integrating inflation as a dynamic and evolving factor, the methodology provides more accurate 

predictions of future claims and reserves, aligning with the increasingly complex and fluctuating economic environment. 

This inflation-adjusted approach offers significant improvements over traditional models, ensuring more realistic and 

forward-looking actuarial estimations. In addition to the inflation adjustments, the adoption of XGBoost enables the 

model to handle large, complex datasets, capturing nonlinear relationships between variables and producing high 

predictive accuracy. This is crucial for improving actuarial estimations of loss reserves, risk premiums, and claim 

severities. The model’s flexibility and ability to account for complex interactions between features make it a powerful 

tool for managing insurance portfolios, particularly in the context of occupational indemnity insurance. 
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The study also highlights the importance of regulatory compliance, particularly in accordance with IFRS 17 standards. 

Through simulations of key financial metrics, such as the Contractual Service Margin (CSM) and Fulfilment Cash Flows 

(FCF), the methodology ensures that the results are not only actuarially sound but also compliant with international 

accounting standards. This compliance feature is vital for insurers seeking to balance financial optimization with 

regulatory adherence, ensuring the long-term sustainability of their operations. Moreover, the introduction of 

policyholder segmentation into underwriting clusters enhances risk-based pricing, leading to more tailored and accurate 

pricing decisions. This segmentation allows insurers to better align pricing strategies with the unique risk profiles of 

individual policyholders, fostering more efficient underwriting processes and improved financial outcomes. 

The model validation framework, utilizing performance metrics such as Mean Absolute Error (MAE), Mean Squared 

Error (MSE), and Root Mean Squared Error (RMSE), strengthens the credibility of the methodology, confirming its 

robustness and predictive accuracy. The comprehensive validation procedures provide assurance that the models produce 

reliable estimates, which are crucial for effective risk management and decision-making. While this study provides a 

solid foundation for AI-driven actuarial modeling, there are areas for further exploration. Future research could focus on 

optimizing the computational efficiency of the model, particularly when handling large datasets, and incorporating 

additional external factors, such as macroeconomic indicators, to improve prediction accuracy. Additionally, integrating 

other machine learning techniques, like deep learning, could further enhance the model’s capabilities. 

In conclusion, the proposed methodology represents a significant advancement in the actuarial field, offering a novel 

approach to estimating inflation-adjusted frequency-severity models in occupational indemnity insurance. By combining 

AI, regulatory compliance, and segmentation techniques, this research provides a robust framework for improving 

actuarial decision-making, risk pricing, and loss reserving. The methodology offers promising potential for real-world 

applications in the insurance industry and sets the stage for further developments in AI-driven actuarial science. 

13- Nomenclature  

Symbol Definition 

𝑋 Predictor variables for frequency-severity modeling 

𝑌 Response variable (e.g., claim severity) 

𝛼 Regularization parameter 

𝜆 LASSO penalty parameter 

𝐶𝑆𝑀 Contractual Service Margin 

𝐹𝐶𝐹 Fulfilment Cash Flows 

𝐼𝐹𝑅𝑆 − 17 International Financial Reporting Standards 
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