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Abstract 

This study leverages machine learning and advanced variable selection techniques to enhance the 

prediction of the Bank Financial Stability Index (Z-score) in emerging ASEAN markets. Utilizing a 

comprehensive secondary dataset comprising macroeconomic and bank-specific indicators from 61 

commercial banks across Indonesia, Malaysia, the Philippines, Singapore, Thailand, and Vietnam 

(2010–2023), we systematically evaluate the predictive power of multiple machine learning models. 

A rigorous cross-validation framework is employed to optimize forecasting accuracy, integrating 
Linear Regression, Random Forest, K-Neighbors, Decision Tree, Gradient Boosting, AdaBoost, 

Support Vector Regression, and XGBoost with Lasso, Ridge, and Elastic Net regularization. 
Empirical results reveal that key drivers of financial stability include equity capital, financial 

leverage, return on equity, GDP growth, inflation, technological advancements, and systemic shocks 

like the COVID-19 pandemic. Notably, the Ridge-optimized XGBRegressor model achieves the 
highest predictive accuracy (~89%), demonstrating the efficacy of hybrid machine learning 

approaches in financial stability forecasting. These findings offer crucial insights for policymakers 

and regulators, facilitating data-driven strategies to strengthen banking resilience and mitigate 

systemic risks in volatile economic environments. 
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1- Introduction 

The financial health of enterprises has long been a cornerstone of economic research, with seminal contributions 

from Beaver (1966) [1] and Altman (1968) [2] establishing foundational frameworks for assessing financial distress and 

bankruptcy prediction. Subsequent refinements by Altman & Hotchkiss (2005) [3] underscored the critical interplay 

between financial stability, legal frameworks, and macroeconomic resilience. Within the banking sector, financial 

stability is not merely an institutional concern but a fundamental pillar of economic sustainability. As emphasized by 

Ben et al. (2022) [4], Thabet et al. (2024) [5], and Boubaker et al. (2024) [6], banks function as vital intermediaries in 

financial systems, facilitating capital allocation, mitigating systemic risks, and acting as buffers against economic 

volatility. Ensuring banking stability is thus imperative for fostering sustainable economic development, particularly in 

emerging markets where financial systems are more susceptible to external shocks and structural inefficiencies [7, 8]. 

Despite extensive academic efforts, significant research gaps persist in the study of banking stability. Prior studies 

have predominantly centered on three key areas: (1) constructing indices and methodologies to measure financial 

stability [2, 6, 9, 10]; (2) identifying and evaluating determinants influencing banking stability [7, 11-14]; and (3) 

developing forecasting models and early warning systems for financial distress [15-19]. However, these traditional 
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approaches often encounter methodological limitations, including issues of data scarcity, multicollinearity, and 

endogeneity, which restrict the robustness and generalizability of findings [5, 13]. Additionally, the financial systems 

of emerging economies, particularly those in the ASEAN region, exhibit distinct structural vulnerabilities—ranging 

from high capital flow volatility to regulatory disparities—that necessitate a more nuanced analytical approach [8, 20]. 

These markets, characterized by rapid economic growth and financial liberalization, demand advanced predictive 

models that can accommodate their dynamic and complex nature. 

Machine Learning (ML) and advanced optimization techniques have recently emerged as transformative tools in 

financial risk assessment, offering superior predictive accuracy over traditional econometric models [17]. By leveraging 

sophisticated algorithms, ML models can efficiently process high-dimensional financial data, detect complex patterns, 

and enhance forecasting precision. Techniques such as Lasso, Ridge, and Elastic Net regularization have proven 

particularly effective in addressing multicollinearity and improving variable selection, thereby enhancing model 

interpretability and stability [4, 17, 21, 22]. However, despite the demonstrated efficacy of these methodologies, their 

application to banking stability prediction in ASEAN economies remains largely unexplored. Given the unique financial 

dynamics and regulatory environments of emerging markets, there is a pressing need for tailored ML-driven models that 

can reliably assess banking stability while accommodating market-specific idiosyncrasies. 

This study aims to bridge these research gaps by integrating ML algorithms with advanced parameter optimization 

techniques to construct a robust predictive model for banking stability in ASEAN’s emerging economies. The key 

objectives of this research are threefold: (1) to systematically identify and analyze the most significant determinants of 

banking stability in ASEAN; (2) to enhance predictive accuracy by leveraging ML methodologies in conjunction with 

optimization techniques; and (3) to provide empirical insights and practical recommendations for policymakers and 

banking regulators to formulate more effective risk management and regulatory frameworks. By employing cross-

validation techniques and rigorous model evaluation, this study seeks to ascertain the most suitable ML approaches and 

variable selection methods for financial stability assessment, ensuring both reliability and applicability across varying 

economic conditions. 

This paper is structured as follows: Section 2 presents a comprehensive literature review, highlighting theoretical 

perspectives and empirical studies relevant to banking stability and predictive modeling. Section 3 details the data 

collection process, preprocessing techniques, and methodological framework employed in this study. Section 4 discusses 

the empirical results and their implications, while Section 5 concludes with policy recommendations and future research 

directions. Through this research, we endeavor to contribute to the growing body of knowledge on financial stability by 

offering an innovative, data-driven approach tailored to the specific needs of ASEAN economies. By integrating ML 

with advanced optimization techniques, this study provides both a methodological advancement and actionable insights 

for enhancing financial resilience in emerging markets. 

2- Theoretical Background and Literature Review 

2-1- Bank Financial Stability and Its Relationship with Influencing Factors 

The concept of bank financial stability has its theoretical foundation in earlier studies on corporate financial health, 

serving as a critical indicator of a bank's resilience to economic shocks and market volatilities [1, 2]. While there is no 

universally accepted definition, financial stability in the banking sector is broadly characterized by a bank’s ability to 

absorb adverse shocks, manage risks effectively, and maintain operational soundness in the face of macroeconomic 

fluctuations and intensifying competition [13, 23, 24]. To quantify this stability, various financial ratios have been 

employed, including the Non-Performing Loan (NPL) ratio, Capital Adequacy Ratio (CAR), and Return on Assets 

(ROA). However, these metrics, while valuable, often fail to provide a comprehensive assessment of a bank’s overall 

risk exposure and long-term financial viability. The fundamental rationale behind using the Z-score lies in its ability to 

capture the interplay between capital adequacy and earnings volatility, offering a forward-looking measure of a bank’s 

default risk. According to Hafeez et al. (2022) [25], the Z-score essentially reflects the extent to which a bank’s capital 

buffer can absorb potential fluctuations in profitability without leading to insolvency. A higher Z-score indicates greater 

financial stability, signifying that a bank possesses sufficient capital to withstand profit variations and adverse financial 

conditions. Conversely, a lower Z-score suggests increased financial fragility and a heightened risk of distress. Several 

compelling arguments justify the preference for the Z-score over alternative indicators. First, it provides a more holistic 

assessment of bank stability by integrating both capital strength and earnings volatility, as opposed to standalone 

measures like CAR or ROA that may not fully account for risk dynamics. Second, its applicability across diverse banking 

environments, particularly in economies with evolving financial structures, enhances its relevance in cross-country and 

longitudinal studies. Finally, its consistency in empirical research and strong theoretical underpinning makes it a widely 

recognized and credible metric for financial stability analysis. Given these advantages, the Z-score serves as a rigorous 

and comprehensive indicator for evaluating banking stability, aligning with the broader objective of understanding risk 

resilience in ASEAN economies. This study adopts the Z-score methodology to ensure a robust, comparative, and 

theoretically grounded assessment of financial stability across the banking sector. 

Among the available methodologies, the Z-score and its variants have gained prominence as robust and theoretically 

sound measures of banking stability, particularly in the context of emerging markets and developing economies [2, 9, 

25, 26]. The Z-score is calculated as follows: 
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𝑍𝑠𝑐𝑜𝑟𝑒 𝑖𝑡
=  

𝐸𝑇𝐴𝑖𝑡+𝑅𝑂𝐴𝐴𝑖𝑡

𝜕𝑅𝑂𝐴𝐴𝑖

                        (1) 

where: ROAA: Return on average assets, ETA: Equity to total assets ratio, Standard Deviation (𝜕𝑅𝑂𝐴𝐴𝑖
): calculated based 

on the standard deviation of each bank's ROAA by country during the study period.  

Previous studies on bank financial stability are often considered in the multidimensional relationship between micro 

factors such as inherent bank characteristics and macroeconomic factors [11, 13, 14, 24-27]. A review of previous studies 

reveals the following micro and macro factors affecting bank financial stability (Figure 1): 

 

Figure 1. Factors influencing bank financial stability 

2-2- Variable Selection Optimization 

In research models, removing, adding, or creating new variables can lead to the loss of useful information or the 

addition of redundant information, affecting the accuracy of regression results and even leading to overfitting and 

spurious regression [4, 15, 22, 28]. To address these issues, variable selection optimization methods such as Lasso, 

Ridge, or Elastic Net are considered effective in regression problems [4, 5, 17, 21, 22]. 

Lasso regression (short for Least Absolute Shrinkage and Selection Operator) was first proposed in Tibshirani's 

(1996) [29]. The idea of Lasso is to add a penalty factor (called L1 Regularization) to the sum of squared errors of the 

linear regression model. L1 is calculated based on the sum of the absolute values of the regression coefficients. Adding 

L1 aims to minimize the sum of squared residuals, depending on the sum of the absolute values of the coefficients being 

less than a constant. Due to the nature of this constraint, it tends to create some regression coefficients exactly equal to 

0 and remove the corresponding variables from the model. Reducing the number of features simplifies the model, 

minimizes the risk of overfitting, and improves the ability to predict accurately on new data. However, there is still a 

risk of potentially removing important information (Figure 2). 

 

Figure 2. Comparison of bias and variance in Lasso regression  
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Ridge regression is quite similar to the Lasso method in its concept of adjusting the model's parameters towards a 

certain threshold. However, Ridge regression differs in that it minimizes the loss function by adjusting the estimated 

coefficients to simultaneously fit the training data well, based on the principle of retaining all input variables [28]. 

Accordingly, the Ridge regression technique adds a regularization component to the loss function (called L2 

Regularization). This component is the sum of the squares of the model's coefficients, multiplied by a constant alpha 

(denoted λ), where λ is called the regularization coefficient. The goal of regularization is to minimize the values of the 

coefficients, thereby reducing overfitting, addressing multicollinearity, and increasing the model's stability. The 

performance of Ridge regression training depends on the optimal value of λ; therefore, during the training process, cross-

validation is often used to help find the optimal λ for the model. However, this can lead to retaining variables that are 

not truly necessary in the model (Figure 3). 

 

Figure 3. Comparison of bias and variance in Ridge Regression 

Elastic Net regression, developed by Zou & Hastie (2005) [28], is considered a comprehensive method that leverages 

the advantages and overcomes the disadvantages of both Lasso and Ridge. The main idea of the Elastic Net method is 

to eliminate variables with estimated coefficients of 0 (after adjustment) and attempt to retain variables even if they are 

weakly correlated with the target variable [5, 21, 30]. Accordingly, the Elastic Net technique combines both L1 and L2 

regularization components during the training process to adjust the set of estimated parameters (Figure 14). 

 

Figure 4. Concept of the Elastic Net technique1 

2-3- Forecasting Models in Machine Learning 

ML algorithms are increasingly used in forecasting models and have proven effective in risk forecasting models and 

early warning systems for bank financial instability [5, 31].  Barboza et al. (2017) [32] conducted experiments on a 

dataset of over 10,000 observations to forecast the bank stability of North American banks using Support Vector 

Machines (SVM) and Random Forest (RF), showing that ML methods provide better forecasting performance compared 

to traditional methods. The study by Santosh et al. (2020) [17], combining Lasso with ML algorithms such as AdaBoost, 

RF, and Logistic Regression to predict signs of financial decline in Indian banks, showed that Lasso helped eliminate 
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noise and that RF and AdaBoost algorithms yielded better predictive performance than logistic regression in predicting 

the financial decline of banks. Thabet et al. (2024) [5] built a composite model based on the fundamental algorithms 

SVM, K-nearest neighbors (KNN), RF, and AdaBoost, providing empirical evidence that combining models achieves 

better predictive performance than training each model individually. Fernández (2020) [33] applied Tree Regression, 

RF, and parameter tuning techniques like Boosting and Bagging to examine the impact of factors on the financial 

stability of US banks, and the results showed that the RF method provided the best predictive performance for the 

financial stability index. Alessi & Detken (2018) [34], as well as Tanaka et al. (2016) [35], argued that applying the RF 

method can improve early warning predictions compared to logit models and signal-based approaches. Holopainen & 

Sarlin (2017) [36] emphasized this argument and extended the development of an ensemble learning model for four 

methods: Artificial Neural Networks (ANN), SVM, KNN, and Decision Tree. Another study by Francisco et al. (2019) 

[20] on forecasting the volatility of the financial stability index of European banks highlighted that the Extreme Gradient 

Boosting (XGBoost) method performed well in classification models aimed at identifying which variables should be 

monitored to predict a bank's financial distress, thereby predicting the likelihood of bank default. 

Overall, prior research suggests that forecasting with ML algorithms yields more promising results compared to 

traditional methods. A key implication is the superior performance of ML solutions, including faster processing, 

efficiency with large datasets, predictions based entirely on collected real-world data, and the ability to detect data-

specific issues compared to traditional statistical methods. In this study, the Z-score (target variable) is continuous, thus 

suitable ML algorithms include Linear Regression, Random Forest, K-Neighbors, Decision Tree, Gradient Boosting, 

AdaBoost, Support Vector Regression, and XGBoost. The characteristics and concepts of each algorithm are 

summarized below: 

Linear Regression is a statistical model used to determine the linear relationship between a dependent variable (target 

variable) and one or more independent variables (explanatory variables). The goal of Linear Regression is to find the 

best-fit line through the data points that minimizes prediction error. 

Decision Tree is a crucial technique in machine learning and data mining. This method creates a predictive model 

based on training data by generating a decision tree. A decision tree is a tree-like graph with nodes and edges, where 

each node represents a decision or a test on a data attribute, and each leaf represents a prediction [36]. 

Random Forest (RF) is a variant of Ensemble Learning that combines multiple Decision Trees to create a more 

robust and stable model. RF employs random sampling from the training dataset to build each individual tree. Each tree 

is constructed on a different subset of the data, with some samples potentially overlapping. After building multiple 

Decision Trees, RF combines the prediction results from all trees to make a final decision, typically by selecting the 

prediction value chosen by the majority of Decision Trees. This is a crucial statistical technique for estimating and 

constructing confidence intervals for sample-based statistics without requiring strong assumptions about the data 

distribution. This technique is particularly useful when the sample size is too small for traditional statistical methods. 

RF's use of multiple Decision Trees and random sampling helps mitigate overfitting, leading to better predictions on 

new data, especially tabular data without seasonality or dependence on past time periods. Consequently, RF is widely 

applied in financial stability forecasting models [5, 17, 32, 33]. 

K-Neighbors (KNN), also known as the K-Nearest Neighbors method, is an ML algorithm used for prediction based 

on measuring the distance between data points in a feature space. KNN operates on the assumption that data points close 

to each other in the feature space typically belong to the same class or group. The algorithm works by finding the K 

nearest data points (the "neighbors") to the data point needing prediction. It then uses the majority frequency or weights 

of these points to determine the class or predicted value of that point. KNN is commonly applied in building models to 

warn of anomalies in financial stability [5, 36]. 

AdaBoost, short for Adaptive Boosting, is a machine learning technique belonging to the boosting family, which 

improves the performance of weak learners into a stronger model. Typically, decision stumps are used as weak learners. 

AdaBoost's training process is sequential: after each iteration, the algorithm adjusts the weights of difficult-to-predict 

data samples to enhance model accuracy. The weak models are then combined to create a final model with higher 

accuracy. AdaBoost is often used in both regression and classification problems and is effective with datasets that are 

not overly complex, while being less prone to overfitting compared to more complex models [5, 17]. 

Support Vector Machine (SVM) is a widely used ML algorithm in regression problems. Designed to identify the 

regression relationship between data points, SVM's key feature is data distance optimization, enabling effective 

generalization on new data. SVM handles both linear and non-linear data using kernel functions to map data into higher-

dimensional spaces for better hyperplane separation. It's applied in numerous studies for both regression and 

classification, notably in bank credit risk warning applications [5, 32, 36]. 

Proposed by Friedman (2000) [16], Gradient Boosting is an enhanced ML algorithm based on the concept of 

increasing the gradient of decision trees, creating objectively competitive and robust training processes. It uses multiple 

simple models (typically small decision trees) to form a more complex and accurate predictive model. Gradient Boosting 
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gradually builds a sequence of models, each added to reduce the residual error of the previous one by optimizing along 

the error function's gradient, minimizing overall prediction error. Consequently, Gradient Boosting achieves high 

accuracy in classification and regression, suitable for complex and non-linear data. 

Extreme Gradient Boosting (XGBoost), an independent machine learning algorithm developed by Chen & Guestrin 

(2016) [37], extends the Gradient Boosting algorithm. Its principle involves training improved new models by 

combining previous weaker models, primarily decision trees, to create a stronger ensemble. This is achieved by 

minimizing the error function through multiple training iterations, each new tree correcting errors of its predecessors. 

XGBoost addresses regression, classification, ranking, and user-defined problems. Its strengths include handling non-

linear data, high performance, missing value handling, and sophisticated regularization methods (L1 and L2) to minimize 

overfitting. Consequently, XGBoost is widely used in early warning models for bank financial instability, demonstrating 

superior performance compared to other ML algorithms [20, 38, 39]. 

3- Data and Research Methods 

3-1- Data 

The research dataset comprises secondary data from 61 banks across six ASIAN countries: Indonesia, Malaysia, 

Philippines, Singapore, Thailand, and Vietnam, from 2010 to 2023. Bank characteristic data is sourced from financial 

reports; macroeconomic factors (GDP growth rate, inflation rate) and technological innovation indicators (Commercial 

bank branches/100,000 people, ATMs/100,000 people, Mobile subscribers/100 people, Internet banking accounts 

(%/population)) are from Worldbank and IMF. Technological innovation data from Worldbank and IMF is available 

until 2022; Linear Regression forecasts 2023 data. A Covid-19 dummy variable is included: 0 for pre-Covid years (2010-

2019), 1 for Covid-affected years (2020-2023). The data is in balance sheet format, by fiscal year. 

3-2- Research Methodology 

The general research process is designed as follows (see Figure 5): 

 

Figure 5. Proposed research process2 
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3-2-1- Research Model 

Building upon previous research [13, 27, 40], the linear regression model has the following general form: 

STABILITY_BANKit = β0 + β1{BANKit} + β2{MACROt} + eit.                   (2) 

where; STABILITY_BANKit: the Z-scoreit index evaluates the stability of bank i in year t; BANKit: A group of variables 

characterizing bank i in year t; MACRO: Macroeconomic variables: GDP growth rate, inflation rate, Covid-19 dummy 

variable, and Technological Innovation Index (TII) of each country over the observed years. 

The meaning and calculation method of the factors in the research model (2) are summarized as follows: 

Table 1. Calculation method of variables in the research model 

Dependent Variable   Z-score = (ROAA + ETA)/Standard Deviation (ROAA) 

Independent Variable 

Meaning Symbol Formula Sign 

Past Stability Level ZSCORE _1 = Lag (Z-score) + 

Competitive Capacity (formula 

from Berger (2009) [27]) 
LERNER 

= (Pit - MCit)/Pit 

Where: Pit is output price, MCit is marginal cost. 
+ 

Total Asset Size SIZE = Ln(Total Assets) + 

Equity Capital Size ETA = Equity/Total Assets + 

Loan to Asset Ratio LTA = Loan Portfolio/Total Assets - 

Market Share MS = Total Assets/Total Assets of the Credit System + 

Income Diversification DDHI 

=1 - [(NET/(NII))2 + (NON/(NII))2] 

where: NON represents non-interest income; NET represents net interest 

income, and NII is the total income, defined as NII=NON+NET 

- 

Return on Equity and Average 

Assets 
ROEA Data collected from annual financial reports + 

Total Asset Growth Rate GTA 
= (Total Assets in current period - Total Assets in previous period) / Total 

Assets in previous period 
- 

Financial Leverage 
Debt to Equity Ratio (DER) = Total Debt/Equity - 

Debt to Asset Ratio (DAR) = Total Debt/Total Assets - 

Market Concentration 

Herfindahl-Hirschman Index 

of Market Share (HHI_MS) 

=∑ (𝑀𝑆𝑖)2𝑛
𝑖=1  

• n: Number of banks in each country 

• MS: Market share of the bank in the national system 

+ 

Herfindahl-Hirschman Index 

of Bank Size (HHI_SIZE) 

=∑ (𝑆𝐼𝑍𝐸𝑖)2𝑛
𝑖=1  

• n: Number of banks in each country 

• SIZE: Total Asset Size of the bank in the national system 

+ 

GDP Growth Rate Gross Domestic Product 
Data collected from World Bank and IMF sources 

+ 

Inflation Rate INF - 

Technological Innovation Index 

(formula from (Lumsden (2018) 

[30]; Gebregziabher & Makina 

(2019) [41], with the addition of 
two factors I2 and I4) 

Technological Innovation 
Index 

TII =
1

2
[

√(𝐼1)2+(𝐼2)2+(𝐼3)2+(𝐼4)2

√4
+ (1 −

√(1−𝐼1)2+(1−𝐼2)2+(1−𝐼3)2+(1−𝐼4)2

√4
)] 

Where: 

• I1: Number of commercial bank branches/100,000 people; 

• I2: Number of ATMs/100,000 people; 

• I3: Number of mobile subscribers/100 people; 

• I4: Number of Internet user accounts (%/population). 

+ 

Covid pandemic COVID-19 
= 0: year without the Covid pandemic 

= 1: year with the Covid pandemic 
+/- 

3-2-2- Machine Learning Model Training Process Combined with Variable Selection Techniques 

The study utilizes cross-validation to combine Lasso, Ridge, and Elastic Net with eight ML algorithms. Based 

on the MSE, R2-score, and MAE values, the best-performing parameter tuning technique and ML algorithm will 

be selected to predict the bank financial stability index. The general training process framework is simulated as 

follows (see Figure 6): 
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Figure 6. Machine Learning model training process 

The study will conduct experimental training with Lasso, Ridge, and Elastic Net methods to determine the most 

suitable inputs for the research dataset. In the experimental process, the solution to the Lasso, Ridge, or Elastic Net 

estimation method is carried out according to the test loop mechanism on a set of coefficient values Lagrange - 

(noted lambda - 𝜆) by cross-validation technique. The study uses a popular technique in statistics, the cross-

validation technique combined with Lasso, Ridge, Elastic Net to find the lambda coefficient () at which Lasso, 

Ridge, Elastic Net achieve the best performance. Cross-validation was employed to determine the optimal 

regularization parameter (λ) for each method, ensuring that the models achieve a balance between bias and variance. 

This step is critical for enhancing the generalizability of the results, particularly in the context of ASIAN's dynamic 

banking environment. The determination of the lambda (λ) coefficient is crucial in the training process of Lasso, 

Ridge, and Elastic Net models, as it regulates the trade-off between prediction accuracy and model complexity. λ 

directly influences the strength of regularization, with larger values in Lasso leading to the exclusion of variables 

by shrinking their coefficients to zero, while Ridge regularization maintains all variables but penalizes large 

coefficients. Elastic Net combines both approaches, and λ controls the relative contributions of Lasso and Ridge 

regularization. Achieving optimal λ, often via cross-validation, is essential for building a model that balances 

simplicity with high predictive performance [29].  

This study will evaluate these methods empirically to identify the most relevant variables for the research dataset, 

with λ determined through iterative adjustments using cross-validation. Model performance will be assessed using 

metrics such as Mean Squared Error (MSE) and Adjusted R-squared (R²), followed by a detailed analysis of the 

results. 

4- Results and Discussion 

4-1- Model Parameter Tuning Using Lasso, Ridge, and Elastic Net 

First, the data is trained sequentially with Lasso, Ridge, and Elastic Net techniques to find the best alpha coefficient 

(regularization coefficient λ). The results are shown in Table 2. 

The empirical results derived from Lasso, Ridge, and Elastic Net regression techniques provide critical insights into 

the determinants of bank financial stability, measured by the Z-score. The findings highlight the differential influence 

of various bank-specific and macroeconomic factors, while also underscoring the importance of methodological 

selection in ensuring robust and reliable predictions. The results consistently indicate that past financial stability (Z-

score_1), capital adequacy (ETA), operational efficiency (ROE), financial leverage (DAR, DER), macroeconomic 

conditions (GDP, INF), technological innovation (TII), and the COVID-19 pandemic exert a significant impact on bank 

stability. Across all three techniques, these factors retain substantial coefficients, confirming their role in shaping 

financial resilience. Lasso and Elastic Net produce comparable results, effectively identifying variables with minimal 

influence on bank stability. Factors such as LERNER, SIZE, LTA, MS, GTA, DDHI, HHI_MS, and HHI_SIZE exhibit 

near-zero coefficients, suggesting their limited explanatory power and potential redundancy in predictive modeling. This 

underscores the necessity of dimension reduction techniques in enhancing model efficiency. However, Ridge regression 

differs in its approach by retaining all variables, leading to slightly improved performance. The R-squared values 
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(76.23% for Lasso, 76.85% for Ridge, and 75.40% for Elastic Net) indicate that Ridge regression achieves the highest 

explanatory power, albeit marginally. Similarly, the Mean Squared Error (MSE) is lowest for Ridge (0.00288), 

confirming its superior predictive accuracy. 

Table 2. Estimated coefficient results using Lasso, Ridge, and Elastic Net 

Features Lasso_Coefficients Ridge_Coefficients Elastic Net Coefficients 

ZSCORE _1 0.2012 0.2077 0.2067 

LERNER 0.0000 -0.0168 0.0000 

SIZE 0.0000 0.0082 0.0000 

ETA 0.2121 0.2438 0.2392 

LTA 0.0000 0.0087 0.0000 

ROEA 0.1201 0.1595 0.1054 

MS -0.0001 -0.0165 -0.0001 

GTA 0.0000 -0.0154 0.0000 

DDHI 0.0000 -0.0049 0.0000 

DAR 0.2058 0.2294 0.1220 

DER -0.3954 -0.3690 -0.3517 

GDP -0.1354 -0.1565 -0.1279 

INF -0.1185 -0.1358 -0.1156 

HHI_MS 0.0000 0.0139 0.0000 

HHI_SIZE 0.0038 0.0082 0.0032 

TII -0.0457 -0.0559 -0.0446 

COVID-19 -0.0885 -0.0896 -0.0867 

Best Alpha 0.00037 1.0000 0.00079 

Mean Squared Error 0.00297 0.00288 0.00307 

R-squared 76,23% 76,85% 75,40% 

The study conducted experiments to observe the change in the model's estimated parameter vector as the coefficient 

λ varies, obtaining the results (Figures 7 to 9). The trend of the estimated coefficients of the factors in the model using 

Lasso and Elastic Net methods does not show significant differences. 

 

Figure 7. Training results using Lasso 
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Figure 8. Training results using Ridge 

 

Figure 9. Training results using Elastic Net 

 

Figure 10. Variation of MSE with changing alpha coefficient 
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Figure 10 compellingly illustrates the superior stability and predictive performance of Ridge regression compared to 

Lasso and Elastic Net, as evaluated through MSE. The Ridge regression curve (green) maintains consistently low MSE 

values across all regularization strengths (α), underscoring its resilience and robustness against parameter variations. In 

contrast, both Lasso (blue) and Elastic Net (red) exhibit a pronounced escalation in MSE beyond a critical threshold (α 

≈ 10⁻²), signaling a substantial decline in predictive accuracy due to excessive coefficient shrinkage. This empirical 

evidence positions Ridge regression as the optimal choice for scenarios prioritizing model stability and predictive 

precision under varying levels of regularization. 

Beyond its statistical implications, these findings offer profound insights into the financial stability of emerging 

economies, particularly within the ASEAN region. The distinct divergence in MSE trends across the three regression 

methods suggests a strong parallel between model robustness and banking system resilience. Just as Ridge regression 

sustains reliable performance despite increasing regularization pressure, financial stability in emerging markets hinges 

on structural resilience to external shocks. Conversely, the sharp deterioration observed in Lasso and Elastic Net, where 

MSE surges beyond a certain threshold, mirrors the fragility of banking institutions in these economies when subjected 

to excessive regulatory or macroeconomic stress. This analogy underscores the critical need for a well-calibrated 

regulatory framework and adaptive financial policies to fortify long-term banking stability in ASEAN and other 

emerging markets. 

4-2- Trends and Impact of Factors on the Bank Financial Stability Index 

The results of training the model sequentially with Lasso, Ridge, and Elastic Net techniques are as follows (Figures 

11 to 13): 

 

Figure 11. Trends and influence of factors on Z-score (Lasso) 

 

Figure 12. Trends and influence of factors on Z-score (Ridge) 
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Figure 13. Trends and influence of factors on Z-score (Elastic Net) 

The empirical findings derived from the three variable selection techniques—Lasso, Ridge, and Elastic Net—

consistently highlight the critical determinants of bank financial stability. Specifically, past financial stability 

(ZSCORE_1), equity scale (ETA), operational efficiency (ROE), financial leverage (DAR, DER), macroeconomic 

conditions (GDP, INF), technological innovation (TII), and the COVID-19 pandemic exhibit significant influences on 

the Z-score. Notably, Lasso and Elastic Net yield comparable results, suggesting that variables such as LERNER, SIZE, 

LTA, MS, GTA, DDHI, HHI_MS, and HHI_SIZE contribute negligibly or are statistically insignificant in determining 

financial stability. Consequently, these variables may be excluded to enhance model interpretability and efficiency. 

However, the analysis also reveals that Ridge regression outperforms the other two methods in terms of predictive 

accuracy and model robustness. This raises an important consideration: while removing non-significant variables can 

simplify the model, retaining all variables—despite their minimal impact—may enhance predictive stability, particularly 

when using Ridge regression. To address this, cross-validation will be employed to rigorously re-evaluate the parameter 

tuning effectiveness of all three techniques (Lasso, Ridge, and Elastic Net) across multiple machine learning algorithms. 

Ultimately, the study aims to identify the optimal variable selection approach tailored to the research dataset, ensuring 

both predictive accuracy and practical applicability in assessing banking stability. 

Additionally, the impact trends of both micro and macro factors on the Z-score need attention as empirical 

evidence for assessing the positive or destabilizing effects of these factors on bank financial stability. According 

to the detailed results in Table 2, Figures 11 to 13, the impact trends of these factors on the Z-score value are as 

follows: 

• Past stability (ZSCORE_1) exhibits a strong positive correlation with current financial stability across all three 

models, reaffirming the path dependency of banking resilience. This finding aligns with previous studies, which 

highlight that a stable financial position serves as a foundation for future stability and buffers against external 

shocks [12, 13, 42]. It underscores the necessity for banks to build and maintain robust financial health over time 

to withstand market volatility. 

• Competitive capacity (LERNER) representing market power, shows a negative but minor impact on the Z-

score. This suggests that heightened competition may erode profit margins, intensifying risk-taking 

behavior, as indicated in prior research [11, 27]. While competitive strength can enhance efficiency and 

innovation, excessive competition may drive banks toward riskier strategies, compromising long-term 

stability [27, 42]. 

• Total asset size (SIZE) exhibits a minor positive effect on financial stability, supporting the "too-big-to-fail" 

hypothesis, where larger banks benefit from economies of scale and greater access to capital buffers [11, 13, 14, 

42]. However, the findings echo concerns from Berger et al. (2009) that larger banks may pursue high-risk 

investments, potentially heightening instability [27]. 

• Equity capital (ETA) and return on equity (ROE) emerge as pivotal factors for financial stability, with 

consistently strong positive coefficients across all models. This aligns with the literature emphasizing the 

role of capital as a safeguard against financial distress [12, 19, 29, 40, 42]. Nevertheless, high capital reserves 
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might incentivize excessive investment, creating financial strain if rapid recovery proves challenging [40]. 

Likewise, high ROE reflects sound financial performance, reducing systemic pressure and enhancing 

resilience [40]. 

• Loan portfolio size (LTA) shows a minor positive correlation with the Z-score, indicating a limited impact. 

According to Beck et al. (2013) [11], excessive lending with ineffective recovery can lead to financial losses, 

pressuring the bank. This contrasts with Tu et al. (2021) [13] and Tin et al. (2023) [12] in their studies on Vietnam. 

However, Tu et al. (2021) only examined the relationship between lending effectiveness and financial stability 

without considering the COVID-19 context, which is considered to increase bad debts, pressuring the overall 

economy and the banking sector [13, 24]. 

• Market share (MS) and total asset growth rate (GTA) show negative estimated coefficients and have a minor 

impact on the Z-score. While bank size can be a prerequisite for maintaining financial stability against economic 

shocks, excessive asset growth or portfolio expansion can increase risks and financial pressure [13, 27, 40]. 

Therefore, asset growth needs controlled and strict management. 

• Financial leverage presents a nuanced impact on stability: the debt-to-equity ratio (DER) shows a positive 

correlation with risk, indicating that higher leverage intensifies vulnerability. In contrast, the debt-to-assets ratio 

(DAR) exhibits a stabilizing effect, suggesting that asset growth can mitigate leverage risks, provided asset 

quality is maintained. This dual effect highlights the critical need for balanced leverage strategies to optimize 

risk-return trade-offs. 

• Market concentration (HHI_MS and HHI_SIZE) is positively correlated with the Z-score. This finding is 

consistent with the research of Noman et al. (2017) [7] and Verma & Chakarwarty (2024) [43] on ASEAN 

countries, suggesting that concentrated markets may provide stability benefits by reducing competitive pressure 

and increasing pricing power. 

• Income diversification (DDHI) results show that, in the context of recent research in ASIAN countries, 

income diversification activities are negatively correlated with the level of financial stability in banks. This 

is consistent with the research of Tin et al. (2023), Tu et al. (2021), and Wu (2020) [12-14], which states that 

for emerging market economies, especially those affected by Covid-19, diversification activities, if not well 

controlled or not aligned with actual financial capacity, can cause financial pressure, reduce operational 

efficiency, increase competitive pressure on banks, and decrease operating performance, leading to bank 

instability. 

• The macroeconomic landscape—encompassing GDP growth, inflation, technological innovation, and the 

Covid-19 pandemic—exerts a profound influence on banking stability, with a strong negative correlation to 

the Z-score. This aligns with prior research and underscores a critical economic reality: while GDP growth 

and inflation drive economic expansion, they also introduce substantial risks to financial stability [11, 27].  

Rooted in Minsky’s Financial Instability Hypothesis (1992), the findings reveal how rapid economic 

expansion fuels excessive risk-taking, credit overextension, and financial fragility, culminating in instability 

[44]. Empirical evidence reinforces this: Beck et al. (2013) [11] associate high GDP growth in emerging 

markets with credit risk and asset bubbles, while Noman et al. (2017) [7] and Wu (2020) [14] highlight 

inflation’s erosive impact on bank assets and its role in amplifying uncertainty and default rates. These trends 

echo Stiglitz & Weiss’s (1981) [45] adverse selection and moral hazard theories, demonstrating how 

economic volatility distorts risk assessment and credit allocation. The vulnerabilities are even more acute in 

emerging markets like ASEAN, where underdeveloped financial systems and weaker regulatory frameworks 

magnify susceptibility to external shocks [8, 20]. The Covid-19 crisis further intensified financial pressures, 

particularly through costly yet slow-return technological investments [12, 24]. These findings underscore an 

urgent need for counter-cyclical policies, macroprudential regulations, and inflation-targeting frameworks to 

fortify banking resilience in an unpredictable economic environment. 

4-3- Training with Machine Learning Algorithms 

The study uses Cross-Validation techniques combined with parameter tuning methods (Lasso, Ridge, Elastic Net) 

with 8 Machine Learning algorithms to train the dataset. Concurrently, the study also trains the dataset without using 

Lasso, Ridge, or Elastic Net (Original) to compare the training effectiveness of ML algorithms with and without 

parameter adjustments. The detailed results are as follows (Table 3): 
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Table 3. Training results combining variable selection techniques and Machine Learning 

1Machine Learning Algorithms 
Model 

Performance 
Lasso Ridge Elastic Net Original 

Linear Regression 

Training set 
MSE 0.0027 0.0027 0.0028 0.0044 

R-squared 0.7910 0.7925 0.7899 0.6620 

Testing set 
MSE 0.0029 0.0029 0.0029 0.0045 

R-squared 0.7075 0.7054 0.7071 0.5438 

Random Forest 

Training set 
MSE 0.0004 0.0005 0.0004 0.0030 

R-squared 0.9693 0.9652 0.9705 0.9478 

Testing set 
MSE 0.0020 0.0023 0.0023 0.0050 

R-squared 0.8005 0.7714 0.7705 0.4936 

KNN 

Training set 
MSE 0.0019 0.0025 0.0018 0.0030 

R-squared 0.8585 0.8089 0.8654 0.7703 

Testing set 
MSE 0.0028 0.0040 0.0026 0.0057 

R-squared 0.7138 0.5980 0.7346 0.4283 

Decision Tree 

Training set 
MSE 0.0000 0.0000 0.0000 0.0000 

R-squared 1.0000 1.0000 1.0000 1.0000 

Testing Set 
MSE 0.0028 0.0035 0.0063 0.0087 

R-squared 0.7167 0.6481 0.3639 0.1249 

Gradient Boosting 

Training set 
MSE 0.0006 0.0005 0.0006 0.0023 

R-squared 0.9528 0.9607 0.9514 0.8252 

Testing set 
MSE 0.0015 0.0012 0.0020 0.0048 

R-squared 0.8523 0.8777 0.8019 0.5225 

AdaBoost 

Training set 
MSE 0.0033 0.0029 0.0029 0.0042 

R-squared 0.7448 0.7747 0.7821 0.6781 

Testing set 
MSE 0.0041 0.0032 0.0035 0.0049 

R-squared 0.5856 0.6801 0.6455 0.5088 

Support Vector Machine 

Training set 
MSE 0.0034 0.0035 0.0035 0.0043 

R-squared 0.7389 0.7362 0.7301 0.6744 

Testing set 
MSE 0.0039 0.0037 0.0039 0.0045 

R-squared 0.6126 0.6251 0.6130 0.5498 

XGBoost 

Training set 
MSE 0.0000 0.0000 0.0000 0.0000 

R-squared 0.9998 0.9999 0.9999 0.9972 

Testing set 
MSE 0.0012 0.0011 0.0019 0.0053 

R-squared 0.8840 0.8889 0.8085 0.4718 

The results obtained (detailed in Table 3) after performing Cross-validation combined with Lasso, Ridge, Elastic 

Net, and 8 ML algorithms show some important findings: 

Firstly, the scatter plot (Figure 14) provides compelling evidence of the superior predictive capability of the 

XGBoost regression model, as demonstrated by the strong alignment of the predicted values with the actual values 

along the ideal diagonal reference line. The dense clustering of data points near this line indicates a high degree of 

predictive accuracy, with minimal deviations, underscoring the model’s effectiveness in capturing complex 

relationships within the dataset. The presence of only a few outliers further highlights the robustness and reliability 

of the model in real-world applications. Notably, the XGBoost algorithm, when optimized through Ridge parameter 

tuning, achieves an outstanding predictive performance of nearly 89%, reaffirming its status as one of the most 

powerful machine learning techniques for structured data regression. This result is consistent with previous studies 

[20, 38, 39], which have widely recognized XGBoost as a leading method in predictive analytics, particularly in 

financial modeling and risk assessment. The strong performance exhibited here not only validates the selection of 

XGBoost for this study but also emphasizes its applicability in high-stakes decision-making environments where 

precision and stability are paramount. 
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Figure 14. Forecasting effectiveness using XGBoost combined with Ridge 

Secondly, the experimental results emphasize that using variable selection parameter tuning techniques like Lasso, 

Ridge, or Elastic Net significantly improves model performance compared to training solely with ML algorithms. The 

aggregated statistical results in Figures 15 and 16 show that the predictive performance of each ML model (evaluated 

based on R2-score and MSE) combined with parameter tuning techniques is markedly improved compared to 

conventional training (denoted as Original). Furthermore, empirical evidence suggests that the predictive performance 

of each ML algorithm varies when combined with Lasso, Ridge, or Elastic Net. For instance, Random Forest combined 

with Ridge yields the highest MSE, while Gradient Boosting shows the opposite. 

 

Figure 15. Model forecasting performance evaluated by R-squared 
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Figure 16. Model forecasting performance evaluated by MSE 

Thirdly, without applying Lasso, Ridge, and Elastic Net, the ML model performance is inconsistent across both 

training and testing sets, with significant discrepancies observed. 

The empirical findings further underscore the indispensable role of regularization techniques such as Lasso, Ridge, 

and Elastic Net in enhancing model stability and predictive accuracy. In the absence of these regularization methods, 

the performance of machine learning models exhibits substantial inconsistencies across both training and testing 

datasets, leading to significant discrepancies and suboptimal generalization capabilities (Figures 17 and 18). The lack 

of constraint on coefficient magnitudes results in overfitting to the training data, thereby reducing the model’s ability to 

effectively capture underlying patterns when applied to unseen data. This not only compromises predictive robustness 

but also amplifies sensitivity to noise and irrelevant features, ultimately degrading model reliability. These findings 

strongly reaffirm the necessity of employing regularization techniques to mitigate variance, improve generalization, and 

ensure stable performance across diverse data distributions. 

 

Figure 17. Original model forecasting performance evaluated by R-squared 
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Figure 18. Original model forecasting performance evaluated by MSE 

5- Conclusions and Recommendations 

This study successfully fulfilled its objectives by systematically identifying key trends and assessing the impact of 

various factors on bank financial stability index forecasting in ASEAN economies. The empirical findings underscore 

the effectiveness of integrating Lasso, Ridge, and Elastic Net techniques to enhance the predictive performance of 

machine learning (ML) algorithms. Notably, among these methodologies, the Ridge regression technique demonstrates 

superior performance in optimizing parameter estimation, thereby yielding the most accurate forecasts. Moreover, 

combining the Ridge method with the XGBoost algorithm results in the best-performing predictive model, achieving an 

R²-score of approximately 89%. These insights provide robust empirical evidence that can serve as a valuable reference 

for future research while offering actionable recommendations for bank executives and policymakers striving to 

strengthen financial stability. 

Based on these findings, the study presents the following key recommendations: 

Firstly, leveraging empirical insights for strategic banking stability management. The study provides comprehensive 

evidence on how microeconomic and macroeconomic factors influence bank financial stability. Specifically, variables 

such as Z-score_1, ETA, ROE, and financial leverage (DAR, defined as total debt over total assets) exhibit a positive 

correlation with the Z-score and should be reinforced to enhance stability. Conversely, financial leverage (DER, 

measured as total debt over equity) and macroeconomic indicators such as GDP growth rate, inflation (INF), trade 

integration index (TII), and exogenous shocks like the COVID-19 pandemic have a detrimental impact on banking 

stability. These risk factors necessitate stringent control and regulatory oversight. Additionally, although variables such 

as market competition (LERNER), bank size (SIZE), loan portfolio composition (LTA), market structure (MS), income 

diversification (DDHI), total asset growth (GTA), and market concentration exhibit a marginal impact on the Z-score, 

they require consistent monitoring to prevent systemic vulnerabilities. While banks can actively adjust microeconomic 

factors within their operational framework, macroeconomic determinants necessitate coordinated efforts with regulatory 

authorities. Encouraging financial innovation, efficiency enhancement, and strategic adaptability is paramount in 

fostering a resilient banking sector within developing economies. 

Secondly, optimizing predictive modeling approaches in financial stability assessment. The study highlights the 

importance of methodological rigor in selecting and refining predictive models. While the Ridge method delivers the 

highest forecasting accuracy, the inclusion of all input variables poses the risk of overfitting and information redundancy. 

Therefore, variable selection should be meticulously evaluated in alignment with regulatory frameworks, national 

policies, and the specific banking landscape of each country. Future research should consider hybrid approaches that 

integrate statistical inference with domain expertise, ensuring that model adjustments are contextually appropriate and 

enhance predictive reliability. Additionally, reliance solely on statistical probability is insufficient; expert consultation 

remains indispensable in refining model robustness and ensuring practical applicability in real-world banking 

environments. 
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Thirdly, integrating advanced machine learning techniques with expert-driven oversight. The findings reaffirm the 

growing relevance of sophisticated ML methodologies such as Lasso, Ridge, and Elastic Net in developing predictive 

and early warning models for financial stability. However, while technological advancements offer significant 

improvements in predictive accuracy, overdependence on algorithmic solutions without human oversight presents risks. 

Effective implementation necessitates a balanced approach that incorporates expert judgment from both banking 

professionals and data scientists. Moreover, the expansion of predictive modeling frameworks through Deep Learning 

techniques and Big Data analytics is recommended to enhance model adaptability, reliability, and accuracy in dynamic 

financial environments. 

Finally, reinforcing macroeconomic policy frameworks to sustain banking stability. The long-term stability of the 

banking sector is intrinsically linked to the broader economic environment and the efficacy of macroeconomic 

governance. A stable and resilient banking system can only flourish within a well-structured economic and regulatory 

framework. Thus, governments and regulatory bodies must continuously refine legal frameworks, enforce prudent risk 

management policies, and align national economic development strategies with financial sector stability objectives. 

Strengthening institutional governance, fostering financial transparency, and enhancing risk mitigation mechanisms are 

imperative in safeguarding banking stability within the evolving economic landscape of ASEAN. 

In summary, this study underscores the vital interplay between empirical data-driven insights, advanced predictive 

methodologies, and strategic regulatory policies in ensuring financial stability. By integrating innovative ML techniques 

with macroeconomic prudence and institutional oversight, policymakers and banking practitioners can collectively drive 

sustainable financial resilience in developing economies. 

5-1- Limitations and Future Research Directions 

This study acknowledges several limitations that present opportunities for future research. Banks have not been 

grouped by country, limiting insights into country-specific stability dynamics. Deep learning algorithms remain 

unexplored, and threshold values for key determinants have not been established, which could enhance risk assessment 

frameworks. Additionally, the study does not explicitly examine the impact of macroeconomic factors such as oil prices 

and monetary policy. Expert consultations in machine learning were not incorporated, which could refine model 

selection and optimization. The analysis also lacks a country-level breakdown within ASEAN and comparative studies 

with similar emerging regions like Latin America or Eastern Europe, which could offer broader insights. 

Future research will address these gaps by integrating advanced machine learning techniques, expert input, country-

specific evaluations, and cross-regional comparisons to refine predictive models and enhance the understanding of 

banking stability determinants. 
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