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Abstract 

Integrating smart learning environments into modern education systems opens up significant 

opportunities to use data analysis techniques to predict students’ English language performance. 

This study aims to evaluate the performance of various machine learning models for predicting 
English as a foreign language student performance, emphasizing data preprocessing and feature 

selection. The dataset was gathered from 181 students in eight middle schools in Thailand. The 

student’s data was exported from the Smart Learning Project, which includes data on 14 PISA-like 
English quizzes covering 27 competencies. The study compares the predictive performance of 

machine learning models, including Random Forest, Support Vector Regression, AdaBoost, 

Bayesian Ridge, K-Nearest Neighbors, ElasticNet, XGBoost, Gradient Boosting, and Stacking 
Ensemble, using MSE, RMSE, MAE, and R² metrics. The analysis results indicated that ensemble 

models, particularly XGBoost and Stacking Ensemble, performed the best in predicting students’ 

English language performance. These models can efficiently capture complex relationships in 
educational data. Therefore, data preprocessing and feature selection play a significant role in 

improving model performance. This study highlights the potential of advanced machine learning 

techniques in educational data analysis. The results can contribute to developing personalized 

learning strategies and early intervention. It supports an efficient and adaptive education system, 

advancing smart learning and data-driven instruction. 

Keywords:  

Machine Learning;  

Predictive Modeling;  

EFL Student Performance;  

Ensemble Methods;  

Educational Analytics. 

 

 

Article History: 

Received: 28 November 2024 

Revised: 24 February 2025 

Accepted: 14 March 2025 

Published: 01 April 2025 
 

 

 

1- Introduction 

There is growing global recognition that a one-size-fits-all approach to education cannot meet the needs of all students 

or society [1]. In response, countries such as the United States [2], the United Kingdom [3], and China [4] have 

increasingly embraced personalized learning to address students’ diverse needs. Although definitions may differ, 

personalized learning is generally seen as an educational approach that adapts learning experiences to match each 

student’s strengths, needs, skills, background, and interests [5]. In Thailand, however, personalized learning, especially 

in the context of learning English as a foreign language (EFL) in smart learning environments, is still limited. 

In practice, much of EFL learning in Thailand focuses on both human-human and human-technology interactions. 

There is a belief that English language learning occurs through interactions supported by technology-enhanced language 

learning [6]. In practice, the language learning performance of EFL students is often assessed using summative and 
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formative methods. English teachers play a key role in utilizing these results to evaluate EFL students’ current learning 

progress and predict their future language learning performance. Teachers can use these results as data-driven insights 

to design personalized English language learning plans for EFL students. The teachers can either manually design 

personalized learning experiences or use technology to assist them. It is practical for teachers to handle this manually in 

small classes. However, for large classes or when dealing with extensive data, technology becomes essential to help 

teachers obtain more accurate insights into student performance. This raises a critical question: What is the most 

appropriate machine learning model for predicting student performance in learning English as a foreign language in 

smart learning environments? A comparative analysis is necessary to determine the answer. 

The application of machine learning to predict language performance has attracted greater research attention. 

According to a systematic literature review by Wu et al. [7], which analyzed 83 research articles between 2020 and 2023, 

ensemble learning produced the best prediction results, achieving an average accuracy rate of 87.67%, followed by the 

Support Vector Machine (SVM), with an accuracy rate of 84.30%. Important influencing factors used in prediction 

included demographic, academic, and behavioral factors consistent with Sustainable Development Goal 4 on educational 

quality. Additionally, Zhao et al. [8] developed a quantitative prediction model by comparing the performance of various 

machine learning algorithms. The findings suggested that machine learning is an effective tool for identifying educational 

behaviors and nonlinear relationships between student performance and its influencing factors. Their study highlights 

the importance of considering multiple influencing factors in model development. 

Moreover, Sateesh et al. [9] proposed an ensemble classifier with rule mining utilizing weighted rough set theory and 

optimizing the weight function with a meta-heuristic algorithm. Test results show that the method outperformed 

conventional methods with an accuracy of 92.77% and a sensitivity of 94.87%. Furthermore, Çınar & Yılmaz Gündüz 

[10] tested the performance of several machine learning algorithms, including deep learning and multilayer perceptron, 

on a dataset from secondary school students in Portugal using 10-fold cross-validation to improve prediction accuracy. 

Similarly, Şevgı̇n [11] compared the performance of Bagging and Boosting algorithms using TreeNet and Random 

Forest methods on the dataset from the ABIDE application. The analysis showed that TreeNet outperformed in 

classification accuracy, sensitivity, F1 score, and AUC value, while Random Forest succeeded in specificity and 

accuracy. 

Handling imbalanced classification in predicting language performance has gained interest in higher education 

research. Abdul Bujang et al. [12] reviewed the research on imbalanced classification for student grade prediction. The 

study demonstrated the widespread use of SMOTE (Synthetic Minority Over-Sampling Technique) in determining 

imbalanced problems and emphasized the importance of hybrid feature selection to enhance prediction performance. 

Correspondingly, Ye et al. [13] proposed an SA-FEM model using adaptive feature fusion and feature selection to predict 

online learning performance, which performed better than traditional methods. Li & Yang [14] also developed the 

XMAMBLSTM algorithm for personalized education resource recommendation by applying deep learning to improve 

computational efficiency and reduce errors in entity recognition and relationship extraction. 

In a related context, Mastrothanasis et al. [15] explored the role of Computational Intelligence (CI) techniques in 

digital theater performances, highlighting the use of the Flying Fox Optimizer algorithm to form homogeneous student 

groups and optimize theater dynamics in virtual cultural environments. Moreover, López-García et al. [16] presented a 

deep learning model based on convolution to address imbalanced classes. This demonstrates its effectiveness in 

predicting student excellence using features from a large dataset of undergraduate students at the University of Jordan. 

Finally, Alshamaila et al. [17] presented the application of computational intelligence (CI) techniques in digital theater, 

using the flying fox optimizer (FFO) algorithm to form student groups and optimize theater dynamics in virtual 

environments. Malik & Jothimani [18] also tested a deep learning model based on convolution to address imbalanced 

classes on undergraduate student data at the University of Jordan. 

A recent study by Alshamaila et al. [17] presented a model for predicting academic failure that uses the XGBoost 

algorithm with TOPSIS-based feature extraction and ADASYN oversampling. Malik & Jothimani [18] evaluated the 

performance of FeatureX in identifying influential predictors and enhancing predictive accuracy to support at-risk 

students and reduce dropout rates. Integrating advanced machine learning models into educational analytics has 

revolutionized the field, fostering personalized, efficient, and compelling learning experiences. Sghir et al. [19] provided 

a comprehensive review of the machine and deep learning models used over the past decade to predict academic 

outcomes, emphasizing the critical role of predictive modeling in learning analytics. Similarly, Ersozlu et al. [20] 

highlight various machine learning methods applied to educational data, demonstrating their effectiveness in 

personalized learning and adaptive assessment. Predictive models are key in forecasting student performance and 

identifying at-risk students [21]. In line with this, Sajja et al. [22] leverage OpenAI’s GPT-4 model for learning analytics 

tools to assess engagement and track learning progression, underscoring AI's potential in data-driven pedagogical 

decisions. Considering motivational attributes, Orji & Vassileva [23] developed models incorporating intrinsic and 

extrinsic motivation to predict study strategies and performance. 

The evolution of machine learning in educational research is further captured by bibliometric analyses [24], offering 

insights into emerging trends and future directions. Brdnik et al. [25] enhance self-regulated learning by aligning learner 

expectations with performance through predictive analytics. Additionally, deep learning techniques address global 
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challenges in predicting student outcomes in online education [26]. AI models also offer significant potential for 

improving educational outcomes in developing regions, particularly Latin America [27]. These studies reflect the 

potential of machine learning to advance inclusive education by predicting student performance, identifying at-risk 

students, and providing timely intervention. The literature review shows significant progress in applying machine 

learning in educational contexts, particularly in predicting language performance and identifying at-risk students. The 

findings highlighted the superior performance of ensemble learning, with its predictive success dependent on 

incorporating influential factors. While machine learning has advanced language performance prediction, several gaps 

remain. Current models lack real-time adaptive interventions and often do not utilize multimodal data sources. Issues of 

imbalanced datasets persist, requiring more sophisticated handling techniques beyond traditional methods to enhance 

model transparency and scalability across diverse educational contexts. 

This study will evaluate machine learning models’ performance in smart learning environments to demonstrate their 

potential for improving English language education, particularly their ability to identify at-risk students to provide timely 

intervention. Analyzing each model’s strengths and limitations allows for selecting tools appropriate to different 

language learning contexts, leading to the development of more effective and inclusive language learning environments 

as a cornerstone of raising the overall quality of education. 

2- Personalized English Language Learning 

Personalized learning is defined by Akyuz [28] as “an educational approach that aims to customize learning for each 

student’s strengths, needs, skills, and interests.” Personalized learning involves adapting to a student’s unique blend of 

goals, interests, and competencies, with instruction continuously adjusted to accommodate these evolving factors [29]. 

Within this approach, learning is shaped by an individual’s interactions, including the transfer of knowledge and skills 

from others and personal experiences [30]. Personalized learning is often seen as a process where EFL students take 

control of their own language learning, enhancing engagement by fostering a sense of ownership and pride in their 

progress. Gunawardena et al. [1] highlighted that “personalized learning is touted to provide opportunities for learners 

to achieve their full potential while developing a love of learning.” Thus, the potential of personalization lies in its ability 

to move beyond a ‘one-size-fits-all’ educational model, which can disadvantage some students [31]. 

Personalized learning is closely connected to related concepts such as individualized instruction, adaptive learning, 

and customized learning, and it fosters the development of knowledge, perspectives, skills, and understanding of 

individuals [30]. To individualize instruction, Lee et al. [32] suggested that personalized learning could be a solution for 

addressing students’ individual needs and prior experiences, helping them reach their full potential through tailored 

instruction [33]. Regarding adaptive learning, teachers adjust and tailor students’ learning experiences to meet their 

individual needs. Consequently, personalized learning can effectively enhance students’ motivation, engagement, and 

comprehension [34]. To customize learning, allowing students to select topics, set goals, and choose materials gives 

them greater control over their learning process [35]. This approach enhances motivation and engagement by aligning 

the learning experience with their interests and preferences [36]. 

In English language learning, personalized learning considers students’ language proficiency levels, learning styles, 

interests, and needs to help them improve their English communication skills. Furthermore, personalized learning can 

boost students’ motivation to learn English, promote self-learning, foster independent and critical thinking, and adapt 

content to align with their interests, learning styles, and existing knowledge. It is designed to address individual needs 

and goals by tailoring the learning process to specific student characteristics, such as prior knowledge or motivation [37], 

[38]. Understanding individual learning styles is essential for effective language learning [36]. EFL students exhibit 

diverse preferences, strengths, and approaches to acquiring new knowledge. Adapting to and supporting these 

personalized learning styles can significantly enhance language learning. The VARK model, developed by Fleming [39], 

classifies learners into four categories: Visual, Auditory, Reading/Writing, and Kinesthetic. Visual learners benefit from 

visual aids and graphics, auditory learners thrive through listening and discussions, reading/writing learners excel with 

written materials, and kinesthetic learners engage best with hands-on activities. Identifying these learning styles also 

helps educators and students adopt the most effective methods for acquiring and retaining language skills [40]. 

However, it is challenging for English teachers to efficiently analyze their students’ English language learning needs 

based on proficiency levels, learning styles, and interests. To support this process, machine learning can be utilized to 

predict student performance in learning English as a foreign language. By understanding individual students, English 

teachers can customize language learning to better align with the students’ strengths. 

3- Using Digital Technology to Support Personalized English Language Learning 

Today, personalized English language learning is becoming a popular trend in technology. Many English teachers 

use technology in their smart learning environments because it helps them adapt teaching materials and provide more 

meaningful learning experiences that meet their students’ needs. Personalized English learning styles extend to 

preferences in technology-based learning, allowing students to customize their experiences using online platforms and 

digital tools, such as interactive apps, video lessons, or collaborative forums [41]. Adaptive language learning platforms 



Emerging Science Journal | Vol. 9, No. 2 

Page | 618 

further personalize instruction by tailoring content to match students’ learning styles and progress [42]. Recognizing 

individual learning styles is essential for optimizing language learning outcomes, as adapting instruction to align with 

personal preferences enhances its effectiveness. 

Technology is becoming increasingly common in language education, as shown by subfields like AI [43], computer-

assisted language learning [44], mobile-assisted language learning [45], and technology-enhanced language learning 

[46]. Along with a wide range of technologies studied, research has shown positive student attitudes and benefits for 

language learning [47]. These include improvements in motivation, engagement, and confidence [48], as well as better 

results in receptive skills like vocabulary, grammar, listening, and reading [49] and productive skills such as speaking 

and writing [50]. According to Liu & Yu [51], the integration and advancement of technology help students overcome 

barriers to accessing information and knowledge, as well as the limits of traditional learning environments. Additionally, 

technology supports personalized English language learning by providing digital platforms that allow students to interact 

with online materials, their peers, and their teachers. 

Language learning can be personalized through the use of technology that matches individual preferences [36]. EFL 

students can access a variety of tools, such as apps, online courses, and digital resources, which can be tailored to their 

preferred learning styles. These include interactive activities, multimedia content, and group-based tools [41]. This 

approach allows EFL students to engage with the language in ways that align with their interests, making the learning 

experience more enjoyable and motivating. Technology-mediated learning is the use of technology to share information 

and connect people [6]. Examples of digital tools include blogs, learning management systems, mobile apps, social 

media, and virtual worlds. This approach is now widely used in online English language learning environments. 

Technology plays a mediating role when English teachers upload learning materials online for students to access later 

on their laptops or smartphones. Pane et al. [52] stated that technology creates opportunities to address student 

differences. Changes in how knowledge and skills are acquired can occur through social media and free access to various 

learning platforms, enabling students to become more independent and innovative. Additionally, Pane et al. [52] 

emphasized that learning involves fostering curiosity beyond the classroom, encouraging students to participate actively 

and contribute more to the learning process. 

Technology supports personalized language learning by aligning with individual preferences and providing tools like 

apps, online courses, and digital resources tailored to various learning styles, such as interactive activities and multimedia 

content [36, 41]. This approach enhances engagement and motivation by matching students’ interests. Technology-

mediated learning facilitates information sharing and connectivity through tools like blogs, mobile apps, and social 

media, widely utilized in online English education [6]. English teachers can upload materials for students to access later, 

making learning more flexible and accessible. Pane et al. [52] highlighted that technology helps address differences 

among students by enabling changes in how knowledge and skills are acquired, fostering independence and innovation. 

They also emphasized that technology encourages curiosity beyond the classroom, promoting active participation and 

deeper engagement in the learning process. 

Before designing digital technology to support personalized English language learning, English teachers must first 

gather solid information about individual students. This information is essential for creating personalized learning 

experiences supported by digital technology. This study aims to provide insights into machine learning tools that can 

help teachers predict EFL students’ language performance. This knowledge can then be used to design future 

personalized English language learning programs. 

4- Research Methodology 

In this research work, a comprehensive analysis was employed to evaluate the efficacy of machine learning models 

in predicting student performance in smart learning environments. The study encompasses several stages, from data 

preprocessing, feature selection, model building, and model evaluation. To acquire a deeper understanding of the 

potential of each educational institution, models have been developed to cover the educational context in all dimensions. 

The process of conducting a comparative analysis of machine learning models in smart learning environments is shown 

in Figure 1. 

 

Figure 1. Machine learning process 
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4-1- Dataset 

The study collected a dataset from the Smart English Learning Project, which can be accessed online at 

smartlearning.kku.ac.th. Thai secondary school students studied English lessons through a digital learning platform (see 

Appendices 1 and 2). Based on data collected from 181 students in 8 schools, the dataset contains student test results, 

with 14 PISA-like English quizzes covering 27 competencies. Key features of the dataset are as follows: 

 Quiz: Quiz name. 

 Ability: Test the ability level. 

 User: Unique code for each user. 

 Name: Student’s name. 

 Surname: Student’s last name. 

 Effort: Effort number for the test. 

 Students: Total code for each student. 

 Institution: Name of the institution (with several missing values). 

 Correct answer: Number of correct answers (with several missing values). 

 Highest answer: Highest possible score in the test. 

 Score: The actual score the student received (with several missing values). 

The dataset contains both student identification data and detailed performance indicators, although several columns, 

such as 'Institute', 'Correct', and 'Score', contain a large amount of missing data. 

Figure 2 shows the results of the correlation analysis between the variables. The strong correlation between 'Correct' 

and 'Score' indicates consistency between answer accuracy and student performance. Following that, there are significant 

correlations between 'Maximum' and 'Score' and 'Correct' and 'Maximum', respectively. 

 

Figure 2. Correlation Matrix of Key Features 

The correlation analysis suggests that the number of correct answers and the highest score students can achieve are 

significant predictors of student learning outcomes. These findings are essential in developing language performance 

prediction models because these correlations can be used to improve prediction accuracy and teaching and learning 

planning. 

4-2- Data Preprocessing 

Data preprocessing is a crucial stage in ensuring the quality and reliability of the dataset. In handling missing values, 

this study removed rows containing null values in the 'Correct' or 'Score' columns to preserve the integrity of the analysis 

and prevent errors in the results. 
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Additionally, when handling qualitative data, particularly in the 'Institute' column containing categorical data, a one-

hot encoding technique was applied to convert the data into a format suitable for machine learning models. Data 

transformation is essential for integrating qualitative data into analytical processes, allowing the most efficient use of 

each institution’s data. 

4-3- Feature Selection 

Three selected key features for analysis include the 'Correct' column, which reflects accuracy in answers; the 

'Maximum' column, which reflects the learner’s maximum potential; and the 'Institute' column, which is transformed 

using one-hot encoding. The selection has created a balance between quantitative metrics reflecting learning performance 

and institutional factors affecting language performance. 

Integrating these features allows for a multidimensional analysis of individual learning outcomes and the influence 

of the institutional context on language performance. This method provides a comprehensive understanding of the factors 

influencing student performance, leading to the development of more effective educational approaches. 

4-4- Model Diversity 

Selecting diverse machine learning algorithms to assess and predict student performance in a smart learning 

environment is crucial since each algorithm has distinct features and abilities to uncover hidden patterns and relationships 

in the data. 

This study evaluated various regression models, each with strengths and unique data analysis methods. Model 

diversity allows for comparing the performance and suitability of each model in predictive tasks, leading to the 

development of a more accurate and reliable prediction system. The assessed models are as follows: 

 Random Forest: A collective learning method that creates multiple decision trees and calculates the average of 

predictions to improve robustness and accuracy. Random Forest uses bootstrap data integration (bagging) to create 

a diverse subset of training data for each tree [53]. 

(𝑥)  =  1/𝐵 ∑ᵢ₌₁ᴮ 𝑓ᵢ(𝑥) (1) 

where 𝑓 ̂(𝑥) is the Random Forest prediction, 𝑓ᵢ(𝑥) is the prediction of the i-th tree, and 𝐵 is the number of trees. 

Random Forest is robust and can handle both classification and regression tasks. It is effective in dealing with data 

sets that have a combination of categorical and numerical characteristics. This is often found in student language 

performance data sets. It also handles missing and outliers well and the aggregation nature reduces overfitting. 

 Support Vector Regression (SVR): It uses a linear and polynomial kernel to capture the linear and nonlinear 

relationship between input features and target variables; SVR searches for hyperplanes that maximize margins while 

accepting partial errors within a tubing that is not susceptible to ε-insensitive tube [54]. 

𝑓(𝑥)  =  𝑤𝑇 𝛷(𝑥)  +  𝑏 (2) 

where 𝑤 is the weight vector, 𝛷(𝑥) is the kernel function, and 𝑏 is the bias term. 

SVR is useful for predicting continuous outcomes, such as grades or scores. It can capture linear and nonlinear 

relationships between features and target variables using different kernels. This flexibility makes it ideal for modeling 

complex relationships in student language performance data. 

 AdaBoost: An aggregation technique that unites weak learners by repeatedly adjusting the weight of incorrectly 

predicted samples to improve model performance; AdaBoost adjusts the sample weight after adding each weak 

learner, focusing more on incorrectly classified samples [55]. 

𝐹(𝑥) =  ∑ᵀ𝑡=1𝛼𝑡ℎ𝑡(𝑥) (3) 

where 𝐹(𝑥) is the final classifier, ℎ𝑡(𝑥) are weak learners, and 𝛼𝑡 are their weights. 

AdaBoost is very useful in improving the performance of weak learners. For student performance information, it can 

combine many weak models (e.g., simple decision) to create an effective prediction model. This is particularly useful 

when the initial model is not very accurate when done on its own. 

 Bayesian Ridge regression: Bayesian inference is applied to linear regression, allowing the estimation of the 

parameters of the model; this method introduces a pre-distribution on the parameters of the model to carry out the 

adjustment [56]. 

𝑝(𝑤|𝑦, 𝑋)  ∝  𝑝(𝑦|𝑋, 𝑤)𝑝(𝑤) (4) 

where 𝑝(𝑤|𝑦, 𝑋) is the posterior distribution of weights given data 𝑋 and targets 𝑦. 
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Bayesian Ridge Regression provides probabilistic prediction. This is useful in understanding the predictive 

uncertainty of the model. It uses normal adjustment, helping to prevent overfitting, especially in data sets with many 

features and a relatively small number of samples. 

 K-Nearest Neighbors (KNN): A non-parametric method that predicts a target value based on the average of k nearest 

neighbors in a KNN feature area, predicted based on the majority (classification) or average (regression) of k nearest 

neighbors [57]. 

𝑓 ̂(𝑥) = (1/𝑘) ∑ 𝑦𝑖
{𝑖∈𝑁𝑘(𝑥)}

 (5) 

where 𝑁𝑘(𝑥) is the neighborhood of x defined by the k closest points. 

KNN is a simple and easy-to-use algorithm that works in both classification and regression. This algorithm is 

especially effective when the relationship between attributes and target variables is non-linear. In student performance 

data sets, this algorithm can predict student outcomes based on their results perform similar to student tasks. 

 ElasticNet: combines the L1 and L2 fines of the Lasso and Ridge methods, making them suitable for data sets with 

highly correlated properties; ElasticNet combines L1 and L2 standardization to address the co-existence of multiple 

straight lines and feature selection [58]. 

𝑚𝑖𝑛(𝑤) ||𝑦 −  𝑋𝑤||² +  𝛼[𝜌||𝑤||₁ +  (1 − 𝜌)/2 ||𝑤||²] (6) 

where 𝛼 controls overall regularization and ρ balances L₁ and L₂ penalties. 

ElasticNet combines the strengths of both Lasso and Ridge regression, making it ideal for data sets with many 

features, especially when they are interrelated, which is often the case in educational data sets, where different 

performance indicators can be linked. 

 XGBoost: The implementation of efficient gradient boosting that includes normalization and advanced features such 

as parallel tree generation; XGBoost uses second-order gradient and normalization conditions for more efficient and 

accurate boosting [59]. 

𝑜𝑏𝑗 =  ∑(𝑖 = 1 𝑡𝑜 𝑛) 𝑙(𝑦𝑖 , ŷ𝑖)  +  ∑(𝑘 = 1 𝑡𝑜 𝐾) 𝛺(𝑓𝑘) (7) 

where l is the loss function and Ω is the regularization term. 

XGBoost is a powerful gradient optimization algorithm known for its high efficiency and effectiveness. This 

algorithm can handle large data sets with many features and is leveled to avoid overfitting. This makes it ideal for 

complex tasks such as predicting student performance, which has many factors that may affect the results. 

 Gradient Optimization: Model sequentially, with each new model attempting to correct the errors of the previous 

model; Gradient optimization repeatedly adds weak learners to reduce the distinguishable loss function [60]. 

𝐹𝑚(𝑥)  =  𝐹𝑚−1(𝑥)  + 𝛾𝑚 ℎ𝑚(𝑥) (8) 

where 𝐹𝑚 is the model at iteration 𝑚, ℎ𝑚 is the weak learner, and 𝛾𝑚 is the step size. 

Gradient Boosting builds sequential models to correct errors of previous models. It is highly flexible and can be used 

for regression and classification tasks. Its ability to model complex relationships makes it a good candidate for predicting 

student performance based on a number of factors. 

 Stacking Ensemble: Combining multiple machine learning models using metamodels, leveraging the strengths of a 

variety of models to improve prediction performance; stacking uses predictions from the underlying model as input 

to the metamodel for final prediction [61] 

𝑓𝑠𝑡𝑎𝑐𝑘(𝑥)  =  𝑔(𝑓₁(𝑥), 𝑓₂(𝑥), . . . , 𝑓𝑖(𝑥)) (9) 

where 𝑔 is the meta-model and �i� are base models. 

Data stacking combines multiple machine learning models to leverage their strengths and improve prediction 

performance. For measuring student performance, algorithms can integrate different models to capture various aspects 

of data, making predictions more accurate and stable. 

This study highlights the use of various algorithms, including ensemble methods, regression models, probabilistic 

approaches, and nonparametric methods. This diversity of techniques contributes to capturing student performance data, 

which is complex and contains many types of data, including numerical, categorical, and missing data. 
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The selection of the algorithm took into account the balance between a high-bias model and a high-variance model, 

which is an important factor in developing robust predictive models. Integrating interpretable models (KNN and 

Bayesian Ridge Regression) with high performance models (XGBoost and Gradient Boosting) allows for understanding 

predictions while maintaining high levels of accuracy. 

The selected algorithm is versatile in handling language performance data sets regarding linear and non-linear 

relationship analysis, normalization to prevent overfitting, and the ability to handle classification and regression 

problems. Integrating these algorithms allows for developing comprehensive models that effectively capture the 

complexity of student performance, leading to more reliable prediction outcomes. 

4-5- Evaluation Metrics 

Choosing appropriate evaluation metrics for evaluating machine learning models is crucial in predicting student 

language performance in a smart learning environment. This study defined four key metrics for model evaluation to 

ensure a comprehensive assessment. Each metric is detailed as follows: 

1. Mean Squared Error (MSE) 

The MSE measures the mean square difference between the predicted and actual values, penalizing larger errors due 

to squaring [62]. 

𝑀𝑆𝐸 =  (1/𝑛) ∑(𝑖 = 1 𝑡𝑜 𝑛) (𝑦𝑖  −  ŷ𝑖)² (10) 

where n is the number of samples, 𝑦𝑖  is the actual value, and ŷ𝑖 is the predicted value. 

MSE is useful when large errors are highly undesirable. In predicting student language performance, significant 

mispredictions can lead to inappropriate intervention or resource allocation. MSEs will punish these large errors more 

severely, making it a good choice to avoid significant misjudgment. 

2. Root Mean Squared Error (RMSE) 

RMSE is the square root of MSE. It provides an error measure in the same unit as the target variable, making it more 

interpretable [63]. 

𝑅𝑀𝑆𝐸 =  √[(1/𝑛) ∑(𝑖 = 1 𝑡𝑜 𝑛) (𝑦𝑖  −  ŷ𝑖)²] (11) 

RMSE is in the same unit as the target variable (such as test scores), making it easier to interpret for educators and 

administrators, allowing a clear knowledge of the average forecast error, which is important to understand the practical 

consequences of model accuracy in an educational context. 

3. Mean Absolute Error (MAE) 

MAE measures the average absolute difference between predicted and actual values. It is less sensitive to outliers 

compared to MSE and RMSE [23]. 

𝑀𝐴𝐸 =  (1/𝑛) ∑(𝑖 = 1 𝑡𝑜 𝑛) |𝑦𝑖  −  ŷ𝑖| (12) 

The MAE is less sensitive to abnormal values compared to the MSE and RMSE in the educational environment; there 

may be EFL students with special circumstances that result in abnormal performance; the MAE provides a more stable 

measure of the model’s performance for most students, without being too influenced by these outliers. 

4. Coefficient of Determination (R²) 

R² represents the proportion of variance in the dependent variable that is predictable from the independent variable(s). 

It ranges from 0 to 1, with 1 indicating perfect prediction [64]. 

𝑅² =  1 − [∑(𝑦ᵢ −  ŷᵢ)²/∑(𝑦ᵢ −  ȳ)²] (13) 

where ȳ is the mean of actual values, 𝑦 represents the actual values, ŷᵢ represents the predicted values, 𝑖 represents the 

index of each observation. 

The R² value gives an idea of how much variability the model can explain in EFL students’ language performance. 

This is particularly useful in an educational context as it allows an understanding of the predictive power of the selected 

characteristics; the high R² value suggests that the model can capture a large number of factors affecting students’ 

language performance. This will help to guide other educational strategies and interventions. 
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Several metrics were used to evaluate the model’s predictive performance in this study. The use of different metrics 

allows for a comprehensive assessment of the model across multiple dimensions. MSE (Mean Squared Error) and RMSE 

(Root Mean Squared Error) focus on models that can minimize prediction errors. MAE (Mean Absolute Error) helps to 

gauge the model’s error magnitude. R² (R-squared) represents the model’s ability to explain the variance in student 

language performance. These metrics provide an overview of the model’s performance by addressing the magnitude and 

direction of errors. The evaluation process involves backtesting to assess metrics’ performance and the model’s ability 

to predict unseen data. 

The multidimensional assessment ensures that the selected model minimizes prediction errors and provides 

meaningful insights into the factors influencing students’ language performance. This is requisite in the context of a 

smart learning environment that aims to predict, understand, and continuously improve the learning process. 

4-6- Visualization 

The results of the model’s performance evaluation with each evaluation metric, including MSE, RMSE, MAE and R² 

are presented in bar plots. This visualization provides a clear and objective overview, aiding in the comparison of 

different models’ performance. 

Analysts can rapidly and precisely identify each model’s strengths and limitations, leading to decisions on the most 

appropriate model for application in a smart learning environment. 

4-7- Key Implications 

This study adopts a comprehensive comparative analysis of regression techniques, focusing on leveraging the 

strengths of ensemble methods to improve prediction accuracy. Combining one-hot encoded institutional data enables 

the analysis to effectively identify the impact of educational institutions on student performance. Using multiple 

evaluation metrics helps create a clear understanding of the model’s robustness. 

This study contributes to laying a foundation for understanding predictive modeling of student language performance 

in the context of smart learning. Comprehensive comparative analysis of various models and considering institutional 

impact provides a deeper understanding of the factors affecting student success. Additionally, the findings can be applied 

to formulate educational policies and develop more effective personalized learning strategies. 

5- Results 

This section presents the performance evaluation results of each machine learning model in detail. Key evaluation 

metrics were used in this study, such as the coefficient of determination (R²), which represents the model’s ability to 

explain the variance of the data, and mean square error (MSE), which reflects the magnitude of prediction error. These 

metrics are important in evaluating each model’s ability to predict student performance and extracting insights from raw 

data. 

Table 1 presents a comparative analysis of different machine learning models for predicting student performance in 

smart learning environments using several metrics: Mean Squared Error (MSE), Root Mean Squared Error (RMSE), 

Mean Absolute Error (MAE), and Coefficient of Determination (R²). The analyzed models include ensemble methods, 

support vector machines, optimization algorithms, and regression techniques. 

Table 1. Comparative Evaluation of Machine Learning Models for Predicting Student Performance 

Model MSE RMSE MAE R² 

Random Forest 1.790 1.338 0.204 0.997 

SVR (Linear) 419.153 20.473 12.418 0.217 

SVR (Polynomial) 563.266 23.733 17.151 -0.052 

AdaBoost 110.587 10.516 8.352 0.793 

Bayesian Ridge 358.883 18.944 12.908 0.330 

KNN 14.551 3.815 1.676 0.973 

ElasticNet 368.109 19.186 13.284 0.312 

XGBoost 0.822 0.907 0.203 0.998 

Gradient Boosting 5.469 2.339 1.490 0.990 

Lasso 366.726 19.150 13.102 0.315 

Ridge 366.804 19.152 13.013 0.315 

Huber Regressor 401.274 20.032 12.450 0.250 

Stacking Ensemble 1.136 1.066 0.210 0.997 
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Comparative analysis reveals a significant difference in performance between the models. XGBoost and Stacking 

Ensemble achieve the highest performance, with the highest R² values of 0.998 and 0.997, respectively. Moreover, both 

models exhibited the lowest error metrics across MSE, RMSE, and MAE, reflecting the high accuracy of their predictions 

and deriving meaningful conclusions from new data. 

Ensemble methods, particularly Random Forest and Gradient Boosting, show outstanding performance, with R² 

values above 0.98 and low errors. These models’ success is due to their ability to combine predictions from multiple 

decision trees, which effectively mitigates overfitting and improves robustness. 

In contrast, both linear and polynomial SVR models have limitations in their applicability to this context. Polynomial 

SVR, particularly shows negative R² values, indicating that it performed worse than the horizontal line. K-Nearest 

Neighbors (KNN) shows moderate performance with an R² value of 0.973, outperforming more complex models such 

as AdaBoost. ElasticNet and Bayesian Ridge also show limitations in their predictions compared to the ensemble 

methods, with R² values of 0.312 and 0.330, respectively. 

XGBoost shows the best prediction performance with an R² value of 0.998 and low errors across all dimensions: MSE 

(0.822), RMSE (0.907), and MAE (0.203). XGBoost’s success can be attributed to its ability to handle non-linear 

relationships and interactions between features, as well as its mechanisms to prevent overfitting and efficiently handle 

missing data. The outstanding success of ensemble methods, particularly XGBoost's leading performance with the lowest 

MSE and MAE, strongly suggests that future student performance prediction systems should prioritize these 

sophisticated approaches over simpler models while also considering practical implementation factors such as 

computational resources and model interpretability requirements. 

Stacking Ensemble, which combines multiple base models (Random Forest, XGBoost, and KNN) using Gradient 

Boosting as a meta-learner, performs similarly to XGBoost with an R² value of 0.998, reflecting the effectiveness of 

leveraging strengths from other models. Similarly, Random Forest performs well with an R² value of 0.997, proving the 

effectiveness of aggregating prediction results from multiple decision trees. 

The comparative analysis indicates that although XGBoost shows outstanding performance, a hybrid approach using 

Stacking Ensemble can achieve similar results, reflecting the potential of integrating strengths from multiple algorithms. 

5-1- Feature Importance 

Although feature importance scores are not presented explicitly, tree-based models, particularly XGBoost and similar 

models, are capable of showing these scores. In general, features directly related to student performance, such as 'Correct' 

scores, are expected to be the most significant predictors. Institutional factors may exert important influences depending 

on the variance in language performance across institutions. 

The analysis results indicate that XGBoost is the best-performing model overall, with the highest R² value and lowest 

error across all dimensions. At the same time, the Stacking Ensemble model shows outstanding performance, reflecting 

the benefits of combining strengths from multiple models. The combination of Random Forest and Gradient Boosting 

has proven the effectiveness of the ensemble method in predicting language performance. The findings confirm the 

potential of advanced machine learning techniques to support educational decision-making, which can lead to the 

development of personalized learning strategies and early intervention. 

In summary, the results demonstrate that the ensemble methods, particularly XGBoost and Stacking Ensemble, yield 

accurate prediction results and are highly robust. These models not only explain the variance in student performance but 

also maintain a low error rate, which is an important feature for educational analytics. In contrast, less complex models 

such as ElasticNet, Bayesian Ridge, and polynomial SVR show limitations in their predictions, reflecting the need for 

more complex methods to capture the complexity of educational data. 

5-2- Visual Analysis 

A variety of visual analysis techniques were employed to evaluate model performance and suitability, with an 

emphasis on box plots and residual plots as the primary analytical tools. Box plots were used to compare the distribution 

of prediction errors between different models, providing a clear picture of each model’s accuracy and variance. It also 

allows efficient comparison of medians, distributions, and outliers. 

As for residual plots, the analysis examines the difference between each model’s actual and predicted values. These 

plots identify residual patterns, indicating the fit between the model and the data. An ideal model shows a random scatter 

distribution around the center point. The presence of clear patterns or trends in the residuals may indicate areas that need 

improvement in the model. 
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Combining these visual analysis tools provides a deeper understanding of model performance by clearly and 

objectively identifying strengths and weaknesses, leading to more efficient model development. 

Figure 3 illustrates the performance of various machine learning models in predicting student scores, showing the 

relationship between the predicted and actual values. The red dotted line in the diagram represents the ideal situation in 

which the prediction is perfectly precise. High-performing models such as XGBoost, Gradient Boosting, and Random 

Forest have prediction points clustered close to the ideal line, reflecting their accuracy and reliability in capturing patterns 

in the data. In particular, XGBoost shows a close correspondence between the predicted and actual values. 

 

Figure 3. Predicted vs Actual Performance for Various Machine Learning Models 

In contrast, polynomial SVR shows limitations, with prediction values scattered away from the ideal line and negative 

predictions for data with positive actual values, which indicates the model’s inappropriateness. KNeighbors and 

Bayesian Ridge show moderate performance by capturing general trends but lack accuracy compared to the top-

performing models. 

The overall analysis indicates that ensemble methods, particularly XGBoost and Gradient Boosting, are outstanding 

in providing accurate and reliable predictions, reflecting their ability to effectively handle the variability in student 

performance data. The plot also emphasizes the importance of model selection, showing that while some models can 

produce highly accurate predictions, others struggle to capture the underlying patterns of the data. Ensemble methods 

have shown an exceptional ability to handle the complexity of educational data, making them a valuable tool for 

predicting student performance. 

Figure 4 depicts the distributions of prediction errors across various machine learning models, including Random 

Forest, linear and polynomial SVR, AdaBoost, Bayesian Ridge, KNeighbors, ElasticNet, XGBoost, and Gradient 

Boosting. Each model is represented by a different color for clarity of comparison. 

The analysis reveals that the majority of models have a distribution of errors centered at zero, indicating their 

prediction ability is close to the actual value. In particular, XGBoost, Gradient Boosting, and Random Forest show a 

high intensity of error at zero, reflecting high prediction accuracy and minimal deviation from the actual values. 

In contrast, polynomial SVR shows a wider distribution of errors, with a noticeable spread away from zero, indicating 

limitations in the prediction and significant deviation from the actual value. Similarly, AdaBoost and Bayesian Ridge 

show a wider distribution of errors than the top-performing models, reflecting moderate accuracy and less reliability in 

their predictions. 

Overall, the error distribution analysis validates the ensemble methods’ superiority, particularly XGBoost and 

Gradient Boosting, showing the lowest errors and the highest accuracy in predicting language performance. The 

clustering of errors around zero in these models implies their robustness and efficiency in handling educational data. On 

the contrary, the wide distribution of errors in other models, particularly polynomial SVR, indicates the need to consider 

employing more complex methods to improve prediction accuracy. 
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Figure 4. Error Distribution of Predictions for Various Machine Learning Models 

Figure 5 illustrates the performance of various machine learning models in predicting student language performance 

based on multiple metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), and the Coefficient of Determination (R²). The ensemble methods—XGBoost, Gradient Boosting, and 

Stacking Ensemble—consistently demonstrate superior performance, showing the lowest MAE, MSE, and RMSE values 

and the highest R² values. In particular, XGBoost achieves the lowest MAE of 0.203, reflecting its high prediction 

accuracy. Random Forest and KNeighbors perform moderately well across all metrics, yielding better results than 

simpler models but falling short of the ensemble methods. In contrast, Polynomial SVR and Bayesian Ridge exhibit 

significantly higher error values and lower R², indicating their limitations in capturing complex data patterns and 

explaining variability. These results highlight the effectiveness of ensemble methods, especially XGBoost and Gradient 

Boosting, in minimizing prediction errors and accurately capturing relationships in the data, underscoring their suitability 

for developing robust language performance prediction systems. 

 

Figure 5. Model Performance Comparison Summary 
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The comparative analysis of machine learning models for student performance prediction reveals a clear hierarchy, 

with ensemble methods (particularly XGBoost, Random Forest, and Stacking Ensemble) demonstrating exceptional 

performance through near-perfect R² values and minimal error rates, while SVR models struggled significantly. The 

mid-range performers showed notable variations, with KNN emerging as surprisingly effective (R²: 0.973) and 

traditional models achieving only modest success, highlighting the inherently complex nature of educational data. The 

outstanding results of ensemble methods, especially XGBoost with its leading performance metrics, strongly suggest 

their prioritization in future educational prediction systems, while considering practical implementation factors such as 

computational resources and interpretability requirements. 

Figure 6 illustrates the residual plot analysis of the machine learning models in predicting student language 

performance, showing significant differences in the performance of the different models. Ensemble models such as 

XGBoost and Gradient Boosting show densely clustered residuals around the center, reflecting the model’s high 

prediction accuracy and low errors. 

 

Figure 6. Residual Plots for Various Machine Learning Models 

Random Forest and KNeighbors show moderate performance with more dispersed residuals than the ensemble models 

but still within acceptable limits. In contrast, Polynomial SVR and Bayesian Ridge show a wide distribution of residual 

values, indicating high errors and inappropriateness of the model in predicting language performance. 

Interestingly, AdaBoost and ElasticNet show a systematic pattern of errors, which may indicate bias in the predictions 

of these models. The results validate the superiority of ensemble models, particularly XGBoost and Gradient Boosting, 

in predicting student performance with the ability to minimize errors. The findings have significant implications for 

developing accurate language performance prediction systems and their application in planning preventive education. 
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Ensemble methods (particularly XGBoost, Random Forest, and Stacking Ensemble) demonstrated remarkable 

superiority with near-perfect R² values and tightly clustered residuals in the comprehensive evaluation of machine 

learning models for student performance prediction. In contrast, simpler models showed varying degrees of 

effectiveness, from KNN's surprising robustness to the systematic biases observed in AdaBoost and ElasticNet. The poor 

performance of SVR models, especially the polynomial variant's negative R², combined with their widely scattered 

residuals, establishes their unsuitability for this specific prediction task. The findings strongly suggest that future 

educational analytics systems should prioritize ensemble methods while carefully considering the balance between 

model sophistication and practical implementation constraints, potentially revolutionizing how educational institutions 

approach student performance prediction and intervention strategies. 

Figure 7 illustrates the residual plot analysis of the XGBoost model’s performance in predicting student language 

performance, showing the model’s outstanding performance. The residual values are densely clustered around the center 

line, reflecting the high accuracy of the prediction. Most data points near the red dotted line show minimal deviation 

between the actual and predicted values. 

 

Figure 7. Residual Plot for XGBoost Model 

The consistent distribution of residuals over the range of actual values demonstrates that XGBoost can maintain stable 

prediction accuracy throughout the data set despite a few outliers. It implies that the model can occasionally have 

discrepancies in its predictions but overall it still produces reliable results. 

The results validate the suitability of the XGBoost model for predicting student language performance. The ability to 

provide highly accurate predictions with low errors makes the model an effective tool for the development of language 

performance prediction systems and their further application in educational contexts. 

The XGBoost model demonstrates exceptional prediction accuracy for student language performance, as evidenced 

by its superior metrics (MSE: 0.822, R²: 0.998) and residual plot analysis showing consistently small deviations between 

predicted and actual values across the performance spectrum. While some outliers exist, the model's ability to maintain 

stable prediction accuracy across different performance levels, as shown by the even distribution of residuals, suggests 

it can reliably handle diverse student populations and performance patterns. These results and the model's robust 

statistical performance establish XGBoost as a highly effective tool for educational prediction systems. However, 

successful implementation will require careful attention to practical considerations such as regular model maintenance 

and integration with existing educational frameworks. 

Figure 8 illustrates the residual plot analysis of the Gradient Boosting model in predicting student language 

performance, showing satisfactory performance. Most of the residual values are clustered near the zero line, reflecting 

the high accuracy of the prediction. The distribution of data points around the red dotted line, with minimal deviation, 

shows the prediction’s reliability. 
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Figure 8. Residual Plot for Gradient Boosting Model 

However, small curves in the residuals, particularly in the high prediction range, indicate minimal systematic error in 

the model. Despite this limitation, the Gradient Boosting still perform well overall, with most residual values within a 

narrow range. 

The results prove that Gradient Boosting is an effective tool for predicting student language performance with its 

ability to accurately capture the underlying patterns of the data. Although there are slight inconsistencies in some cases, 

overall the prediction results are reliable and can be effectively applied to develop language performance prediction 

systems. 

The comprehensive analysis of machine learning models for student performance prediction reveals that ensemble 

methods, particularly Gradient Boosting, demonstrate exceptional predictive capability with high R² values and low error 

rates. In contrast, residual plot analysis confirms their reliability despite minor systematic errors in higher prediction 

ranges. The combination of strong performance metrics (R² = 0.990, MSE = 5.469) and well-distributed residuals around 

the zero line indicates that Gradient Boosting effectively captures the complex patterns in educational data, though with 

slight imperfections in specific prediction ranges. The overall results strongly support ensemble methods, especially 

Gradient Boosting, in developing robust language performance prediction systems, with their minor limitations being 

far outweighed by their superior predictive accuracy and reliability. 

Figure 9 illustrates the residual plot analysis of the Random Forest for predicting student language performance, 

showing satisfactory performance. Residual values are densely clustered around the center line, reflecting high prediction 

accuracy. Most data points are close to the red dotted line, indicating low prediction error.  

 

Figure 9. Residual Plot for Random Forest Model 
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Although some outliers were found, overall residuals remained consistently low throughout the range of predicted 

values. Random Forest can effectively capture the underlying patterns of the data, making it possible to provide reliable 

prediction results with low errors. 

A small increase in dispersion in the high prediction value range indicates minimal deviation in the prediction. 

However, the model’s overall performance remains stable and reliable, making Random Forest an effective tool for 

predicting student language performance and can be effectively applied to develop language performance prediction 

systems. 

Table 2 shows the Confusion Matrix of the XGBoost in predicting student language performance, showing 

outstanding performance. The model achieves a high overall accuracy of 95%, a perfect precision of 1.00 for below-

threshold prediction, and a perfect recall of 1.00 for above-threshold prediction. 

Table 2. Confusion Matrix for XGBoost Model 

 Precision Recall F1-Score Support 

Below Threshold 1.00 0.89 0.94 464 

Above Threshold 0.90 1.00 0.95 493 

Accuracy  0.95 957  

Macro Avg. 0.95 0.94 0.95 957 

Weighted Avg. 0.95 0.95 0.95 957 

The model’s performance is also reflected through high F1-score values of 0.94 for the below-threshold group and 

0.95 for the above-threshold group, demonstrating a balance between precision and recall. Additionally, the macro 

average and weighted average of precision, recall, and F1-score of 0.95 reflect the stability and reliability of the model 

in classification. 

The results prove that XGBoost is highly effective in predicting student language performance. Its ability to accurately 

and consistently classify language performance levels makes it an effective tool for developing language performance 

prediction systems and applying them in planning preventive education. 

Machine learning models demonstrate varying capabilities in predicting student performance, with ensemble methods 

(particularly XGBoost and Random Forest) showing exceptional results through multiple evaluation approaches, 

including near-perfect R² values, minimal residuals, and outstanding classification metrics. XGBoost emerges as the 

slight leader with a 95% accuracy rate and perfect precision/recall in specific categories. At the same time, Random 

Forest demonstrates excellent prediction stability through its residual analysis, with both models showing remarkable 

consistency and reliability across different evaluation metrics. The comprehensive evaluation suggests these advanced 

ensemble methods are highly suitable for developing language performance prediction systems, offering reliable tools 

for educational planning and early intervention strategies. However, they require more computational resources than 

simpler models. 

Figure 10 depicts the confusion matrix analysis and the importance of the XGBoost features, highlighting several 

important insights. The confusion matrix revealed strong classification performance. The model correctly identified 412 

below-threshold cases (True Negatives) and 493 above-threshold cases (True Positives) while making false predictions, 

only 52 cases (False Positives), and no cases of False Negatives. 

The analysis of feature importance shows that 'Correct' is the most important predictor with a score of 0.533694, 

followed by 'Maximum', which is the most influential language performance metric with a score of 0.452255. In contrast, 

institutional features have lower importance scores. The score of 'institution_SKKU' is only 0.013349, reflecting the 

importance of direct performance metrics over institutional factors. 

Empirical evidence demonstrates the superior efficacy of ensemble methodologies, specifically XGBoost and 

Stacking Ensemble architectures, in delineating intricate correlations within the dataset. Support Vector Regression 

(SVR) exhibited suboptimal performance metrics, suggesting potential incongruence between the underlying data 

distribution and the algorithm's fundamental assumptions. While the ensemble approaches demonstrated robust 

predictive capabilities, subsequent research endeavors should prioritize the systematic optimization of hyperparameters 

and conduct a more granular investigation into the mechanistic underpinnings of ensemble learning paradigms to 

enhance predictive accuracy. The comparative analysis reveals that ensemble-based frameworks significantly 

outperformed traditional SVR implementations in capturing latent patterns, validating the methodological approach 

while identifying prospective areas for refinement through rigorous hyperparameter optimization and comprehensive 

exploration of ensemble learning dynamics. 
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Figure 10. Confusion Matrix for XGBoost Model 

6- Discussion 

This study conducted a comprehensive evaluation of regression models to predict EFL students’ language 

performance. The analysis results reveal important insights into the various models’ performance and suitability. This is 

consistent with the prior studies by Wu et al. [7] and Zhao et al. [8], ensemble methods, particularly tree-based 

algorithms, have significant advantages in capturing patterns in data.  

Random Forest stood out in the test, with the highest R² and lowest error values (MSE, RMSE, MAE). This superior 

performance is due to the ensemble feature, which mitigates overfitting by averaging predictions from multiple decision 

trees. Each tree is trained on bootstrap samples with random feature selection. This method improves the generalization 

of results from diverse data, which is consistent with Zhao et al.’s study [8]. 

XGBoost and Gradient Boosting produce strong prediction results similar to those of Random Forest. The success of 

these algorithms lies in a sequential tree-building process where each new tree focuses on correcting the errors made by 

the previous ones. XGBoost’s superior performance compared to traditional Gradient Boosting results from optimized 

tuning, which includes built-in regularization and advanced tree pruning strategies [8]. 

In contrast, linear models such as Bayesian Ridge and ElasticNet show moderate performance. Despite its advantages 

in interpretability and handling linear relationships, its lower performance reflects nonlinear relationships in the data that 

these models cannot fully capture as stated by Sateesh et al. [9]. The Bayesian Ridge's probabilistic approach and 

ElasticNet's balanced regularization provided stable, albeit not outstanding, predictions. 

Testing with different kernels yields multiple results for Support Vector Regression (SVR). The performance of the 

linear kernel suggests that simple linear relationships are insufficient for accurate data modeling. The high error rate of 

polynomial kernels indicates an overfitting problem, reflecting the challenge of selecting appropriate kernels and 

hyperparameters, as described by Öınar & Yılmaz Gündüz [10]. 

K-Nearest Neighbors (KNN) performs satisfactorily for nonparametric methods but is not yet comparable to ensemble 

methods. This reflects the limitations of handling high-dimensional data and its sensitivity to the local structure of the 

data, as noted by Şevgı̇n [11]. 

Interestingly, the Stacking Ensemble, which combines predictions from multiple base models, shows strong 

performance. This is consistent with the study by Abdul Bujang et al. [12], which pointed out that this approach can take 

advantage of the strengths of various algorithms in capturing diverse aspects of the underlying data structure. 

The results highlight the importance of model selection for regression tasks. In particular, the outstanding 

performance of ensemble methods, both Random Forest and Boosting, reflects the complexity and non-linearity of the 

relationships in the dataset. However, the practical implementation of these complex models requires consideration of 

computational costs and limitations in interpreting the results. 
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The comparison of machine learning models has provided valuable insights for stakeholders in English language 

teaching and learning contexts. The accurate prediction abilities of models such as Random Forest and XGBoost, 

according to Wu et al. [7] and Zhao et al. [8], allow teachers and administrators to make informed policy decisions based 

on aspects of curriculum design, resource allocation, and development of targeted intervention strategies. Additionally, 

the accuracy of the prediction system helps in identifying at-risk students at an early stage, allowing timely interventions 

before they escalate, as suggested by Çınar & Yılmaz Gündüz [10].  

The ability of ensemble methods to capture complex relationships opens up the possibility of developing individual 

learning paths. Şevgı̇n [11] pointed out that analyzing the importance of features in high-performing models can lead to 

more efficient resource allocation. This notion highlights the importance of individualized instructional design. As noted 

by Lee et al. [32], implementing personalized learning can effectively cater to students’ unique needs and backgrounds, 

enabling them to achieve their full potential through customized teaching approaches [33]. Thus, educational institutions 

can focus on development in language pedagogy that significantly impact language performance.  

In terms of policy, the study results can be used to develop evidence-based education policies, as proposed by Malik 

and Jothimani [18]. To ensure a clearer language education policy that supports personalized English language learning, 

it is important for English teachers to adapt and modify language learning experiences to address each student’s unique 

needs. Personalized learning strategies, such as these, can significantly boost students’ motivation, involvement, and 

understanding [34]. Furthermore, when students are allowed to choose topics, set their own learning goals, and select 

materials, they gain more control over their educational journey [35]. By aligning instruction with individual interests 

and preferences, this learner-centered approach further increases motivation and engagement [36]. The complexity of 

prediction models also reflects the need to improve data literacy among educational personnel and support professional 

development focused on data interpretation and the use of predictive analytics in English language education. 

Although the developed prediction model shows interesting potential to support English language learning, its 

practical application needs to take into account ethical issues, particularly in the areas of data privacy, potential bias, and 

the responsibility for using predictive analytics in the education system. As López-García et al. [16] proposed, 

policymakers must develop appropriate guidelines to ensure these technologies are used ethically. Within English 

language teaching communities, stakeholders—including curriculum designers, teachers, and even parents—should 

recognize and support the value of personalized English language learning for EFL students. It is important that all 

parties respect these individualized approaches and act in accordance with clear guidelines. Furthermore, all stakeholders 

are encouraged to actively participate in the development of tailored policies that address the specific needs of EFL 

learners. 

The model’s success in predicting short-term outcomes allows longer-term research into the relationship between 

early English language performance indicators and long-term educational and career outcomes. The precision of 

ensemble methods supports the development of adaptive learning systems, as proposed by Smirani et al. [65]. Keser & 

Aghalarova [66] pointed out that these systems can use real-time data to adjust the difficulty level, pace, and learning 

activities to suit each learner. Recognizing and understanding individual learning styles is crucial for successful language 

acquisition [36]. Since students have different preferences, strengths, and ways of learning, adjusting instruction to 

accommodate these differences can greatly improve their language learning experience. Alshamaila et al. [17] also 

suggested that model stability across diverse data sets should encourage greater collaboration and data sharing among 

academic institutions, leading to a deeper and more comprehensive understanding of the factors influencing student 

success.  

The results of this study align with and expand upon previous findings regarding the use of advanced machine learning 

models in predicting language performance. Alshamaila et al. [17] demonstrated the effectiveness of XGBoost with 

TOPSIS-based feature extraction and ADASYN oversampling, achieving high accuracy in predicting academic failure. 

Similarly, Malik & Jothimani [18] highlighted the importance of feature selection techniques in enhancing predictive 

accuracy for identifying at-risk students. Consistent with these studies, the present study also found ensemble methods 

like XGBoost and Stacking Ensemble to be the most effective, with the highest R² values and the lowest error rates 

(MSE, RMSE, MAE). The findings support Sghir et al. [19] and Ersozlu et al. [20], who emphasize the critical role of 

predictive modeling and machine learning techniques in personalized learning and adaptive assessment. While previous 

studies focused primarily on model accuracy, this study further underscores the importance of data preprocessing and 

feature selection in improving model performance, suggesting that integrating these methods can lead to more effective 

and scalable predictive solutions for educational analytics. 

The performance of machine learning models may vary across different educational contexts due to variations in 

curricula, teaching methods, and socio-cultural factors. To improve generalizability, future work should include cross-

context validation by testing models on datasets from diverse regions, applying domain adaptation techniques like 

transfer learning, and incorporating diverse datasets during training to mitigate bias. Additionally, context-specific 

feature engineering can enhance model relevance by accounting for unique factors in each educational system. These 

approaches will make models more adaptable, improving their accuracy and fairness in real-world applications. 
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Data anonymization, de-identification, and encryption should be employed to mitigate data privacy risks and biases 
in machine learning models, alongside adherence to privacy regulations like GDPR and periodic privacy audits. 
Differential privacy techniques can further protect sensitive information by adding statistical noise to prevent re-

identification. Bias mitigation strategies include ensuring diverse and balanced datasets, using bias-aware algorithms, 
and conducting regular fairness testing with tools like FairML. Additionally, explainable AI (XAI) methods and ethical 
reviews involving stakeholders can enhance transparency, accountability, and fairness in model deployment, ensuring 
ethical and equitable outcomes. 

To enhance the interpretability of ensemble models for educators and policymakers, explainable AI techniques like 
SHAP and LIME can provide clear visualizations of feature contributions. Feature importance scores from models such 

as Random Forest and XGBoost, combined with interactive dashboards, can simplify complex outputs for practical use. 
Additionally, surrogate models and stakeholder training sessions can bridge the gap between technical complexity and 
actionable insights, ensuring that decision-makers fully understand and trust the model's predictions. These approaches 
enable data-driven decisions while promoting transparency and usability. 

Language teacher education programs should include training for English teachers on using machine learning to 
design personalized English learning, integrating this skill into the national curriculum. By incorporating personalized 

learning into these programs, English teachers can gain the ability to create technology-enhanced learning experiences 
tailored to individual needs. Personalized learning involves adapting teaching methods to fit learners’ preferences, 
thereby enhancing their overall learning experience [36]. Teachers can customize digital lessons for visual learners using 
tools like images, videos, and charts [67]. Auditory learners, on the other hand, benefit from audio resources such as 
podcasts and conversations [68]. Kinaesthetic learners engage best with hands-on activities like role-playing and 
interactive games [69]. Providing a variety of materials and tasks supports diverse learning styles, fostering greater 

engagement and more effective language acquisition. To systematically support English teachers in creating personalized 
language learning experiences through technology, the VARK model developed by Fleming [39] can be utilized. This 
model categorizes learners into four types: Visual, Auditory, Reading/Writing, and Kinesthetic. Visual learners benefit 
most from diagrams and images, auditory learners learn best through listening and speaking activities, reading/writing 
learners prefer written texts and resources, and kinesthetic learners thrive with hands-on, interactive experiences. By 
recognizing these different learning styles, teachers and students are better equipped to select strategies that enhance the 

acquisition and retention of language skills [40]. 

Future research will focus on longitudinal studies to analyze the lasting impact of early interventions, tracking 
outcomes like graduation rates and higher education continuation. These studies will help assess the effectiveness of 
personalized learning strategies over time and inform adaptive educational frameworks for continuous improvement. 

Schools with limited budgets can leverage cloud-based platforms, open-source tools, and pre-trained models to reduce 
costs. Collaborations with academic or industry partners and simpler, resource-efficient algorithms can further facilitate 
implementation. Investing in English teacher training ensures that these solutions are effectively adopted and maintained, 
enabling schools to benefit from machine learning without significant financial burdens.  

In summary, although machine learning models show great potential for improving English language learning 
outcomes, their implementation requires balancing technological benefits with ethical considerations and a holistic 

understanding of the learning process. Integrating these models into educational practice should be performed carefully 
and their impact continually evaluated to ensure they improve English language performance 

7- Conclusion 

This study comprehensively evaluates machine learning models to predict EFL students’ English language 

performance in smart learning environments. Various models were analyzed, including Random Forest, Support Vector 

Regression, AdaBoost, Bayesian Ridge, K-Nearest Neighbors, ElasticNet, XGBoost, Gradient Boosting, and Stacking 

Ensemble. The analysis provides insight into the potential and limitations of each model in an educational context. The 

highlight of the study is that it demonstrates the superior performance of ensemble methods. In particular, Random Forest 

and XGBoost show high prediction accuracy, facilitating the early identification of at-risk students and the development 

of personalized learning paths. The use of robust cross-validation ensures the performance metrics’ reliability and the 

model’s applicability. This highlights the importance of personalized English language learning, as individual 

preferences now extend into digital environments. EFL students can customize their experiences through online 

platforms and digital resources such as interactive apps, video lessons, and collaborative forums [41]. Adaptive language 

learning technologies enhance this personalization by modifying content to match each student’s learning style and 

progress [42]. Recognizing and accommodating these unique preferences is essential for optimizing language learning, 

as tailoring instruction to individual needs leads to more effective and engaging outcomes. 

English teachers can harness the increasing role of technology in language education through tools like AI, computer-

assisted, and mobile-assisted language learning. Technology not only boosts students’ motivation, engagement, and 

confidence [47, 48], but also enhances receptive skills (vocabulary, grammar, listening, reading) [49] and productive 

skills (speaking, writing) [50]. According to Liu & Yu [51], technology helps students overcome access barriers and 

traditional classroom limitations, while providing platforms for personalized, interactive English learning. 
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However, the study faces several limitations regarding data quality and availability, ethical issues in terms of privacy 

and data bias, and challenges in interpreting complex models. Additionally, the focus on short-term predictions without 

empirical evidence of long-term effects and the high demand for computational resources are significant limitations. 

Future research should emphasize developing more complex hybrid models and advanced feature engineering to enhance 

prediction accuracy and robustness. Studies should be expanded to cover a wider range of data sources, and longer-term 

research should be conducted to evaluate the impact of early intervention and individualized language learning 

approaches. This will provide an important basis for developing long-term strategies to support success in English 

language education for the benefit of EFL students in Thailand and beyond. 
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Appendix I  

Unit Topic Learning Objectives (Can do statements) 

1 My Cool Culture 

Can understand common sentences and phrases related to Isan performances and music (a traditional 

Northeast Thai show). 

Can describe Isan performances and music. 

Can express feelings about Isan performances and music. 

Can review Isan performances and music. 

2 Social Media & Me 

Can understand common sentences and phrases related to the use of social media. 

Can read messages on posters related to social media. 

Can explain how to use social media. 

3 My Ideal Pet 

Can understand common sentences and phrases related to pet care. 

Can create a poster explaining the ideal pet. 

Can give a report about the ideal pet. 

4 Making a Shopping List 

Can understand common sentences and phrases related to making a shopping list. 

Can ask and answer questions about product prices. 

Can discuss a shopping list with friends. 

Can give a video presentation about items to purchase. 

5 Superstitions 

Can understand common vocabulary and phrases related to the supernatural. 

Can explain and provide reasoning about supernatural topics in Thai culture. 

Can write a short diary about supernatural events. 

6 Get Well Soon 

Can understand common vocabulary and phrases related to health problems. 

Can describe personal health problems. 

Can give advice about health problems. 

7 Healthy Me 
Can understand common vocabulary and phrases related to health. 

Can write a diary about lifestyle and health. 

8 One Tambon One Product (OTOP) 
Can understand common vocabulary and phrases used in presenting local products from their community. 

Can describe and present local products from their community. 
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Appendix 2 

TIGA Teaching Model Teaching Objectives H5P Functions 

T (Task) Explain the main task assigned in each lesson as specified in the textbook. 
Image hotspot 

Find the hotspot 

I (Input) 
Develop the necessary knowledge required to complete the tasks assigned in 

each lesson. 

Reading, Vocabulary and Grammar Tasks 

Quiz 

Find the words 

Image pairing 

True or false) 

Drag and drop 

Memory game 

Listening and Speaking Tasks 

Dictation 

Speak the words 

Answer the questions in Interactive video 

Writing tasks 

Fill in the blank) 

Drag the words 

G (genre) 

Provide examples of text models from different types of communication 

(genres), explaining the communicative functions of various components and 

the moves within that text type. 

Practice language use through sub-tasks and main tasks. 

Drag and drop 

Drag the words 

Sort the paragraphs 

A (Authentic Assessment) 

Test learners' knowledge for each lesson by having them read and interpret 

various types of texts. 

Self-assess understanding at the end of the lesson. 

Quiz 

True or False 

Self-evaluation 

Learning style test 

 


