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Abstract 

This study focuses on a deep learning based accent classification across continents and greatly 

enhances speech recognition systems by identifying the accents of Asia, Europe, North America, 

Africa, and Oceania. The Convolutional Neural Network (CNN) was trained on the Mozilla 
Common Voice dataset, which comprises the features extracted - Mel-Frequency Cepstral 

Coefficients, Delta, Delta-Delta, Chroma Frequency, and spectral features- and trained to classify 

accents. Multiple convolutional and dense layers for accent classification were combined with 
dropout and batch normalization layers to avoid overfitting during training. Out of the total 

validation data, 82% accuracy has been achieved. The Asian and European accents were classified 

with greater accuracy since their datasets were larger, whereas African and Oceanian accents were 
more misclassified due to limited representation and the greater diversity of languages. In contrast 

to the past research, which focused only on country-based accent classification, this work introduced 

a feature based deep learning approach of continent-based accent classification along the way. The 
recognition of this accent variation, in turn, helps integrate and improve various aspects of speech 

recognition systems and makes their application more inclusive for voice assistants and language 

learning tools with diverse linguistic patterns. The future work will concentrate on extending the 
dataset to the seven continents while enhancing classification accuracy via better feature engineering 

and model tuning. 
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1- Introduction 

Accents are speech characteristics that reflect socio-linguistic and cultural backgrounds. They affect pronunciation, 

tonal variation, and lexical choice, and form a distinctive feature of spoken language [1]. Accent studies have great 

relevance in some areas, such as speech recognition, sociolinguistics, and artificial intelligence. While accents help 

identify individuals, they also impact the usability of speech-based technologies, particularly Automatic Speech 

Recognition (ASR) systems [2, 3]. Although ASR has improved, these systems are still plagued by issues in recognizing 

and processing speech from people of varying accents, consequently leading to performance degradation [4, 5]. Voice-

assisted technology has transformed human interaction with digital systems. Voice assistants like Google Assistant, Siri, 

and Alexa have now found their home in commerce, healthcare, and education, granting hands-free control and a real-

time response. Sheng & Edmund [6] show these systems struggle with accent variation, tending more to Standard English 

pronunciations and misinterpreting non-standard accents. This bias forces many users to modify their natural speech 

patterns to be understood, thereby reducing accessibility and inclusiveness. 
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Arslan et al. [7] explained that accent is one of the most significant characteristics affecting speaker-independent 

recognition algorithms, alongside gender [8, 9] that influence speaker-independent recognition algorithms. In addition, 

there are age and sex, socioeconomic background, and bilingualism that further complicate accent classification. For 

instance, multi-lingual speakers tend to switch their accents depending on the language they are switching to. 

Consequently, these are variance phenomena that old-style classification methods will not satisfactorily capture [10, 11]. 

Accents have the power to influence not only how people communicate but also to serve as identifiers by symbolizing 

their home country or origin. The motivation behind this study is based on the necessity to develop a robust ASR system 

that can deal with different accents on a certain continental scale. While most of the existent research targets language-

specific accent or a country's accent as a whole, this study fills in the gap by introducing the classification of accents at 

their continental affiliation using a deep learning approach. Thus, allowing advance to be applied in ASR systems for 

more inclusivity in managing the different linguistic trends with covering new grounds in a well-organized manner. 

ASR systems depend on huge corpora used for training, which usually have biases for the most widely spoken or 

standard-accented voices. In these acoustics, certain accents remain underrepresented, such as most African and Oceanic 

ones, which have been proven to have a higher misclassification score for speakers from such regions Most ASR systems 

perform well with American, British, and Australian accents but fail to recognize the speech of speakers with African, 

South Asian, or other regional accents. Hence, the lack of linguistic diversity in ASR training datasets seems to be a 

major constraint limiting the applicability of the technology in use for users worldwide. 

This study elaborates upon a novel deep learning architecture for accent classification at a continental level while 

seeking to ameliorate challenges posed in earlier studies. The presented model uses a CNN architecture trained on 

samples of speech from the Mozilla Common Voice dataset that provided a bird's-eye view of accent peculiarities present 

in the English language as spoken by people across Asia, Europe, North America, Africa, and Oceania.  

The CNN model was thus expected to capture the phonetic and spectral variations characteristic of different continents 

for accurate classification. Feature extraction is highly significant in accent classification because of the acoustic features 

such as MFCC, Delta, Delta-Delta, Chroma Frequency, Spectral Centroid, etc. which are used in the process of accent 

classification performance enhancement. They capture phonetic nuances, as well as pronunciation differences of 

speakers across continents [12]. With dropout and batch normalization for minimizing overfitting, convolutional and 

dense layers constitute the model architecture. CNN-based architectures are compared to conventional machine learning 

models to find that they are better suited to tackling the complexities posed by variation in accents [13]. 

This study makes several key contributions to accent classification: 

 This research discusses the designing and building in a solid computational system for the identification and 

classification of accents in various continents, with special emphasis on accents of different kinds of English. The 

model furthermore enhances speaker verification and identity confirmation by highlighting different aspects of 

such an individual's language background as well as the authenticity of an individual related to it. 

 Speech-Enabled Technologies Improvement: The technique suggested would upgrade existing speech 

applications, such as virtual assistants, automated transcription systems, and machine translation systems. The 

addition of accent accommodation expands and improves the functionalities of a speech-acoustic in terms of 

understanding among and across different multilingual environments. 

 The study conducts a thorough investigation into the phonetic and pronunciation differences that aid in second-

language acquisition and pedagogy. Findings therefore improve the language modeling to be more open to other 

accent variations while easing communication and understanding with regard to language teaching and cross-

cultural communication. 

2- Related Works 

Accent classification is an active area of research. Heteroscedastic Linear Discriminant Analysis (HLDA) and 

Maximum Mutual Information (MMI) were first used by Choueiter et al. [14] to identify the correct groups of English 

accents. They were able to achieve 32% accuracy. Several studies have since explored different methods to enhance 

accent recognition across various languages and dialects. 

Zheng et al. [15] and Long et al. [16] worked on the categorization of the Chinese speech accents. The accuracy 

attained by Long et al. has been 80.8 using RASTA-PLP algorithm along with a Naïve Bayes classifier. Joseph & 

Upadhya [17] assessed native Indian accents like those of Bengali, Gujarati, Malayalam, and Marathi using Dynamic 

Time Warping algorithm and obtained 63.4% accuracy. The work of Kibria et al. [18] focused on regional Bengali 

accents (Sylhet & Dhaka). Mannepalli et al.'s [19] research used k-NN which proved successful in classifying different 

Telugu dialects (Telangana, Rayalaseema, and Coastal Andhra) accurately. By using k-NN, Ma et al. [20] reported an 

accuracy of 79.78% in recognizing Malaysian-accented English. Danao et al. [21] Found Multi-Layer Perceptron (MLP) 

to be the best classifier for Telugu speech; exhibiting an accuracy of 93.33%. Hossain et al. [22] differentiated six 
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regional accents of the UK using traditional machine learning from 20 MFCC features and achieved an impressive 

accuracy of 99%. Pedersen et al. [23] performed classification of two English accents using SVM based on MFCC 

features extracted from segments of short speeches. Deshpande et al. [24] differentiated between American English and 

Indian-accented English by formant frequencies. 

More recent research has shifted toward deep learning-based methods. Berjon et al. [25] attempted to analyze accent 

classification issues in speech recognition, contrasting classical machine learning with CNNs. They proposed a 

spectrogram-based French accent classification scheme. Lesnichaia et al. [26] created a CNN for an English accent 

classification algorithm into Germanic, Romance, and Slavic accents. This good outcome illustrates the effectiveness of 

the mel-scale amplitude spectrogram in discriminating accent classes. A study by Kashif et al. [27] created the Multi-

Kernel Extreme Learning Machine (MKELM) framework for classifying foreign-accented English. It combines MFCCs 

and prosodic features with pairwise binary classifiers. Zhang et al. [28] suggested a way to use an extra ASR task to pull 

out phonetic features that are important for identifying languages. Their method uses both fixed and trainable acoustic 

models to combine embeddings. This makes language-related acoustic features more stable by using a hybrid framework. 

Gomez et al. [29] used the SpeechBrain and Common Voice datasets for English, Italian, German, and Spanish accents 

along with the ECAPA-TDNN and Wav2Vec 2.0/XLSR architectures to classify accents in multiple languages. Gong et 

al. [30] proposed a layer-wise adaptation method for ASR to handle diverse accents dynamically. Multi-DenseNet, PSA-

DenseNet, and MPSE-DenseNet models were created by Song et al. [31] to help classify English accents. These models 

combine multi-task learning and PSA attention mechanisms. Accent variability also impacts speech emotion recognition 

(SER). Dharshini & Rao [32] looked into how accent recognition could improve SER performance by using statistical 

functions to pull out features at the utterance level. They conducted tests on the CREMA-D dataset and discovered that 

SSC features only functioned effectively in noisy environments after training on noisy data. On the other hand, MFDWC 

features were strong in both clean and noisy settings. 

Several studies have focused on building datasets for accent classification. Demirşahin et al. [33] introduced open-

source, multi-speaker speech corpora for English accents, including Southern England, Midlands, Northern England, 

Welsh English, Scottish English, and Irish English. Singh et al. [34] trained a two-layer CNN on a dataset covering 

Arabic, English, French, Mandarin, and Spanish accents, achieving promising results. 

Despite significant advancements, there remains a gap in continent-based accent classification. Existing studies 

primarily focus on country-level or language-specific accents. This research aims to address this gap by implementing a 

comprehensive pipeline that includes data preparation techniques such as noise reduction, pre-emphasis, and post-

emphasis. Our study also emphasizes extracting voice features to enhance classification accuracy. Table 1 details a 

comparison between the proposed work and previous research. 

 Table 1. Comparison between proposed work and other related works 

Authors Language Region Accent Category 
Reported 

Performance 

Jayne et al. [3] English UK Irish, Midland, Northern, Scottish, Southern, Welsh - 

Kashif et al. [27] English - Native English - Non native English 84.72% 

Sheng & Edmund [6] English - Native English - Non native (Korean, Chinese) 69% 

Lesnichaia et al. [26] English - Germanic, Romance and Slavic 98.70% 

Hossain et al. [22] English 
UK (Ireland), Midland, Northern England, 

Scotland, Southern England, Wales 
Irish, Midland, Northern, Scottish, Southern, Welsh 98.48% 

Upadhyay & Lui [35] English 
China, India, France, Germany, Turkey, 

and Spain. 
Native English - Non native English 71.9% 

MA et al [20] English Malaysia Malaysian English 79.78% 

Danao et al [21] Tagalog 
Philippines.(Batangas, Cavite, Laguna, 

Quezon and Rizal) 
Talisay, Maragondon, Paete, Lucban, and Taytay >90% 

Joseph & Upadhya [17] Indian India Bengali, Gujarati, Malayalam and Marathi 63.4% 

Present research English 
Asia, Europe, North America, Africa, 

and Oceania 
Asian, European, North American, African, Oceanian. 82% 

3- Research Methodology 

3-1- Process Workflow 

A process workflow is a set of actions or processes that are sequentially carried out in order to complete a task or 

acquire the desired outcome. Figure 1 shows the process workflow for this research. 
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Figure 1. Working Process 

3-2-  Data Collection 

In order to conduct the research, the dataset was collected from Mozilla Common Voice [36] dataset.  Volunteers 

provided voice samples in a range of languages, which were collected to generate the Common Voice dataset. But 

exclusively recorded speech in English was used as voice metadata data to generate the continent-based dataset. This 

research separated the speech data into the appropriate nations. In the next step, the nation data was moved to the relevant 

continent. Figure 2 shows the entire data collecting process, while Table 2 lists continent wise collection of this dataset. 

 

Figure 2. Data Collection Process 

Table 2. Continent wise dataset 

Continent Dataset 

Europe 7500 

North America 7500 

Asia 7194 

Oceania 3687 

Africa 518 

3-3- Feature Extraction 

Among all the features, Cepstral domain features such as MFCCs and LPCCs have shown the best performance in 

terms of continuous speech display. After experimenting with a number of features and testing different algorithms with 

different subsets of these features, it was found that the CNN algorithm combined with MFCCs, Deltas, Delta-Deltas, 

Chroma Frequency, Zero Crossing Rate, Spectral flux, Spectral centroid, Spectral bandwidth, RMS, Pitch, and Line 

Spectral Frequencies performed the best for accent classification based on continent. 

 Mel Frequency Cepstral Coefficients (MFCCs):  

o Preemphasis: The first step is to apply a pre-emphasis filter to the audio signal to amplify the higher 

frequencies. This step helps in equalizing the signal and improving its spectral characteristics. The pre-

emphasis filter is typically a first-order high-pass filter, and the equation for pre-emphasis is given by 

Equation 1: 

h[k] = g[k] - α * g[k-1]                                                                              (1) 

where, h[k] is the pre-emphasis signal, g[k] is the actual signal, and α is the preemphasis coefficient. 

o Framing: In this step, the pre-emphasized signal is split up into equal-length short frames. This step helps 

in capturing the temporal variations in the signal. Common frame durations are between 20-40 milliseconds, 

and the frame size is usually a power of two to facilitate efficient computation [37]. As 13 features were 

taken only, thus, 13 MFCC characteristics constitute the pre-emphasized signal. These 13 sections had to be 

in the same place in order for this to be more practical. 
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o Calculating Power Spectrum: The windowed frames are then passed through the FFT algorithm to obtain 

each frame's frequency spectrum. In this stage, the signal is converted from the time domain to the frequency 

domain. Each frame has been subjected to the DFT in order to compute that [38]. The following Equation 2 

was used for this step: 

𝑃𝑖 =  
1

𝑁
|∑ 𝑆𝑖(𝑛) ℎ(𝑛)𝑒−𝑖2𝜋𝑘𝑛/𝑁𝑛=1

𝑁 |
2
, 1 ≤ 𝑘 ≤ K                                       (2) 

Here, 𝑆𝑖: Input signal at time index, ℎ(𝑛): Window function (e.g., Hamming, Hanning), 𝑁: Number of points in 

the Discrete Fourier Transform (DFT), 𝑘: Frequency bin index, K: Maximum frequency bin, 𝑒−𝑖2𝜋𝑘𝑛/𝑁: Basis 

function of the Fourier Transform 

o Applying Mel Filtebank: The MFCC's implementation requires the use of Mel Filterbank. This approach 

makes use of a collection of 40 equal-area filters [23]. Each filter's mathematical representation is shown 

below: 

𝐻𝑖(𝑘) =

{
  
 

  
 

0  for 𝑘 < 𝑓𝑐𝑖−1
2(𝑘−𝑓𝑐𝑖−1)

(𝑓c−𝑓𝑐𝑖−1)(𝑓𝑐𝑖+1−𝑓𝑐𝑖−1)
 for 𝑓𝑐𝑖−1 ≤ 𝑘 ≤ 𝑓𝑐𝑖

2(𝑓𝑐𝑖+1
−𝑘)

(𝑓𝑐𝑖+1
−𝑓𝑐𝑖

)(𝑓𝑐𝑖+1
−𝑓𝑐𝑖−1

)
 for 𝑓𝑐𝑖 ≤ 𝑘 ≤ 𝑓𝑐𝑖+1

0  for 𝑘 > 𝑓𝑐𝑖+1

,                                (3) 

Here, 𝐻𝑖(𝑘) the magnitude response of the ith Mel filter, k is the frequency bin index in the FFT,𝑓𝑐𝑖−1 , 𝑓𝑐𝑖 ,𝑓𝑐𝑖−1   

is the boundary frequencies of the triangular Mel filter; where 𝑓𝑏𝑖−1 is left boundary (starting point) of the filter, 

𝑓𝑏𝑖, is  Center frequency of the filter and  𝑓𝑏𝑖+1  Right boundary (ending point) of the filter. 

o Calculating the energy log: The logarithm of the magnitude of the filtered spectrum is computed to obtain 

the log-scale representation. This process compresses the dynamic range of the spectrum. 

o Calculating the log energies' discrete cosine transform (DCT): Applying the discrete cosine transform 

DCT to the log-scaled spectrum finally yields the MFCC coefficients. The DCT takes away the correlations 

between the Mel filterbank energies, which gives us a set of coefficients that describe the signal's spectral 

features. 

This study has only used the first 13 features out of the 40 energy features that were calculated. Because the signal is 

primarily represented by the first 13 features, which are linear features. The first 13 MFCCs were used, as they capture 

most of the essential spectral information while excluding higher coefficients that may introduce noise. These 

coefficients represent the short-term power spectrum of sound and help the model identify unique accent patterns. MFCC 

feature values for each label is shown in Figure 3. 

 

Figure 3. Average MFCCs for each label 

 Delta Features: The main disadvantage of MFCC, despite the fact that it has been the most successful 

method for expressing speech, is that it only employs static data. Combining both static and dynamic features 

can cut error rates in half while improving the model, as it was later demonstrated that dynamic features 
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also convey some crucial information [39]. This study used a single set of dynamic characteristics called 

delta features to do this.  From MFCC features, delta features are calculated using the first order derivation. 

13 MFCC characteristics were used to generate 13 delta features. These dynamic characteristics 

supplemented our model's features and helped us make improvements. Figure 4 shows the mean delta feature 

for each continent. 

 

Figure 4. Average Delta for each label 

 Delta-Delta Feature: The Delta-Delta algorithm, an extension of the Delta algorithm, computes the second-order 

temporal derivatives of a series of feature vectors. It offers further details on the feature sequence's acceleration 

or rate of change. The resulting delta-delta coefficients reveal details about the feature sequence's rate of change's 

acceleration or change over time. Figure 5 depicts the mean delta-delta characteristic for each continent. 

 

Figure 5. Average Delta-Delta for each label 

Delta-delta features record the acceleration, while delta features represent the MFCCs' rate of change. These dynamic 

features provide temporal context, helping the model detect variations in speech flow and transitions unique to different 

accents. 

 Chroma Frequency: This function takes care of analyzing the harmonic structure and timbre attributes of the 

incoming audio stream. For the purpose of reducing spectral leakage, the audio is split into frames, and every 

frame has a window function applied to it. The Short-Time Fourier Transform (STFT) is used to obtain the 

magnitude spectrum, which contains the spectral content of the given frame. The filter bank maps the 

frequencies onto chroma bands. After that, Chroma energies are normalized, such that their sum is one, to 

facilitate comparison across different audio streams. Optional post-processing techniques might be applied for 
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stability enhancement and reduction of temporal variability, such as smoothing or temporal averaging. Chroma 

features inspire chromatic mapping of audio frequency for speech harmonic structure, emphasizing tonal 

differences and aiding in recognizing regional speech characteristics. Figure 6 displays the average chroma 

frequency for each continent. 

 

Figure 6. Average Chroma Frequency for each label 

 Zero Crossing Rate: A measurement of the speed at which an audio stream passes the zero amplitude level is 

the Zero Crossing Rate (ZCR) characteristic. The stream is divided into frames for calculating the ZCR, and each 

frame's sample sign is determined. The ZCR value for each frame is calculated by counting the instances in which 

the sign switches from positive to negative or negative to positive and dividing that number by the overall number 

of samples within the frame. Each frame in the audio signal goes through this process once. The audio waveform's 

quick transitions or changes are described by the ZCR characteristic. This feature helps capture rhythmic and 

temporal patterns in speech, which vary across accents. Figure 7 displays the average Zero Crossing Rate for each 

continent. 

 

Figure 7. Average Zero Crossing Rate for each label 

 Spectral flux: This feature is designed to estimate how the spectral content of an audio signal varies over time. 

It provides information on the dynamics and variability of spectral energy distribution. The spectral flux feature 

is computed by comparing the magnitude spectrum of successive frames. After segmentation of the audio stream 

into frames, a windowing function is used on each frame, and the Fourier transform is performed to obtain the 

magnitude spectrum. Spectral flux is then determined by adding up the squared variations in the magnitude 

spectra of subsequent frames. This is done for every frame and thus provides the spectral flux values, which 

indicate how fast the spectral content changes over time. Therefore, the spectral flux measures changes in the 
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power spectrum and aids in identifying dynamic alterations in spoken language. Figure 8 shows the average Zero 

Crossing Rate for each continent. 

 

Figure 8. Average Spectral flux for each label 

 Spectral Centroid: Spectral Centroid is a feature used to extract the average frequency or the gravity center of 

the spectrum of an audio stream. It gives information about the most favored frequency in a particular frame or 

segment of the signal. For the computation of the Spectral Centroid, the audio signal is first framed, followed by 

applying a window function to each frame and computing the Fourier transform, yielding the magnitude spectrum. 

The spectrum's weighted frequencies are averaged, with the weighting being the magnitude of the respective 

frequency bins, to yield the spectral centroid for each frame. This produces a series of Spectral Centroid values 

that portray the frequency center for each frame that attempts to capture frequency characteristics. Figure 9 shows 

the average Zero Crossing Rate for each continent. 

 

Figure 9. Average Spectral Centroid for each label 

 Spectral Bandwidth: The Spectral Bandwidth function can be defined as the means by which to calculate the 

width or spread of different frequencies in the spectrum of an audio signal. It gives information about the dispersal 

of spectral energy around the spectral centroid. The magnitude spectrum is obtained by Fourier-transforming a 

windowed function to each frame of the audio stream to compute the Spectral Bandwidth. The spectral bandwidth 

is calculated per frame by adding the weighted squared deviations of each frequency bin from the spectral 

centroid, with the weights being the magnitudes of the frequency bins in question. The repetitions give rise to a 

string of spectral bandwidth values, which represent the dispersion or width of frequencies surrounding the 
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spectral centroid within each frame. It says the width of the frequency spectra, which gives information about the 

sharpness of the sound. Figure 10 shows the average spectral bandwidth for each continent. 

 

Figure 10. Average Spectral Bandwidth for each label 

 RMS: The amplitude and energy of an audio signal can be computed using the RMS feature; this indicates the 

average signal power level. In calculating the root mean square feature, the signal is framed into slices, and each 

slice is applied to a window function. The windowed samples, or the samples contained in the sliced frame, have 

their values squared based on that window function. The RMS value for each frame is said to be computed by 

averaging the squared samples and taking the square root of that average. The above steps are repeated until a 

sequence of RMS values is obtained that would reflect the energy of the signal over time. The Root Mean Square 

energy gives information on expressive strength-the measure of the intensity of speech signals that vary due to 

accent differences locations. Figure 11 displays the mean RMS value for each continent. 

 

Figure 11. Average RMS for each label 

 Pitch: The pitch feature calculates the perceived pitch or fundamental frequency of an audio signal. It provides 

information about the pitch or melody of the sound. To calculate the pitch feature, audio streams are segmented 

into frames, a windowing function is used on each frame, and the pitch is then estimated using pitch estimation 

methods such as autocorrelation or cepstral analysis. The methods usually analyze the periodicity and/or harmonic 

structure of the signal to assess the fundamental frequency. The fundamental frequency of speech contribute to 

the realization of intonation and melody, which are crucial in the distinguishing of accents. Figure 12 displays the 

mean pitch value for each continent. 
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Figure 12. Average Pitch for each label 

 Line Spectral Frequencies: Line Spectral Frequencies (LSF), more commonly referred to as Line Spectral Pairs 

(LSP), is a property that characterizes the spectral envelope of an audio source of different audio sources. Line 

Spectral Frequencies offer information about the formants or the resonant frequencies contained in the signal. 

The method begins by segmenting the audio signal into frames, followed by application of a window function to 

each frame, and finally by estimation of the coefficients of the vocal tract filter through Linear Predictive Coding 

analysis, thus yielding the LSF. The LSFs so computed are exploited for Speech Synthesis, Speaker Identification, 

and Speech Recognition applications as they stand for the formant frequencies of each frame. The LSF features 

capture the unique properties of the vocal tract while also elucidating the spectrum characteristics of the audio 

stream. LSFs describe the spectral envelope of the speech signal, pinpointing formant frequencies that are distinct 

in different accents. The mean Line Spectral Frequencies value for each continent is displayed in Figure 13. 

 

Figure 13. Average Line Spectral Frequencies for each label 

3-4- Relevance of Extracted Features 

In Summary, each of these features contributes uniquely to the model's ability to classify accents:  

 MFCCs, Delta, and Delta-Delta Features: Used for static and dynamic spectral information, providing a robust 

representation of speech signals. 

 Chroma and Pitch Features: Highlight tonal and melodic aspects of speech that vary across accents. 

 Spectral Features and ZCR: Reflect rhythm, clarity, and other acoustic patterns tied to regional speech 

By combining these features, the CNN model gains a comprehensive understanding of both the spectral and temporal 

characteristics of speech, enabling effective accent classification. 
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3-5- Accent Classification Model 

Proposed Continent-wise Accent Classification used fully connected Convolutional layer, max pooling layer, fatten 

layer Dense layer for classifying Continent-wise accent. Additionally, this model used a few regularization techniques, 

such as dropout [40] and batch normalization [41]. 

Continent-wise Accent Classification Model 

1 : ADAM (learning rate) 

2 : For 964 iterations in all batch do: 

3 : Convolution 1 (Filter, Kernel Size, Stride, Padding, Activation) 

4 : MaxPooling 1 (Pool Size, Stride) 

5 : Dropout (Rate) 

6 : Convolution 2 (Filter, Kernel Size, Stride, Padding, Activation) 

7 : MaxPooling 2 (Pool Size, Stride) 

8 : Dropout (Rate) 

9 : Convolution 3 (Filter, Kernel Size, Stride, Padding, Activation) 

10 : MaxPooling 3 (Pool Size, Stride) 

11 : Dropout (Rate) 

12 : Convolution 4 (Filter, Kernel Size, Stride, Padding, Activation) 

13 : MaxPooling 4 (Pool Size, Stride) 

14 : Dropout (Rate) 

15 : Dense (Units, Activation) 

16 : Dropout (Rate) 

17 : Dense (Units, Activation) 

18 : Dropout (Rate) 

19 : Dense (Units, Activation) 

20 : Dropout (Rate) 

21 : Dense (Units, Activation) 

22 : Dropout (Rate) 

23 : End for 

The first layer of convolution has 64 convo1D filters each of which has a (3 × 3) size kernel, a (1 × 1) size stride, and 

an ReLu (4) activation function. Followed by a MaxPooling layer, and it has (2 × 2) size pool size and (2 × 2) size stride. 

After that, a dropout layer with a 20% dropout rate. 

ReLU(Y) = MAX (0, Y)                                                                                (4) 

The second layer of convolution has 128 convo1D filters, each of which has a (3 × 3) size kernel, a (1 × 1) size stride, 

and an ReLu (4) activation function. Followed by a MaxPooling layer, and it has (2 × 2) size pool size and (2 × 2) size 

stride. In the following step, another dropout layer with a 20% dropout rate was added. 

The third layer of convolution has 256 convo1D filters, each of which has a (3 × 3) size kernel, a (1 × 1) size stride, 

and an ReLu (4) activation function. Followed by a MaxPooling layer, and it has (2 × 2) size pool size and (2 × 2) size 

stride. In the following step, another dropout layer with a 20% dropout rate was added again. 

The fourth layer of convolution has 128 convo1D filters, each of which has a (3 × 3) size kernel, a (1 × 1) size stride, 

and an ReLu (4) activation function. Followed by a MaxPooling layer, and it has (2 × 2) size pool size and (2 × 2) size 

stride. Again a dropout layer with a 20% dropout rate was added. 

Next, apply 150 unit’s dense layer with ReLu activation, and 25% dropout after flattening the layer. With ReLu 

activation and a 25% dropout, the output of this layer connects to the 100 units Dense Layer. The Dense layer was then 

coupled to the output of this layer through 20 units of ReLu activation and 25% dropout. Utilize 5 units with SoftMax 

(5) activation at the final output layer. 

𝜎(𝑧)𝑗 =
𝑒
𝑧𝑗

∑ 𝑒
𝑧𝑗𝐾

𝑘=1

     𝑓𝑜𝑟      𝑗 = 1, … , 𝑘                    (5) 

Here, σ(z)j is Softmax function output for the j-th class, e  is Euler's number (approx. 2.718), base of natural logarithm, 

zj is  Input value (logit) for the j-th class, Σ is Summation symbol (sum of all exponentiated values), k is total number 

of classes,  j is index representing a specific class, and zk  is  input value (logit) for the k-th class. 
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In Summary, 

 Input Layer: Accepts input of size (56, 64), corresponding to processed speech features. 

 Convolutional Layers: 

o Layer 1: 64 filters with (3 × 3) kernel, (1 × 1) stride, and ReLU activation. Followed by MaxPooling with 

(2 × 2) pool size and (2 × 2) stride, and 20% dropout. 

o Layer 2: 128 filters, (3 x 3) kernel, (1 × 1) stride, ReLU activation, MaxPooling, and 20% dropout. 

o Layer 3: 256 filters, (3 x 3) kernel, (1 × 1) stride, ReLU activation, MaxPooling, and 20% dropout. 

o Layer 4: 128 filters, (3 x 3) kernel, (1 × 1) stride, ReLU activation, MaxPooling, and 20% dropout. 

 Fully Connected Layers: 

o Flattened output connected to a 150 unit dense layer, ReLU activation, and a 25% dropout rate. 

o Sequential dense layers with 100, 50, and 20 neurons, each using ReLU activation and 25% dropout. 

o Final layer with 5 neurons and SoftMax activation for classification. 

Architecture of Continent-wise Accent Classification Model is displayed in Figure 14. 

 

Figure 14. Architecture of Continent-wise Accent Classification Model 

The architecture is designed to capture intricate speech patterns and variations in accents across continents: 

 Convolutional Layers: Extract local features, such as spectral characteristics. 

 Dropout: Prevent overfitting by randomly deactivating nodes during training. 

 Dense Layers: Combine learned features for classification. 

The choice of ReLU activation ensures efficient training by addressing the vanishing gradient problem. MaxPooling 

layers downsample feature maps, reducing computational load while preserving essential features. This architecture was 

finalized after experimenting with different configurations and achieved optimal performance on validation data. 

The model can be accurately identified with the support of the model architecture overview. A simplified overview 

of the full model can be seen in Table 3. 

Table 3. Continent-wise Accent Classification Model Architecture summary 

Layer Type Output Shape Parameter Connected to 

(Input Layer) Conv1D (None, 56, 64) 256 - 

1() MaxPooling1D (None, 28, 64) 0 Input Layer 

2() Dropout (None, 28, 64) 0 1 

3() Convo1D (None, 26, 64) 12352 2 

4() MaxPooing1D (None, 13, 64) 0 3 

5() Dropout (None, 13, 64) 0 4 

6() Convo1D (None, 11, 128) 24704 5 

7() MaxPooing1D (None, 5, 128) 0 6 

8() Dropout (None, 5, 128) 0 7 

9() Convo1D (None, 2, 256) 98560 8 
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10() MaxPooing1D (None, 1, 256) 0 9 

11() Dropout (None, 1,256) 0 10 

12() Flatten (None, 256) 0 11 

13() Dense (None, 128) 32896 12 

14() Dropout (None, 128) 0 13 

15() Dense (None, 256) 33024 14 

16() Dropout (None, 256) 0 15 

17() Dense (None, 128) 32896 16 

18() Dropout (None, 128) 0 17 

19() Dense (None, 64) 8256 18 

20() Dropout (None, 64) 0 19 

21() Dense (None, 5) 325 20 

Total params: 243,269  

Trainable params: 243,269  

Non-trainable params: 
0 

 
 

3-6- Optimizer and Learning Rate 

One of the key components for training a neural network model is optimizer. It is responsible for adjusting the 

weights and biases of the model during the training process to minimize the loss function. Proposed Continent-wise 

Classification model used the very popular Optimizer Adam Optimizer [42]. The stochastic gradient descent 

algorithm has been modified by this optimizer. Network weight is being updated by an optimizer that can adjust 

hyper-parameters. Adam optimizer (6) was employed in the proposed continent-wise accent classification, and its 

learning rate was set at 0.001. 

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝜈̂𝑡
1 +𝜀

𝑚̂𝑡                       (6) 

Here, t is Time step (iteration index), η is step size, 𝑚̂𝑡 is mean of gradients, 𝜈̂𝑡 is variance of gradients, and ℰ  is Small 

constant for numerical stability. 

A function known as categorical cross entropy (7) was used to calculate model error [43]. 

𝐿𝑖 =  −∑ 𝐽 𝑇𝑖, 𝑗 | log (𝑃𝑖, 𝑗)                       (7) 

Here, ΣJ is Summation over all classes J, Ti,j  is true label (1 if correct class, 0 otherwise), Pi,j  is Predicted probability 

for class j, and log(Pi,j) is Logarithm of the predicted probability. 

Learning rate is a hyperparameter that determines the step size or rate at which a machine learning model adjusts its 

parameters during training. It regulates how much the model's weights and biases are modified in response to the 

determined gradients. Larger updates are possible with a greater learning rate. It may lead to faster convergence but runs 

the danger of going beyond what would be considered the ideal answer. Conversely, a smaller learning rate leads to 

smaller updates, which may slow down convergence but could potentially improve the model's accuracy [43]. A greater 

learning rate of 0.001 was initially stated, however it was changed in response to the validation accuracy. 

3-7- Training the Model 

The proposed CNN model was trained using Mozilla Common Voice dataset with a batch size of 56, achieving an 

accuracy of 82% after 50 epochs. 

4- Results and Discussion 

The final CNN model demonstrated strong performance on train, test, and validation sets. With a total of 26396 

voices from five different continents, the model was trained using 80% of the voice data then tested with 10%, and 

validated with 10%. The accuracy and loss of the proposed continent-wise accent classification model are shown in 

Figure 15. 
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Figure 15. Training and Validation Accuracy and Loss of Continent-wise accent classification Model 

After 50 iterations, the model's accuracy was 84.79% on the training set and 82.34% on the validation datasets.  

Table 4. Summary of the performance metrics for each continent 

Continent Accuracy Precision Recall F1-Score 

Asia 85% 84% 86% 85% 

Europe 83% 82% 83% 82% 

North America 80% 79% 80% 79% 

Africa 76% 75% 77% 76% 

Oceania 74% 73% 75% 74% 

Summary of the accuracy of all the classes is shown in Table 4. That indicates an overall accuracy of 82%, the model 

recorded significant variations in performance among the five continents. Asia (85%) and Europe (83%) secured the 

highest classification accuracy as these two continents had bigger and more balanced datasets that allowed them to 

generalize better. On the contrary, Africa (76%) and Oceania (74%) had the lowest classifications because of the limited 

data representation and higher linguistic diversity within these two continents that contribute to more errors in 

classification. North America (80%) has a fair performance but has common languages with the European accent leading 

to some mistaken identifications within the two. The dependence of the model on spectral as well as on phonetic features 

enabled cross-continental wise effective classification, but intra continental linguistic diversity and dataset imbalances 

highlighted differences in performance. to further improve the model's ability to separate the accents within the continent 

while improving overall accuracy, data representation, refinements in extracting features, and hierarchical classification 

are some ways forward. 

According to our model, continental-level classification takes priority over the regional classification of dialects or 

sub-accents within a continent. Thus, while it is able to categorize accents in broad continental groups with an accuracy 

of about 85%, it does not make an explicit distinction between finer accent variations like the ones between British 

English versus Australian English or North American versus Caribbean English. The CNN-based architecture captures 

phonetic and spectral patterns common to accents within a continent, but due to limitations of the dataset and universal 

linguistic reasons, specific local accents may get put into one category. CFs like MFCCs with Delta and Chroma 

Frequency might help in identifying pronunciation niceties, but better enhancements or just fine-tuning with region labels 

and hierarchical classification could allow for more distinguishing power among sub-accents. In the future, multi-level 

classification or other methods like self-supervised learning could help in the model's further refinement toward 

appreciating intra-continental accent variations while retaining accuracy in the broad distinction. Further analysis of the 

model is presented in the confusion matrix shown in Figure 16. 
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Figure 16. Confusion matrix of Continent-wise accent classification model 

The evaluation of the confusion matrix illuminates the model's positive and negative distinguishing powers across 

five continents in the accent classification space. Among all of them, the highest accuracies were delivered for Asia 

(85%) and Europe (85%); these were supported by larger and more balanced datasets, though Asia faced a 6% 

misclassification against Europe and North America, possibly due to alignment in phonetic proximity. On the other hand, 

North America with 77% accuracy had a little lesser accuracy with 12% classifying falsely as having Asian accents, 

possibly due to highly contrasting linguistic influences. Africa (83%) showed a 9% chance of misclassification against 

North America and that was on account of their phonetic similarities, while Oceania (80%) had the lowest possible score, 

with 7% being misclassified as Asian and 5% as European, owing in great part to its smaller database and the 

commonality in accents. The overlap between North American and European accents and some overlaps with some 

African and North American accents present some areas for improvement, including expanding the datasets, adopting 

hierarchical classification, and refining extraction of phonetic features. If a model could sensibly differentiate accents, it 

would be able to do so with greater precision if linguistic diversity, imbalances in datasets, and regional variations were 

considered. 

5- Conclusion 

A deep learning-based accent classification across continents was introduced in this paper, which made use of 

convolutional neural networks (CNN) along with spectral feature extraction methods to enhance the accuracy of speech 

recognition systems. The model classified accents from five continents: Asia, Europe, North America, Africa, and 

Oceania, with an impressive validation accuracy of 82%, as verified through the use of the Mozilla Common Voice 

dataset. The results reveal that higher accuracy has been obtained for accents from Asia and Europe due to the existence 

of larger, well-represented datasets, whilst African and Oceanian accents were more frequently misclassified due to their 

linguistic diversity combined with lesser dataset availability. The study emphasizes the critical nature of encompassing 

diverse speech patterns into the ASR systems for maintaining inclusivity and enhancing a worldwide niche. Findings 

have also helped contribute to a variety of speech-based applications that will tailor themselves to various accents, thus 

minimizing recognition bias—for instance, voice assistants, speech-to-text systems, and language translation 

technologies. 

This research would shape future avenues beyond ASR performance advancements in understanding speech 

variations at a continental level in language and cultural contexts. Unlike most works that concentrated on country-

specific native vs. non-native English accents, this research takes speech from much broader classification perspectives 

to improve its technology adaptability to global users. It would include future applications to add all accents around the 

seven continents to this dataset, continue refinement of feature extraction, and incorporate some of the latest deep 

learning techniques, such as transformer-based architectures, to improve classification performance. Real-time accent 

adaptation mechanisms integrated into ASR systems could be of further improvement in their effectiveness for 

multilingual and cross-accent scenarios. Therefore, this study points out the existing gaps in accent classification research 

and leads towards global diversity by creating more democratic and inclusive speech processing technologies. 
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