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Abstract 

Rogue Access Points (RAPs) pose a significant security threat by mimicking legitimate Wi-Fi 
networks and potentially compromising sensitive data. To address this issue, this research has 

proposed an innovative mechanism called Invisible Scout, which uses a multi-module system to 

identify RAPs. This study aimed to develop and validate a mechanism capable of accurately 
detecting RAPs in controlled setups, real-world environments, and under de-authentication attack 

scenarios. The proposed system consists of four key modules: sniffer, detection, probing, and 

comparison. To evaluate its effectiveness, tests were conducted in controlled and open environments 
and under de-authentication scenarios, using decision tree models and various metrics to assess 

performance. The decision tree model showed promising results in the controlled setup, achieving 

an Area Under the Curve (AUC) score of 0.921 and classification accuracy (CA) of 0.875, indicating 
that the model effectively distinguished between legitimate access points and RAPs. When tested in 

an open environment, the model's performance improved, achieving an AUC score of 0.952 and a 

CA of 0.994. Furthermore, under a de-authentication attack, the model achieved an AUC score of 
0.955 and a CA of 0.996. To gain a deeper understanding of RAP behaviors, linear regression 

analysis was conducted, revealing patterns and visualizing the existence of RAPs, which could assist 

in further analysis. In conclusion, the results demonstrated that the proposed mechanism was highly 
effective in identifying RAPs. Future research should focus on refining the detection mechanism, 

incorporating real-time response capabilities, and expanding testing to diverse network scenarios. 
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1- Introduction 

Telecommunication is increasingly incorporated into various aspects of modern life and significantly contributes to 

growth in various sectors. Important advances include wireless fidelity (Wi-Fi) technology, which has become a 

cornerstone of connectivity. Additionally, Wi-Fi has revolutionized wireless networking and internet access, enabling 

seamless communication and information exchange across devices without the limitation of physical cables. This 

technology has transformed how individuals and organizations interact, facilitating flexible work environments, 

increased productivity, and widespread access to digital resources [1]. Generally, Wi-Fi was developed based on IEEE 

802.11 standards, allowing users to connect to the internet from any location without a network cable. The latest 802.11g 

standard, in particular, has led to the general public's widespread adoption of Wi-Fi-enabled devices [2]. Since its 

introduction, Wi-Fi technology has advanced rapidly, providing increasingly faster wireless connectivity for internet 

applications and data transmission through wireless networks. These advancements have primarily used radio 

frequencies in 2.4 and 5 GHz bands, commonly used in wireless devices [3]. Many Wi-Fi-enabled devices, such as 

desktops, mobile phones, tablets, smartphones, and other appliances, are being developed in the current era [4]. 
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Wi-Fi offers many benefits to daily lives by enabling connection to the network from anywhere in the AP (access 

point) service area, making it useful for everyone [5]. However, despite its conveniences, Wi-Fi still poses specific 

security risks. For instance, attackers can be between users and connection points, intercepting data sent by a user to an 

intended destination [6]. According to Figure 1, when this type of attack is executed, the attacker acts as a man-in-the-

middle (MITM). In this position, they can access all information that users send online. This information may include 

sensitive data such as personal emails, credit card information, and security credentials for business networks [7]. 

 

Figure 1. Man-In-the-Middle Scenario 

A common malicious activity attackers use, similar to MITM attacks, is deploying a Rogue Access Point (RAP). 

Conceptually, RAP is a wireless AP installed on a secure network without explicit authorization from an administrator 

[8]. Also, it can be described as an AP created to enable attackers to establish an MITM attack. This allows attackers to 

intercept communication between active devices on the network, as shown in Figure 2 [9]. Traditionally, RAP has been 

identified using traditional detection methods. These methods typically rely on the identification of unique identifiers, 

such as MAC (media access control) addresses and SSID (service set identifier) [10]. 

 

Figure 2. General Case of RAP 

Since hacking tools have become more complex, it has become challenging to identify attacks from RAP using the 

traditional method. Traditional methods involve network administrators manually scanning the wireless environment 

using tools like Wi-Fi sniffers (e.g., Wireshark, NetStumbler, or Kismet) to detect and analyze all APs broadcasting in 

the area [11]. Another approach is for administrators to compare the discovered APs with a known list of authorized 

APs. APs that do not match the authorized list are flagged as potential RAPs [12]. Additionally, in some cases, RAPs 

may be discovered through manual inspection of the physical premises [13]. Traditional RAP detection techniques, 

including those based on MAC addresses and SSIDs, have become less effective as attackers adopt sophisticated methods 

to bypass these defenses.  
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While several studies have proposed RAP detection methods, many rely on complex network monitoring or require 

administrative control, making them unsuitable for regular users. Moreover, few approaches ensure user anonymity 

during detection, a critical requirement in modern network environments. Additionally, most detection methods focus 

on identifying RAPs but do not provide mechanisms to detect RAPs that have initiated de-authentication attacks. To 

address these gaps, this research proposes a lightweight, user-friendly tool, the Invisible Scout, that allows users to 

independently detect RAPs without needing administrative monitoring or additional hardware. Leveraging beacon 

frames from Wi-Fi APs, the proposed approach maintains user anonymity and secures networks against advanced RAP 

threats, including de-authentication attacks. 

This research proposes a simple, user-friendly method for detecting and identifying RAP in Wi-Fi networks. In this 

context, the key features include 1) no requirement for network administration monitoring, 2) allowing Wi-Fi users to 

conduct detection independently, 3) not requiring connection to any AP for detection, 4) effectively securing the network 

from RAP, and 5) maintaining user identity confidentiality. It is essential to know that this solution significantly 

improves network security without compromising user convenience or privacy. Based on the proposed solution, the 

following contributions are made through this research. 

 Since user anonymity or invisibility should be maintained, detection using layer 3 and above methods is not 

feasible. Therefore, the solution relies on a layer 2 method, leveraging beacon frames from each AP in the network. 

 While MAC addresses and SSIDs no longer serve as the primary solutions in determining rogue or legitimate AP, 

other features in beacon frames are required for RAP detection. 

 Administrators cannot monitor the network 24/7, and despite user invisibility, users are expected to detect RAP 

independently detect RAP. 

 Detection signifies distinguishing whether the AP is legitimate or rogue and identifying the source of the RAP 

connection using existing network infrastructure or its connection. A framework that can accommodate both is 

required for this detection. 

 In detecting RAP, users are not required to use additional hardware; only existing wireless interfaces, coupled with 

the lightweight prototype offered, namely invisible scout, are required. 

 The invisible scout will be tested in three scenarios to determine its reliability. These include examining it in 

controlled environments, open spaces, and conditions where RAP has already initiated de-authentication against 

legitimate AP. 

The remainder of the research is organized as follows. Section II primarily discusses related work, and Section III 

elaborates on the framework of the invisible scout and the features of layer 2 used in this exploration. Furthermore, 

Section IV describes the experimental design used, and Section V provides detailed results and discussions, including 

testing outcomes. Finally, Section VI explains the conclusion and reviews future research directions. 

2- Literature Review 

2-1- Introduction to Rogue Access Point (RAP) 

A RAP is an unauthorized wireless access point connected to a network without the permission or knowledge of the 

network administrator. RAPs pose a significant security threat, as malicious actors can exploit them to intercept network 

traffic, steal sensitive information, or launch attacks on legitimate users [14]. With the growing reliance on wireless 

networks, particularly in enterprise environments, RAPs have become a major concern for organizations due to the 

vulnerabilities they introduce. In modern research, RAP detection has progressed beyond traditional manual methods, 

shifting towards automated anomaly detection, machine learning, and intrusion detection systems. These contemporary 

approaches focus on enhancing accuracy and scalability, especially in large and complex networks [15]. Research has 

explored various theoretical models to analyze beacon frames, monitor network traffic patterns, and detect anomalies 

indicating the presence of RAPs. The RAPs can be categorized based on their deployment and intent [16]: 

 Internal RAP: This type of RAP is installed by an internal employee or user, intentionally or accidentally, without 

malicious intent. It often occurs when users set up wireless routers within an organization's network to bypass 

security policies. Even without malicious intent, internal RAPs weaken security protocols, exposing the network 

to potential attacks due to their lower security configurations. 

 External RAP: Unlike internal RAPs, external RAPs are set up by attackers outside the organization, often to trick 

users into connecting to the RAP. These APs commonly mimic the SSID of legitimate networks (a tactic known 

as "Evil Twin" attacks). External RAPs are particularly dangerous as they can capture user data, including 

passwords and sensitive transactions, and enable man-in-the-middle (MITM) attacks or inject malware into the 

network. 
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 Compromised Authorized AP: This type of RAP starts as a legitimate AP but becomes compromised by an attacker. 

Often, attackers exploit weak security settings or default credentials to hijack the AP. Since it is a legitimate AP, 

compromised devices can be harder to detect. Once compromised, attackers can inject malicious traffic or use the 

AP as a launching point for further attacks on the network. 

 Evil Twin AP: An Evil Twin AP is a type of RAP where an attacker sets up an access point with an identical SSID 

and security settings as a legitimate AP to deceive users into connecting to it. Once users connect, the attacker can 

intercept sensitive data, carry out MITM attacks, or direct users to malicious websites. 

 Misconfigured AP: A misconfigured AP is a legitimate access point improperly configured due to human error or 

a software malfunction. This misconfiguration can classify it as RAP, as it weakens network security by using 

default passwords, weak encryption, or incorrect channel settings. Such APs expose the network to attacks and 

unauthorized access. 

 Soft AP (Virtual AP): A Soft AP is created using software, such as a laptop or mobile device acting as a wireless 

hotspot. Although often used for convenience, these APs can become unauthorized RAPs if connected to a secure 

network without permission. Soft APs bypass network security controls, allowing unauthorized devices to connect 

and communicate within the network. 

2-2- Previous Research 

Many explorations have conducted research to identify RAP and address the threat it poses, while some have 

developed the bots as intrusion detection systems [9], but some explorations select node profiling based on predetermined 

profiles and criteria to distinguish between RAP and legitimate AP [17]. Concerning this, some explorations have 

identified RAP by detecting anomalies in recorded data packets, called packet auditing [18], providing answers. Previous 

research on RAP detection has been categorized in Table 1, showing that RAP identification using software is the most 

commonly used method due to the cost efficiency and the participation of other fields of knowledge. This method used 

existing hardware and additional software, while using dedicated hardware, though possible, was not often used in RAP 

detection [19].  

In RAP detection, features from layers 1, 2, and 3 of the OSI model can be critical in identifying anomalies. Layer 1 

(Physical Layer) provides features such as signal strength (RSSI) and transmission frequency, which can help detect 

unauthorized devices broadcasting from unusual locations or with atypical signal patterns. Layer 2 (Data Link Layer) 

includes features like MAC addresses, organizationally unique identifiers (OUIs), and frame types, which allow for 

identifying suspicious devices based on discrepancies in hardware addresses or unusual packet behavior. Layer 3 

(Network Layer) focuses on IP addresses and routing information, where unauthorized access points might exhibit 

abnormal IP configurations or inconsistencies in routing protocols [20]. 

The first classification of RAP identification is using node profiling. Node profiling involves creating predefined 

profiles or criteria for legitimate APs in the network. These profiles could include attributes such as signal strength, 

MAC address, packet tracing, or other possible features. The system can distinguish between legitimate and rogue by 

comparing live data from APs against these profiles. Research from Jain et al. [21] highlights the threat of Evil Twin 

(ET) RAPs infecting Android devices before data transmission. ETGuard, a proposed real-time detection system, uses 

beacon frame fingerprints to identify ETs pre-association and sends de-authentication frames to block client connections. 

Tested in 12 scenarios, ETGuard showed high detection accuracy. 

Meanwhile, Hsu et al. [22] addressed detecting rogue APs using 3G/4G connections, which evade traditional 

detection methods. RAP Finder (RAF) relies on reverse traceroute data for detection, eliminating the need for special 

hardware. The study in VanSickle et al. [23] demonstrates the ease with which malicious actors can set up RAP using 

tools like Aircrack-ng, Kismet, and inSSIDer. These tools effectively detect RAP through network monitoring. Similarly, 

Bodhe et al. [24] proposed a neuron-fuzzy method combining neural networks and fuzzy logic to secure wireless sensor 

networks in real-time. In Jang et al. [25], PrAP-Hunter detects hardware-based RAPs (PrAPs) by introducing intentional 

channel interference, achieving near-perfect accuracy. 

The other study from Hsu et al. [26] proposes Legal Access Point Finder (LAF) for Wi-Fi users, a passive solution 

that identifies legitimate APs by analyzing TCP packet forwarding without active probing. Shrivastava et al. [27] 

introduced EvilScout, using Software-Defined Networking (SDN) to detect RAPs based on IP-prefix analysis, showing 

high accuracy in real-world tests. Similarly, Lu et al. [28] proposed BiRe, which detects Evil Twin attacks by monitoring 

TCP SYN-ACK packets, achieving 100% detection accuracy. Research from Agyemang et al. [9] targets WiFi-enabled 
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IoT devices, proposing a lightweight, real-time algorithm based on information-theoretic principles to distinguish 

between legitimate and RAP. At the same time, Igarashi et al. [29] improved detection in unstable traffic environments 

using Address Resolution Protocol (ARP) failures. Lastly, Bello & Kanu [30] exposed vulnerabilities in GSM networks, 

such as base station spoofing and IMSI catching, using open-source tools to demonstrate the ease of attacks due to one-

way authentication. 

The second classification, packet auditing, involves analyzing and monitoring data packets transmitted across the 

network to detect anomalies, such as unusual packet headers, unexpected traffic flows, or irregular transmission patterns, 

which could indicate the presence of a RAP. Wi-Fi networks are particularly vulnerable to impersonation attacks from 

RAPs mimicking legitimate devices' SSIDs and MAC/IP addresses. To counter these threats, researchers propose various 

detection methods. For instance, Liu et al. [31] leveraged channel state information (CSI) to identify rogue devices based 

on non-linear phase errors, achieving 96% accuracy and a false alarm rate below 2%. Meanwhile, Lu et al. [32] addressed 

evil twin attacks (ETAs) using Special Length Frames Arrival Time (SLFAT), a client-side method that detects ETAs 

by monitoring frame arrival times. 

In mobile scenarios, Kitisriworapan et al. [33] suggested using round-trip time (RTT) and transmission rates to detect 

RAPs, yielding an F-measure of 0.9. Sankhe et al. [34] reduced Wi-Fi latency and improved spectrum efficiency with 

CSI scan, which embeds discovery information in regular AP transmissions. For passive device identification, Delgado 

et al. [35] introduced the IRID framework, using machine learning to distinguish devices with over 99% accuracy. For 

practical RAP detection, Korolkov & Kutsak [36] used RSSI-based cluster analysis and trilateration, localizing RAPs 

with a 1.5-meter error margin. To address privacy concerns, Alyami et al. [17] demonstrated how encrypted Wi-Fi traffic 

can reveal IoT device information with 95% accuracy. Lu et al. [37] proposed PEDR, which improves detection accuracy 

by mitigating phase error drift in CSI. 

Machine learning is also employed by Kim et al. [38] to analyze RTT values, where the Decision Tree classifier 

showed the highest accuracy. In IoT environments, Yang et al. [39] used DL-PEDR, a deep-learning approach, to achieve 

a 96.6% RAP detection rate. Additionally, Liu & Papadimitratos [40] leveraged Wi-Fi positioning to detect RAPs by 

identifying inconsistent RSSI measurements. For enhanced security, Jing et al. [41] combined zero-trust architectures 

with radio frequency fingerprint (RFF) authentication, achieving 99% accuracy. Finally, Zhang et al. [42] presented a 

deep-learning RFF framework for IoT device authentication, with a 90.23% RAP detection rate and reduced time 

overhead by 58%. 

The last classification is bot setup. In this context, "bots" refer to software agents that are part of an intrusion 

detection system (IDS) designed to monitor network traffic for malicious activities like RAPs. These bots 

automatically analyze network behaviors and flag suspicious patterns that indicate the presence of a RAP. The bots 

continuously scan the network for threats and can respond in real-time by alerting administrators or taking actions to 

mitigate the threat. Typically, these bots operate in a distributed or centralized manner, depend ing on the network 

configuration. 

The vulnerability of Wi-Fi networks to RAP attacks, including evil twin attacks where attackers spoof legitimate 

access points to deceive clients, is a significant concern. To address this, Jain et al. [21] proposed a Discrete Event 

System (DES)-based Intrusion Detection System (IDS), which provides a scalable and cost-effective solution for 

detecting these attacks. In response to the challenge of covering multiple locations, Hsu et al. [22] introduced a UAV-

based detection system that leverages the high mobility of drones combined with software-defined radio (SDR) to 

enhance detection efficiency and coverage. Additionally, White & Sjelin [43] tackled the issue of rogue software updates 

in JavaScript packages, where malicious code is concealed within legitimate updates, by presenting RogueOne—a 

system that utilizes differential data-flow analysis and abstract interpretation to detect these updates with up to seven 

times greater accuracy than other systems, reducing false positives significantly. 

The various methods for detecting RAP in wireless networks signified server-side and client-side detection methods. 

Layer 2 methods, typically MAC-based, often enabled anonymous detection. Moreover, several advanced methods have 

been proposed, including SLFAT, which uses machine learning to identify malicious packet arrivals, and PrAP-Hunter, 

which interferes with AP communication to detect RAP with high accuracy. Other important methods included 

combining fuzzy logic with neural networks, leveraging SDN capabilities with EvilScout, and using lightweight 

algorithms for IoT devices. Additionally, research showed the potential of received-signal-strength-based localization 

and ARP failure detection under MAC address duplication. Despite some methods requiring specialized hardware, many 

innovative solutions, such as IRID for secured device identification and profiling IoT devices through encrypted Wi-Fi 

traffic, showed high detection accuracy and efficacy in various scenarios. 
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Table 1. Comparison of Previous Work 

No. Research Actor 
Anonymous 

Probing 

Dedicated 

Hardware 
Classification 

Aim 

Features 
Detection 

1 Jain et al. [21] Client No No Node profiling Layer 2 Immediate 

2 Liu  et al. [31] Server Yes No Packet auditing Layer 1 Data-oriented 

3 Hsu  et al. [22] Client No No Node profiling Layer 3 Immediate 

4 Lu et al. [32] Client Yes No Packet auditing Layer 2 Data-oriented 

5 Selvarathinam et al. [44] Server No No Bots setup Layer 2 Data-oriented 

6 Wang et al. [45] Server Yes Yes Bots setup Layer 1 Immediate 

7 VanSickle et al. [23] Client Yes No Node profiling Layer 2 Immediate 

8 Kitisriworapan et al. [33] Client No No Packet auditing Layer 3 Data-oriented 

9 Bodhe et al. [24] Client Yes No Node profiling Layer 2 Data-oriented 

10 Sankhe et al. [34] Server Yes No Packet auditing Layer 1 Data-oriented 

11 Jang et al. [25] Client Yes Yes Node profiling Layer 2 Immediate 

12 Hsu et al. [26] Client No No Node profiling Layer 3 Immediate 

13 Delgado et al. [35] Server Yes Yes Packet auditing Layer 2 Data-oriented 

14 Shrivastava et al. [27] Client Yes No Node profiling Layer 2 Immediate 

15 Lu et al. [28] Client No No Node profiling Layer 2 Immediate 

16 Agyemang et al. [9] Client Yes No Node profiling Layer 2 Immediate 

17 Igarashi et al. [29] Client Yes No Node profiling Layer 2 Immediate 

18 Korolkov & Kutsak [36] Client Yes No Packet auditing Layer 2 Data-oriented 

19 Alyami et al. [17] Client Yes Yes Packet auditing Layer 2 Data-oriented 

20 Lu et al. [37] Client Yes No Packet auditing Layer 1 Data-oriented 

21 Kim et al. [38] Client No No Packet auditing Layer 3 Data-oriented 

22 Yang et al. [39] Client Yes No Packet auditing Layer 1 Data-oriented 

23 Bello and Kanu [30] Client Yes Yes Node profiling Layer 1 Immediate 

24 Liu & Papadimitratos [40] Client Yes No Packet auditing Layer 1 Data-oriented 

26 Sofaer et al. [46] Server No No Bot setup Layer 3 Immediate 

27 Jing et al. [41] Server No No Packet auditing Layer 1 Data-oriented 

28 Zhang et al. [42] Client Yes Yes Packet auditing Layer 1 Data-oriented 

3- Proposed Methods 

This research leveraged the National Institute of Standards and Technology (NIST) Cybersecurity Framework due to 

the comprehensive method to identify, protect, detect, respond to, and recover from various cybersecurity threats [47]. 

Given the complexity of RAP and other cybersecurity risks, this systematic method thoroughly addressed all critical 

factors [43]. Additionally, the NIST framework was widely recognized as an industry-standard in public and private 

sectors, facilitating risk management and supporting best practices. NIST provided valuable guidance for implementing 

cybersecurity measures aimed explicitly at RAP identification and mitigation [48]. 

 

Figure 3. NIST Framework 



Emerging Science Journal | Vol. 9, No. 1 

Page | 290 

In the identify phase, a new strategy to uncover the presence of RAP was essential. This phase used software-based 

identification to maintain efficiency when probing surrounding APs, eliminating the specialized hardware requirement. 

Additionally, an anonymous method using anomaly detection was preferred to identify irregularities. Anonymous 

probing ensured that users or clients were not required to pair with any AP on the network. Moreover, the client-side 

scenario offered several advantages over relying solely on network administrators to identify RAP. Public spaces, such 

as the MMU Hostel, the Melaka Sentral bus station, the postgraduate (PG) corridor, and KLIA1 airport, were used for 

data collection. These locations were selected due to their ease of access and high probability of being detected by a 

wireless device as having a significant amount of APs. The goals were to assess the complexity of the wireless network 

environment and locate any possible multiple APs. 

In the protect phase, anonymous probing was selected to improve client security for several important reasons, which 

included preventing RAP from being alerted, which was crucial as RAP, often set up by attackers, monitored network 

traffic and retaliated when probing was detected. In this context, anonymous probing also protected the personal 

identification of clients by preventing the exposure of device-specific identifiers that malicious actors could use to track 

and aim clients. The probing ensured client anonymity, reducing the risk of being aimed at by RAP. Furthermore, 

anonymous probing allowed clients to gather information about nearby APs without direct interaction, enabling a safer 

evaluation of potential security threats without drawing attention. 

Client participation in detecting RAP improved security by leveraging the ability to spot unusual Wi-Fi networks, 

providing crucial information that might otherwise go undetected. Consequently, customers could promptly notify 

network administrators of unauthorized AP, enabling swift threat mitigation. Clients' mobility offered a broader detection 

range, uncovering unlawful networks in areas administrators might miss. Additionally, the customer's diverse device 

connections provided valuable data for developing comprehensive security measures. This method also increased client 

awareness about security risks and promoted best practices for safe Wi-Fi usage. Beyond the client-side scenario, the 

software-based method required a new perspective. Unlike previous explorations in Table 1, this proposed method 

combined node profiling and packet auditing. Node profiling compared legitimate AP profiles stored in the database 

with suspected RAP, while packet auditing determined anomalies or differences in the beacon frames. This method 

aimed to help clients anonymously and passively distinguish between legitimate AP and RAP profiles based on 

differences in the beacon frames obtained. 

Three major categories of features were used to detect anomalies in beacon frames and identify RAP, including layer 

1, 2, and 3 features, as shown in Figure 4. Layer 3 features, including Inter-Arrival Time (IAT), Round-Trip Time (RTT), 

IP address, TCP handshake, traffic analysis/Quality of Service (QoS), and encrypted packet streams, were not feasible 

for anonymous and passive RAP detection. Moreover, this feasibility was due to the features being only accessible until 

the client was associated with AP, compromising the customer's identity. 

Layer 1 features, such as radio signals and Received Signal Strength Indicator (RSSI) elements, enabled anonymous 

and passive RAP identification. Previous explorations used RSSI and radio signals to locate AP and identify legitimate 

or rogue features. However, despite the advantage of maintaining client confidentiality, using RSSI values for distance 

mapping had limitations due to susceptibility to noise, multipath fading, and interference, leading to significant 

fluctuations in received signal strength. 

The research focused on layer 2 features, which operated at the Data Link layer of the OSI model and could be 

obtained through anonymous and non-anonymous probing. IAT, SSID, RTT, and security information were obtained 

through prominent or active probing. Additionally, some other layer 2 features could not be easily imitated and might 

show the identity of AP. These features included retry bit, IBSS (Independent Basic Service Set) status, Addresses 1-4, 

and Organizationally Unique Identifier (OUI) number/manufacturer ID. Moreover, this research used the features as 

essential information to identify RAP. 

The retry bit contained an essential clue for identifying RAP attacks, and every frame transmitted for the first time 

had this bit set to 0. When the frame was lost (no acknowledgment was received or de-authenticated), it was retransmitted 

with the bit set to 1. Furthermore, IBSS status provided information concerning the connection used by RAP when 

launching an attack, using a private connection such as a modem or existing infrastructure. 

Address 1-4 provided important information for RAP detection, with 1 containing the client MAC address, 2 being 

BSSID, 3 containing the MAC address of AP, and 4 being unused. In the case of RAP, the attacker cloned the MAC 

address of the genuine AP, enabling the address 2 and 3 fields to be easily manipulated. It should be acknowledged that 

some RAP cases used address 4 while retransmitting the packet. OUI, or manufacturing ID, was also used to detect the 

presence of RAP, as OUI was a manufacturing code that RAP could not modify. Moreover, there were differences in 

OUI value between a legitimate AP and RAP because it was distinctive. 
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Figure 4. Preferred Features (Green Boxes) 

The rogue detection phase using beacon frame anomalies consisted of two phases. The first phase was a legitimacy 
check, which aimed to determine whether AP was rogue or legitimate, and the second phase was to identify the 
connection used by RAP. Specifically, initial investigation showed that many RAPs used existing network connections. 
However, there were also a small number of RAPs providing individual connections with more limited resources to 
access victims' data. 

The proposed algorithm for detecting RAP consisted of two stages, as shown in Figure 5. The client conducted all 
processes anonymously to avoid association with any AP. The first stage was to check the legitimacy of AP using monitor 
mode, and the process commenced with probing requests. When there is no response after five attempts, AP might be 

rogue. However, when AP responded, the frame response was captured, and features such as Addresses 1-4, OUI 
number, retry bit, and IBSS status were extracted and saved. Another request was then sent to the same network to verify 
AP. When the features from both checks matched, AP was legitimate; otherwise, it was rogue. 

In the second stage of the detection process, the connection source of RAP was determined. This determination 
included checking two parameters, namely retry bit and IBSS status. Specifically, when the retry bit was set to 1, and 
IBSS status showed ESS, it implied that RAP was using existing infrastructure. Meanwhile, when the retry bit was 0, 
and the IBSS status was set to independent/IBSS, it showed that RAP was operating on a private connection. 

To validate the effectiveness of the proposed identification algorithm for detecting RAP through anomaly detection 
in beacon frames, examinations were conducted under various conditions in three scenarios: controlled setup, real 
environments, and a de-authentication attack as part of the response and recovery phase. Additionally, these 

environments featured multiple legitimate APs and one or more RAPs. Wi-Fi adapters capable of capturing and 
analyzing beacon frames were used. The primary inputs for the examination were beacon frames transmitted by both 
rogue and legitimate APs, collected continuously in the testing period. Furthermore, preprocessing of the collected data 
included extracting relevant features from beacon frames, including address fields (Addresses 1-4), OUI numbers, retry 
bits, and IBSS status. 

Anomaly detection algorithms in Invisible Scout were applied to the features using Scapy and Python to identify 
anomalies indicative of RAP. The method distinguished between rogue and legitimate by comparing the detected 
anomalies from the initial and subsequent responses. Moreover, performance evaluation included visualizing the results 

to show the method's effectiveness in identifying RAP. The acceptance criteria focused on accurately identifying RAP 
with minimal false positives. In addition, acknowledging the potential influence of environmental factors on testing 
outcomes, iterative testing was performed to refine the algorithm and ensure the toughness across various conditions. 
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Figure 5. The Whole Anomaly Identification Algorithm for Invisible Scout               

4- Result and Discussion 

4-1- System Design 

The proposed mechanism of the invisible scout is shown in Figure 6. The Invisible Scout system for RAP 

identification uses a modular approach with four key components: Sniffer, Detection, Probing, and Comparison, all 

working together to ensure accurate RAP detection. The system begins with the Sniffer module, which passively 

monitors the network by capturing beacon frames from both legitimate and rogue sources. It gathers critical features 
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such as Address 1-4, OUI Number, Retry Bit, and IBSS Status from any AP within its range. Once the information is 

collected, it is forwarded to the Detection and Comparison modules for further analysis. The sniffer's continuous 

monitoring ensures that all APs, whether legitimate or suspicious, are detected. 

 

Figure 6. The Proposed Mechanism for Invisible Scout 

The Detection module processes the data received from the sniffer and analyzes the extracted features to assess the 

authenticity of the APs. By comparing the AP's characteristics with a database of known legitimate APs, the Detection 

module can identify potentially suspicious access points that exhibit signs of rogue behavior. If an AP is flagged as 

suspicious, the Detection module triggers further verification by passing the data to the Comparison module for more 

thorough inspection. The Comparison module plays a critical role by validating the Detection module's findings. It 

compares the suspicious AP's features and those of known legitimate APs stored in the database. RAPs often manipulate 

specific features to imitate legitimate APs, but if the AP fails this comparison, it is flagged as a RAP. The Comparison 

module then informs the Probing module to conduct additional active verification. 

The Probing module initiates active measures to confirm the legitimacy of flagged APs by sending probe requests 

to the suspected RAPs. Legitimate APs typically respond predictably, whereas RAPs may exhibit anomalies in their 

responses. The Probing module gathers these response patterns and shares the results with the Detection and 

Comparison modules, further refining the RAP identification process. Once the entire process is complete, the results 

are stored in a central database and accessible to the client. Clients can scan the network anytime and receive 

notifications regarding potential rogue APs. This interactive system ensures that users remain constantly informed of 

any network threats. 

Based on the proposed mechanism, the process of identifying RAP by invisible scout is shown in Figure 7. The 

process commenced with the "Get Response" step, which included collecting data or responses from the network. 

Furthermore, this data was later used in the "AP Detection" and "AP Comparison" steps, where AP was detected 

and compared against known or legitimate AP. The "Scan Network" step was also included, showing that the 

network was actively scanned for AP. Probing was used to analyze the surrounding AP in the network, and sniffing 

was performed to gather more information about AP. Moreover, the collected data was then stored, as shown by the 

"Store Data" step. The final steps included obtaining notifications, viewing RAP, and legitimate AP, which were 

presented to the client. This process allowed the client to be informed about the presence of RAP and perform 

necessary actions. 
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Figure 7. The Identification Process of RAP for Invisible Scout 

4-2- Testing Scenario 

This research included examining three cases. The first case involved a controlled setting in the postgraduate research 

lab at the Faculty of Information Science and Technology, Multimedia University. The second case involved a real-

world setting in several public areas, including a university area. The third case also involved a real-world setting in a 

public area but with the addition of a de-authentication attack on several randomly selected legitimate APs. This attack 

may forcibly disconnect clients from an AP by sending fraudulent de-authentication frames, as shown in Figure 12 [49]. 

Within this framework, the controlled environment allowed for precise control and detailed analysis, as shown in Figure 

8. Meanwhile, the real-world environment provided an understanding of how the phenomenon behaved outside 

controlled conditions. In the controlled setup, a RAP machine, a legitimate AP, and two clients (one surveillance and 

one regular) were used, as seen in Figure 8. Specifically, the RAP machine simulated an unauthorized AP, the legitimate 

AP represented an authorized Wi-Fi network, and the clients attempted to connect to any available network, with the 

surveillance client monitoring network activity and security vulnerabilities. 

 

Figure 8. Controlled Setup 

In the second and third experiments, conducted in an open environment, several locations were selected, including 

the postgraduate (PG) corridor, MMU Hostel, Melaka Sentral bus station, and KLIA1 airport. These locations were 

selected for their accessibility and the likelihood of discovering a substantial number of APs using a wireless device. By 

experimenting in these areas, the aim was to assess the complexity of the wireless network environment and the potential 

presence of multiple APs. The Free Space Path Loss (FSPL) Model was used to estimate the effective distance between 

the AP and the user for effective distance in all testing scenarios. 

𝐹𝑆𝑃𝐿 = 20𝑙𝑜𝑔10(𝑑) + 20𝑙𝑜𝑔10(𝑓) + 20𝑙𝑜𝑔10 (
4𝜋

𝑐
)  (1) 

FSPL was measured in decibels (dB), and variable d represented the distance between AP and the user in meters (m). 

f was the signal frequency in Hertz (Hz), and the speed of light (c) was approximately 3×108 meters per second (m/s). 
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Using Equation 1, detecting more than ten wireless devices broadcasting beacon frames during the initial scanning at 

each location, as shown in Figure 9, using a Wi-Fi analyzer, showed a dense network environment with various APs 

competing for connections. However, using monitor mode to detect wireless devices and beacon frames showed more 

than 30 AP at each location from both 2.4 GHz and 5 GHz frequencies. 

 

Figure 9. Initial Wi-Fi Scanning for Open Environment 

RAP was initialized with desired settings by developing and configuring the hostapd module, which managed RAP 

and was set up with parameters such as SSID, channel, and encryption settings. Subsequently, after initialization, RAP 

was broadcasted by running the hostapd module as a service or background process, continuously sending beacon frames 

with AP information. After clients connected, the module handled the authentication and association, and when the 

MITM module was enabled, it performed attacks such as ARP spoofing on connected clients. Additionally, a function 

created beacon frames containing fields such as SSID, BSSID, channel, and encryption details, reviewing these steps in 

the pseudocode provided in algorithm 1. 

Algorithm 1. Deploying RAP and Perform Broadcasting 

# Start RAP and begin broadcasting 

function start_rogue_ap() 

    run Hostapd as a service or background process 

while Hostapd is running 

    beacon_frame = create_beacon_frame 

    broadcast beacon frame to network 

    if there are clients connected 

        handle_client_connection 

    end if 

    wait for some time 

end while 

end function 

 

# Create a beacon frame with the AP information 

function create_beacon_frame(ap_info) 

    frame = new BeaconFrame() 

    frame.setSSID(ap_info.ssid) 

    frame.setMACAddress(ap_info.mac_address) 

    frame.setChannel(ap_info.channel) 

    frame.setEncryption(ap_info.encryption) 

    frame.setTimestamp(current_time) 

    frame.setInterval(beacon_interval) 

    // Add other necessary beacon frame fields 

    return frame 

end function 

 

# Clean up and stop the rogue AP and MITM module 

function stop_rogue_ap() 

    stop Hostapd service 

end function 
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Some clients, acting as invisible scouts, conducted probing activities to analyze the surrounding network area. The 

image in Figure 10 was a simple diagram showing the probe request and response process in computer networking. After 

performing RAP identification and probing activities, the next step included sniffing to gather information about any AP 

on the network, legitimate or rogue. The pseudocode provided in Algorithm 2 started by setting up a sniffer environment 

and importing necessary libraries such as scapy for packet sniffing and mysql.connector for database connectivity. 

Moreover, immediately after the required modules were imported, the code initialized a connection to the MySQL 

database, which stored information about anomalous beacon frames detected during the surveillance process by the 

client. 

 

Figure 10. Probing Process Diagram 

Algorithm 2 defined four functions to detect anomalies in different fields of beacon frames. These functions included 

‘check_address_fields’ verified when Address 1-4 fields conformed to standards, ‘check_oui’ extracted OUI from 

BSSID and checked when it was approved, ‘check_retry_bit’ ensured retry bit in Frame Control field was set correctly, 

and ‘check_ibss_status’ checked IBSS status in the beacon frame. Additionally, the main sniffing loop continuously 

captured beacon frames using Scapy, running the four anomaly detection functions on each frame and flagging any that 

failed the checks as anomalous. These anomalous frames were stored in the MySQL database for further analysis. 

Relating to this process, the pseudocode also included a section for reporting and analysis, allowing for querying, 

analyzing, and reporting on the stored anomalous beacon frames to identify the presence of RAP on the network. 

Algorithm 2. Sniffing, Extracting, and Analyzing Beacon Frames 

# Set up the sniffer 

Import libraries (scapy, mysql.connector) 

Initialize MySQL connection 

 

# Define anomaly detection functions 

function check_address_fields(beacon_frame): 

    Check if Address 1-4 fields are valid and conform to standards 

    return True if valid, False otherwise 

 

function check_oui(beacon_frame): 

    Extract OUI from BSSID 

    Check if OUI is on the approved list 

    return True if approved, False otherwise 

 

function check_retry_bit(beacon_frame): 

    Check if the Retry bit in the Frame Control field is set incorrectly 

    return True if set correctly, False otherwise 

function check_ibss_status(beacon_frame): 

    Check if the IBSS status is set correctly 

    return True if set correctly, False otherwise 

 

# Main sniffing and analysis loop 

while True: 

    Sniff for beacon frames using scapy 

    for each beacon frame: 

        if not check_address_fields(beacon_frame): 

            Flag as anomalous 

        if not check_oui(beacon_frame): 

            Flag as anomalous 

        if not check_retry_bit(beacon_frame): 

            Flag as anomalous 

        if not check_ibss_status(beacon_frame): 

            Flag as anomalous 

    Store in MySQL database 

 

# Reporting and analysis 

Query MySQL database for anomalous beacon frames 

    Analyze and report on detected anomalies 
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As the character of RAP was to copy a legitimate AP, the code in Algorithm 3 served as a configuration file for the 

hostapd module, a user-space daemon software for wireless AP. For research purposes, this code was used to replicate 

the behavior of RAP from a legitimate AP. Furthermore, the code sets the parameters for creating a Wi-Fi AP using a 

specified interface (wlan0) and driver (nl80211). The operation mode was set to 'a' for AP mode, showing that the device 

functioned as an AP. The mode further specified the channel (channel=36) on which to operate, determining the 

frequency band for wireless communication. 

SSID was the Wi-Fi network's name broadcasted to users' devices and was set to "MMU2" in this example. 

Additionally, the configuration included settings for enabling the 802.11n standard (ieee80211n=1) to provide faster Wi-

Fi speeds. Security settings were also configured, specifying a WPA/WPA2 passphrase (wpa_passphrase= 

MySecurePassword) to encrypt the network traffic. The authentication algorithm (auth_algs) was set to 1, showing the 

use of WPA authentication, while encryption protocols (wpa, wpa_key_mgmt, rsn_pairwise) were defined to ensure 

secured communication between the AP and connected devices. 

Algorithm 3. A RAP Mimicking Legitimate AP 

# Set the interface to use 

interface=wlan0 

 

# Set the driver to use 

driver=nl80211 

 

# Set the operation mode (a = AP mode) 

hw_mode=a 

 

# Set the channel to use 

channel=36 

# Set the SSID (Wi-Fi network name) 

ssid=MMU2 

 

# Enable 802.11n 

ieee80211n=1 

 

# Set the WPA/WPA2 passphrase 

wpa_passphrase=MySecurePassword 

 

# Use WPA authentication 

auth_algs=1 

# Specify encryption/authentication 

wpa=2 

wpa_key_mgmt=WPA-PSK 

rsn_pairwise=CCMP 

When a client attempted to connect to an available AP through Wi-Fi, the customer would first enable a Wi-Fi adapter. 

However, this process became vulnerable in the presence of RAP among legitimate APs in the network. Attackers 

intentionally deployed RAPs to confuse clients, often leading customers to associate with the wrong AP, including RAPs 

with stronger signals. Following the discussion, this association unwittingly granted attackers access to sensitive 

information or credentials. Multiple SSIDs labelled 'MMU 2' were visible, deliberately acting as RAP (painted in 

yellow), as shown in Figure 11. Clients were deceived by the perceived benefits of RAP, such as improved signal strength 

and lack of authentication requirements. However, unknown to the client, associating with RAP exposed all transmitted 

data, potentially compromising valuable or confidential information to malicious interception. 

We developed based on the second scenario for the third scenario but added a de-authentication attack, which we 

launched on random legitimate APs, as shown in Figure 12. In this scenario, we allowed the RAP to perform its attack 

to deceive clients, with the goal that the invisible scout could distinguish between the legitimate AP and the RAP, even 

after the RAP had attacked the legitimate AP. Based on the algorithm 4 for the de-authentication attack, The interface 

refers to the network interface used for sending packets, typically a wireless interface like 'wlan0'. The 

target_access_point_mac is the MAC address of the access point we intend to disrupt, while the target_client_mac is the 

client's MAC address connected to this access point. Packet_count denotes the number of de-authentication packets to 

be sent. The send_deauth_packets function is responsible for repeatedly sending these de-authentication packets. The 

deauthentication_frame function creates a de-authentication frame with the necessary parameters, such as the destination, 

source, BSSID, and reason code, to facilitate the attack. 



Emerging Science Journal | Vol. 9, No. 1 

Page | 298 

 

Figure 11. RAP Setup Seen By Client 

 

Figure 12. Deauthentication Attack Scenario 
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Algorithm 4. Deauthentication Attack 

begin 

    set interface to 'wlan0' 

    set target_access_point_mac to 'xx:xx:xx:xx:xx:xx' 

    set target_client_mac to 'yy:yy:yy:yy:yy:yy' 

    set packet_count to 1000 

 

    function send_deauth_packets: 

                 

        for i from 1 to packet_count: 

            create deauth_packet to deauthentication_frame  

            send deauth_packet using the interface 

            print "de-authentication packet sent", i, "of", packet_count 

            wait for a short interval 

    

    function deauthentication_frame(ap_mac, client_mac): 

        frame = { 

            "type": "management", 

            "subtype": "deauthentication", 

            "destination": client_mac, 

            "source": ap_mac, 

            "bssid": ap_mac, 

            "reason_code": 7  # class 3 frame received from nonassociated sta 

        } 

        return frame 

 

    call send_deauth_packets 

end 

4-3- Testing Result and Evaluation 

As mentioned in point B, testing was conducted in three scenarios: a controlled setup, an open environment, and an 

open environment with a de-authentication attack. In all scenarios, the invisible scout could distinguish between RAPs 

and legitimate APs, marked in blue, as seen in Figure 13. We conducted several experiments across the three defined 

scenarios to collect and evaluate identification results using the decision tree algorithm, confusion matrix, linear 

regression, and evaluation metrics.  

 

Figure 13. The Main Interface of Invisible Scout 
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The decision tree model was selected for this study due to its interpretability and effectiveness in handling datasets 

with categorical features, such as those used to identify RAPs. The decision tree's strength lies in providing clear insights 

into feature importance. It is critical to distinguish legitimate APs from RAPs based on parameters like OUI Number, 

Retry Bit, and IBSS Status. Additionally, decision trees can handle non-linear relationships, making them effective in 

complex scenarios across various network environments. 

Other classification algorithms were considered, including Random Forest, Support Vector Machine (SVM), and 

Logistic Regression. Random Forest improves accuracy by averaging multiple decision trees, reducing overfitting, but 

it is computationally intensive and less interpretable than a single decision tree. SVM is powerful for high-dimensional 

data, especially when decision boundaries are clear, but its lack of interpretability and more significant computational 

requirements make it less ideal for this study. While simple and efficient for binary classification, Logistic Regression 

is less effective at capturing complex relationships in multi-class problems like distinguishing different types of APs. 

Ultimately, the decision tree model provided a desirable balance between simplicity, interpretability, and accuracy. Its 

visual structure enabled easier identification of key features and how they contributed to RAP detection, while its 

relatively low computational cost and firm performance in the study's evaluation metrics made it the optimal choice for 

RAP identification in this research. 

In the decision tree, we utilize Information Gain (IG) in the Decision Tree algorithm (2) to select the most informative 

attributes to separate the data. 

𝐼𝐺(𝐷, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) − ∑ (
|𝐷𝜗|

𝐷
. 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝜗))𝜗𝜖𝑣𝑎𝑙𝑢𝑒𝑠(𝐴)   (2) 

where IG(D, A) represents the Information Gain of attribute A concerning the dataset D. Entropy (D) measures the 

uncertainty or impurity within the entire dataset D. The term 𝜗 ∈ values(A) refers to each possible value of attribute A. 

𝐷𝜗 denotes the subset of the dataset D that has the value ϑ for attribute A. 
|𝐷𝜗|

𝐷
 is the proportion of the dataset D that 

corresponds to the value ϑ for attribute A. 

Figure 14 illustrates the decision tree results for the controlled setup, where network APs were categorized as either 

"legitimate" or "rogue" (unauthorized). The initial node, labelled "legitimate_ap," demonstrates that 52% of the instances 

were classified as legitimate APs, reflecting a relatively balanced dataset essential for developing a reliable model. The 

decision tree is divided into two main branches: one for legitimate APs and the other for rogue APs (RAPs). On the left 

branch, the decision tree model successfully identifies all instances as legitimate APs with 100% accuracy. This high 

accuracy likely stems from a critical distinguishing feature—presumably "legitimate_ssid"—which effectively 

differentiates legitimate APs from rogue ones. This feature at the root of the decision tree underscores its significance in 

discerning authorized from unauthorized network access. 

 

Figure 14. The Decision Tree Result for Controlled Setup 

The right branch of the tree, addressing RAPs, showcases greater complexity, with the "rogue_ssid" node 

demonstrating an 83.3% success rate in classifying RAPs. Although this is a strong performance, the 16.7% 

misclassification rate suggests a need for deeper analysis to refine the model's sensitivity to specific rogue characteristics. 

This branch is further divided based on the "retry_status," distinguishing different rogue behaviors. Specifically, APs 

with a "retransmission" status are uniformly classified as "rogue_ap_existing_infrastructure," implying that these are 

unauthorized APs leveraging the existing network infrastructure. Conversely, those without retransmission are identified 

as "rogue_ap_private_connection," indicating separate, potentially external network connections, like 4G modems. This 

nuanced classification by "retry_status" is crucial for security measures, offering insights into the operational methods 

of rogue APs and aiding in developing targeted security protocols.  
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A confusion matrix complements the decision tree above. Additionally, the metrics provided an overview of the 

model's classification performance on test data, as shown in Figure 15. 

 

Figure 15. The Confusion Matrix For Controlled Setup 

The confusion matrix results reveal that while the classification model excelled in identifying "legitimate_ap" and 

"rogue_ap_existing_infrastructure" with perfect accuracy, it faced significant challenges with the 

"rogue_ap_private_connection" class. All ten instances of "rogue_ap_private_connection" were misclassified as 

"rogue_ap_existing_infrastructure," indicating a critical area for improvement in the model's performance. This 

misclassification can be attributed to several interrelated factors. 

Firstly, substantial feature overlap may exist between "rogue_ap_private_connection" and 

"rogue_ap_existing_infrastructure." The features the decision tree uses, such as SSID and retry status, must be 

sufficiently distinctive to differentiate between these two classes. RAPs using private connections, such as 4G modems, 

exhibit similar characteristics to those utilizing existing infrastructure, complicating the model's ability to distinguish 

between them accurately. Secondly, the data representation might play a significant role in the misclassification. With 

only ten instances of "rogue_ap_private_connection," the model may have insufficient examples to learn the 

distinguishing patterns effectively. This small sample size could lead to insufficient generalization, where the model 

performs well on familiar data but needs help with unseen instances. 

In the next experiment conducted in an open environment, including scenarios involving a de-authentication attack, 

the Gini Index was utilized to assess the impurity or irregularity within the compiled dataset. This approach allowed for 

a systematic data evaluation, facilitating the identification of the most effective splits at each node in the decision tree. 

By leveraging the Gini Index, the method ensured that the optimal decision boundaries were determined, enhancing the 

model's ability to differentiate between legitimate AP and RAPs accurately under varying conditions. 

𝐺𝐼𝑁𝐼(𝐷) = 1 − ∑ (𝑃𝑖)2𝑐
𝑖=1   (3) 

where Pi was the proportion of class i in the dataset D, and c represented the number of classes. Additionally, entropy 

measurement was used to assess uncertainty in the dataset based on the results of testing in an open environment. Where 

Pi represented the probability of class i, 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐷) = − ∑ 𝑃𝑖 𝑐
𝑖=1 𝑙𝑜𝑔2(𝑃𝑖)  (4) 

Given the large amount of AP data, linear regression was used to identify outliers. These outliers showed the presence 

of rogue data, 

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2  (5) 

where y was the dependent variable, while x1 and x2 represented the independent variables. The term b0 represented y-

intercept, which was the value of y when both x1 and x2 were 0. Moreover, coefficient b1 showed the alteration in y for a 

one-unit change in x1, holding x2 constant, and b2 represented the alteration in y for a one-unit change in x2, holding x1 

constant. 

The decision tree in Figure 16, which utilizes GINI impurity (3) and entropy measurements (4), effectively 

categorized APs into two primary groups: legitimate and rogue. At the tree's root, the "legitimate_ap" node achieved an 

89.5% classification rate, indicating that most access points in the open environment were classified as legitimate. This 

high classification rate suggests that the network environment is predominantly secure, with most APs behaving by 

standard security protocols. The left branch of the tree, which further analyzed legitimate connections, emphasizes the 

critical role of the "ssid" (Service Set Identifier) in identifying network legitimacy. The "ssid" feature, as shown in 

previous research, is often crucial to distinguish between legitimate and rogue APs, given that unauthorized devices may 

attempt to mimic legitimate SSIDs to deceive users or devices into connecting to them. The 100% classification rate at 

the leaf node "legitimate_ap" further underscores this scenario's prevalence of legitimate access points. 
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Figure 16. The Decision Tree Result For Open Environment 

The decision tree's right branch reveals significant vulnerabilities in the network due to the presence of RAPs. 

Notably, the "rogue_ap_existing_infrastructure" node shows that 77.8% of the instances were classified as rogue APs, 

leveraging the existing network infrastructure. This suggests that a substantial number of unauthorized devices are 

infiltrating the network, aligning with common RAP attack strategies. RAPs connecting through the existing 

infrastructure blend seamlessly into the network, making them particularly challenging to detect through conventional 

security measures. This is a concern because these RAPs can provide unauthorized internet access or act as intermediaries 

to steal sensitive information. 

The "retry_status" node plays a crucial role in refining the detection process, as a high rate of retransmissions often 

signifies repeated attempts to establish or maintain a connection, a behavior frequently observed in RAPs as they try to 

bypass network security protocols. Legitimate APs generally do not exhibit such behaviors, reinforcing the value of retry 

rates as a diagnostic feature for identifying RAPs. At the leaf nodes, the model achieves a perfect classification rate 

(100%) for both "rogue_ap_private_connection" and "rogue_ap_existing_infrastructure." This indicates that the decision 

tree is highly effective in detecting RAPs, whether using external private connections, like 4G modems, or embedded 

within the existing network. RAPs utilizing private connections are particularly concerning because they operate outside 

the controlled network infrastructure, making them more challenging to detect and potentially facilitating attacks such 

as man-in-the-middle. Similarly, the perfect classification of RAPs exploiting existing infrastructure demonstrates the 

model's capability in identifying these devices, which pose significant risks to network integrity, including data breaches, 

unauthorized access, and malware propagation. 

Figure 16 presents a scatter plot illustrating the relationship between RAPs and the x-axis variable, as depicted in 

Figure 17. The equation y = 0,1708x + 106,66. indicates a positive correlation between the x-axis variable and the 

"status_ap" variable for the blue data points. A clear separation among these points suggests distinct AP categories. The 

upper points, appearing as outliers, represent potential RAPs, indicating unauthorized use of existing infrastructure or 

private connections. 

 

Figure 17. The Regression Chart for AP Legitimacy Status For Open Environment 
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The scatter plot reveals two clusters: a dense lower cluster likely representing legitimate APs and a more scattered 

upper cluster indicating RAPs. The higher "sum_of_rogue_features" scores in the upper cluster distinguish rogue APs 

from legitimate ones, reinforcing the model's effectiveness in detecting rogue activity. The x-axis ("AP_detected") 

reflects varying network densities, while the y-axis ("sum_of_rogue_features") highlights the distinction between 

legitimate and RAPs. The gap could serve as a threshold for classification, aiding in the detection process. The variability 

in the upper cluster suggests a range of RAP behaviors, including the use of private connections or existing infrastructure. 

Meanwhile, the slight spread in the lower cluster points to minor variations among legitimate APs, supporting the model's 

consistency in identifying them. 

The heatmap in Figure 18 highlights critical differences between legitimate APs and RAPs across several features: 

SSID, Address, OUI, Retry Status, and IBSS Status. Legitimate APs consistently display green checks, indicating 

alignment with expected network norms, while RAPs, particularly those utilizing existing infrastructure or private 

connections, show red crosses in most categories, signifying deviations. SSID and OUI are critical identifiers where 

RAPs diverge sharply, allowing them to be quickly flagged as anomalous. RAPs exploiting existing infrastructure 

attempt to mimic certain network behaviors but still display significant discrepancies in SSID and Address. In contrast, 

RAPs in private connections show broader anomalies, especially in Retry and IBSS Status. When combined with 

regression analysis, the heatmap suggests that focusing on specific features like SSID, OUI, and IBSS Status enhances 

the accuracy of RAP detection, even in environments with many APs. These features allow for precise identification of 

rogue devices despite their attempts to blend into the network. 

 

Figure 18. The Heatmap of RAP Detection for Open Environment 

The classification model from Figure 16 was reviewed by this confusion matrix, as shown in Figure 19. The confusion 

matrix illustrates the performance of a classification model designed to detect various types of access points (APs) in a 

network. The model categorizes APs into three classes: legitimate_ap, rogue_ap_existing_infrastructure, and 

rogue_ap_private_connection. In the matrix, rows represent actual classes, while columns represent predicted classes, 

with diagonal elements indicating correct predictions and off-diagonal elements showing misclassifications. The model 

accurately identified 154 legitimate APs, 14 RAPs on existing infrastructure, and 4 RAPs with private connections, with 

no misclassifications noted. This results in a 100% accuracy rate, demonstrating the model's ability to distinguish 

between the three categories perfectly. 

 

Figure 19. The Confusion Matrix For Open Environment 

The confusion matrix in Figure 19 evaluates the performance of the classification model from Figure 16, which was 

designed to detect various types of APs within a network. The model categorizes APs into three distinct classes: 

"legitimate_ap," "rogue_ap_existing_infrastructure," and "rogue_ap_private_connection." As with standard confusion 

matrices, the rows represent actual class labels, while the columns indicate predicted class labels. Diagonal elements 

correspond to correct predictions, and off-diagonal elements would indicate misclassifications. In this case, the model 

accurately identified 154 legitimate APs, 14 RAPs leveraging existing infrastructure, and four rogue APs using private 

connections. Remarkably, no misclassifications were recorded, resulting in a perfect 100% accuracy rate, showcasing 

the model's ability to distinguish between the three categories precisely. 

This classification performance indicates several key insights. First, the model's accuracy across all categories 

demonstrates that the features chosen for classification are highly discriminative and effective at differentiating between 
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legitimate and rogue. The distribution of APs reveals that legitimate APs are the most common (154 instances, 89.5%), 

while RAPs, with 14 (8.1%) utilizing existing infrastructure and 4 (2.3%) relying on private connections. Notably, the 

absence of off-diagonal elements in the confusion matrix means no false positives or negatives. This lack of 

misclassification suggests the model is robust and unbiased, even when faced with the less common 

"rogue_ap_private_connection" category. From a security perspective, the model's ability to accurately distinguish 

between RAPs using existing infrastructure and those with private connections is critical for tailoring effective responses. 

Such precision would significantly enhance a network's threat detection and response capabilities, as it ensures 

confidence in the model's predictions, supporting automated security measures to protect against unauthorized access. 

For the following scenario, the decision tree visualization in Figure 20 demonstrates a classification model for 

identifying various types of APs within a network in a de-authentication attack case. Starting at the root node, which 

contains 156 total samples, the model classifies 140 samples as legitimate APs with an accuracy of 89.7%, based on the 

"ssid" feature. This first split is crucial, as it effectively separates the majority of legitimate APs from potential rogue 

ones. The left branch, labelled "legitimate_ssid," includes 140 samples correctly identified as legitimate APs with 100% 

accuracy, leading to a leaf node with no further splits. This high accuracy on the left branch indicates that the "ssid" 

feature alone can classify all legitimate APs in this dataset, highlighting its importance in the model. 

 

Figure 20. The Decision Tree Result For Open Environment With Deauthentication Attack 

On the right branch, the model classifies the remaining 16 samples of APs as rogue, further dividing them based on 

the "retry_status" feature. This split generates two child nodes: The left child node, which represents APs with no 

retransmission, classifies five samples as rogue APs using a private connection, achieving 100% accuracy. The right 

child node, representing APs with retransmission, correctly classifies 11 samples as RAPs using existing network 

infrastructure with 100% accuracy. The "retry_status" feature is a highly effective discriminator for distinguishing 

between these two types of rogue APs. This perfect subclassification indicates that the model is well-suited for 

identifying RAP subtypes, such as those exploiting existing network resources or using private connections. This is 

critical in scenarios involving de-authentication attacks. This relatively simple decision tree, with just two split levels, 

underscores the high discriminative power of the selected features. The tree's structure implies that RAPs involved in 

de-authentication attacks are more likely to exploit existing infrastructure, as evidenced by the higher number of 

instances (11) classified in this category than RAPs using private connections (5). This insight benefits network security, 

as it helps prioritize monitoring and detecting RAPs based on their connection behavior. 

Figure 21 illustrates the relationship between the number of detected access points (AP_detected) and the sum of 

rogue features (sum_of_rogue_features), with a red trend line represented by the equation y = 0.0071x + 5.7911. While 

this line indicates a weak positive correlation, suggesting that the sum of rogue features slightly increases as more APs 

are detected, the scatter plot reveals a more complex data pattern with two distinct clusters. The lower cluster, densely 

packed around a y-value of 7, likely represents legitimate APs exhibiting no rogue feature counts across varying numbers 

of detected APs. In contrast, the upper cluster, centred around a y-value of 8 and 10, indicates RAPs that consistently 

show higher rogue feature counts, regardless of network density. This clear separation between clusters highlights the 

system's ability to effectively differentiate between normal APs and RAPs. 
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Figure 21. The Regression Chart for AP Legitimacy Status For Open Environment With Deauthentication Attack 

Vertical alignments in the scatter plot, particularly at x-values around 80, 100, 120, and 140, suggest repeated 

measurements in environments with the same detected APs but differing rogue feature counts (Figure 22). These 

alignments point to variability in the network environment or edge cases where APs exhibit some but not all rogue 

characteristics. Additionally, outliers between the two main clusters may represent the consistency of the RAP cluster, 

and the separation between normal and rogue APs across different network densities demonstrates the robustness of the 

detection method in distinguishing RAPs. 

 

Figure 22. The Heatmap of RAP Detection for Open Environment Open Environment With Deauthentication Attack 

The heatmap above visually compares legitimate and RAPs in existing infrastructure and private connections across 

several key factors: SSID, Address, OUI, Retry Status, and IBSS Status in a de-authentication attack case. Legitimate 

APs maintain consistency across all parameters, as the green checks indicate, reflecting adherence to network norms. In 

contrast, RAPs show red crosses in critical fields such as SSID, Address, and OUI, signaling significant deviations. 

RAPs using existing infrastructure exhibit some overlap with legitimate APs in IBSS status, suggesting an attempt to 

mimic legitimate behavior. However, the differences in Retry Status (11 vs. 145) and key identifiers like SSID and OUI 

underscore clear distinctions. RAPs operating through private connections display even more significant discrepancies, 

particularly in Retry Status and IBSS Status (5 vs. 151), making them more distinguishable. The heatmap underscores 

that critical features like SSID and OUI remain pivotal in differentiating legitimate APs from rogue ones. The substantial 

differences in Retry and IBSS values further highlight that RAPs exhibit more isolated network behavior, making 

detection easier, especially in private connections. 

The classification model from Figure 20 was evaluated using the confusion matrix shown in Figure 23. The confusion 

matrix assesses the performance of the decision tree model for rogue access point (RAP) identification, revealing perfect 

classification results across all categories. The matrix shows that all 140 legitimate APs were correctly classified as 

legitimate, with no misclassifications into rogue AP categories. Additionally, all 11 instances of rogue APs using existing 

infrastructure and all five RAPs using private connections were accurately identified, resulting in 100% classification 

accuracy for each class. This flawless performance suggests that the model has effectively captured the distinguishing 

features between legitimate APs and the two types of rogue APs, demonstrating its capacity to differentiate accurately 

within the dataset. 

With legitimate APs comprising 89.7% of the instances, RAPs using existing infrastructure making up 7.1%, and 

RAPs using private connections representing 3.2%, the model performs exceptionally well on the minority classes. This 

suggests that the model's feature selection and training are robust, as it accurately identifies both types of RAPs without 

any false positives or negatives. Such performance is invaluable in real-world scenarios, where the precise identification 

of network threats is crucial. The absence of misclassifications underscores the model's effectiveness. Analyzing the 

model's confidence scores for each prediction in future work could provide additional insights, especially for potential 

edge cases, and further support its readiness for real-world implementation in network environments. 
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Figure 23. The Confusion Matrix For Open Environment With Deauthentication Attack 

In comparing the decision tree and confusion matrix results, the controlled environment yielded significantly fewer 

AP data than the open environment. This limited dataset likely restricted the decision tree model's ability to fully capture 

the variability of APs, leading to a slightly lower performance than other scenarios. With fewer APs to analyze, the 

model may have struggled to differentiate between legitimate APs and the various types of RAPs due to the lack of 

diversity in the beacon frames captured. This reduced variety in the controlled setup can also lead to overfitting, where 

the model performs well under specific test conditions but needs more robustness for more dynamic and variable 

environments. 

In contrast, the open environment provided a much larger and more diverse dataset, including APs with different 

characteristics, signal strengths, and interference levels. This abundance of data enabled the decision tree model to 

generalize more effectively and adapt to the complexities of real-world conditions. The increased volume and diversity 

of APs improved the model’s ability to distinguish between legitimate APs and different types of RAPs, resulting in 

improved classification accuracy. The richer dataset from the open environment contributed to the enhanced performance 

of the Invisible Scout system, showcasing its ability to transition successfully from controlled to open environments. 

In this study, we also employed several evaluation metrics to assess the performance of our model. AUC (Area Under 

the ROC Curve) reflects the model's ability to distinguish between RAPs and legitimate APs, with higher values 

indicating better discrimination. Classification Accuracy (CA) provides an overall percentage of correctly classified 

instances but may be less informative when a class imbalance exists. We used the F1 score to complement accuracy, 

which balances precision and Recall, mainly when false positives or negatives are critical. Precision measures the 

proportion of actual RAPs among all predicted RAPs, focusing on minimizing false alarms. At the same time, Recall 

indicates the proportion of actual RAPs that were correctly identified, minimizing missed detections. The MCC 

(Matthews Correlation Coefficient) offers a more balanced metric, considering all aspects of the confusion matrix (true 

positives, true negatives, false positives, and false negatives). The corresponding evaluation parameters are calculated 

using the equations provided below. 

𝐶𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (6) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (8) 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (9) 

𝑀𝐶𝐶 =
(𝑇𝑃 𝑥 𝑇𝑁)−(𝐹𝑃 𝑥 𝐹𝑁)

√(𝑇𝑃+𝐹𝑁)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑃)
  (10) 

Precision is crucial in handling false positives (legitimate APs classified as RAPs), as higher precision values 

correspond to fewer false alarms. For example, as shown in Table 2, in our open environment with a de-authentication 

attack, the model achieved a precision of 0.990, demonstrating its effectiveness in reducing false positives. On the other 

hand, false negatives (RAPs incorrectly classified as legitimate APs) are managed by optimizing Recall. High recall 

values, such as 0.996 in the same scenario, indicate that the model effectively identifies nearly all RAPs, minimizing 

missed detections. The F1 score further supports this by balancing precision and Recall, providing a reliable measure of 

overall performance across different environments. 

Table 2. Evaluation Metrics For All Scenarios 

Scenario AUC CA F1 Precision Recall MCC 

1 – Controlled Setup 0.921 0.875 0.821 0.781 0.875 0.803 

2 – Open Environment 0.952 0.994 0.991 0.988 0.994 0.971 

3 – Opent Environment With Deauthentication Attack 0.955 0.996 0.993 0.990 0.996 0.975 
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The evaluation metrics in Table 2 offer a clear view of the decision tree model's performance in identifying RAPs 

across three scenarios using Invisible Scout. In the controlled setup, the model performed well with an AUC of 0.921, 

but this was the lowest among the scenarios, suggesting the model may be less robust in simpler environments. A 

CA of 0.875 and an F1 score of 0.821 indicate solid performance, though there is room for improvement in 

classification accuracy. Precision at 0.781 shows occasional misclassification of legitimate APs, while Recall at 0.875 

reflects the model's ability to detect most RAPs. The MCC of 0.803 points to a good but not flawless classification 

performance. 

In the open environment, the model's performance improved significantly. The AUC increased to 0.952, showing 

better discrimination between RAPs and legitimate APs, and the CA rose to 0.994, indicating strong generalization in 

real-world conditions. With an F1 score of 0.991, the model balanced precision (0.988) and Recall (0.994), minimizing 

false positives and negatives. The MCC of 0.971 underscores the model's reliability in this scenario. 

The third scenario, involving a de-authentication attack, showed the model's best performance across all metrics. The 

AUC of 0.955 and CA of 0.996 reflect the model's robustness under attack. The F1 score of 0.993, precision of 0.990, 

and Recall of 0.996 demonstrate near-perfect performance, with minimal misclassification of legitimate APs and almost 

flawless detection of RAPs. The MCC of 0.975 highlights the model's reliability even in challenging conditions. 

The system's performance under de-authentication attacks presented unique challenges compared to other 

scenarios due to the disconnections and re-authentications of APs. This process involved our own tool and public 

APs, making it necessary to carefully time the attack scenario to avoid disrupting any Wi-Fi users. The attack 

introduced noisy data, leading to more significant fluctuations in beacon frame features. Despite this, the RAP 

detection model demonstrated resilience, mainly using the decision tree algorithm. By focusing on key features in 

the beacon frame, as mentioned earlier, which remained relatively stable during such attacks, the model was still able 

to detect RAPs. 

When comparing performance across different scenarios, the system excelled in the controlled setup, where the 

environment was stable and predictable, although some misclassifications still occurred. In the open environment, 

performance dipped slightly due to more APs and increased noise, but the system adapted by focusing on critical features 

such as Address 1-4 and the Retry Bit. The de-authentication attack scenario, however, proved more challenging, taking 

longer to complete compared to both the controlled setup and the open environment. Nonetheless, the core beacon frame 

features remained unaffected by the attack, allowing the model to detect RAPs successfully. 

Overall, the model's performance improves in more complex and challenging environments, such as open 

environments and those with de-authentication attacks. While the controlled setup showed promising results, there is 

room for further refinement to enhance the model's precision and Recall in such settings. Future efforts could address 

these challenges to achieve more consistent and robust results across all scenarios. We also compare the highest 

accuracy rates with several previous studies that similarly used layer 2 as the basis for their features, as shown in 

Table 3. 

Table 3. Results and Comparison With Other Studies 

No. Research Actor 
Anonymous 

Probing 

Dedicated 

Hardware 
Classification 

Highest 

Accuracy 
Detection 

1 Jain et al. [21] Client No No Node profiling Not mentioned Immediate 

2 Lu et al. [32] Client Yes No Packet auditing 1.000 Data-oriented 

3 Selvarathinam et al. [43] Server No No Bots setup 0.947 Data-oriented 

4 VanSickle et al. [23] Client Yes No Node profiling Not mentioned Immediate 

5 Bodhe et al. [24] Client Yes No Node profiling 0.930 Data-oriented 

6 Jang et al. [25] Client Yes Yes Node profiling 1.000 Immediate 

7 Delgado et al. [35] Server Yes Yes Packet auditing 0.990 Data-oriented 

8 Shrivastava et al. [27] Client Yes No Node profiling Not mentioned Immediate 

9 Lu et al. [28] Client No No Node profiling Not mentioned Immediate 

10 Agyemang et al. [9] Client Yes No Node profiling Not mentioned Immediate 

11 Igarashi et al. [29] Client Yes No Node profiling 0.920 Immediate 

12 Korolkov & Kutsak [36] Client Yes No Packet auditing Not mentioned Data-oriented 

13 Alyami et al. [17] Client Yes Yes Packet auditing 0.960 Data-oriented 

14 Our research Client Yes No Node profiling and packet auditing 0.996 Immediate 
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5- Conclusion 

This research introduces Invisible Scout, a pioneering multi-module system designed to detect the RAPs through its 
integrated sniffer, detection, probing, and comparison modules. The system's effectiveness was demonstrated through 
rigorous testing in a controlled environment, achieving high classification accuracy (CA), precision, and Recall. Notably, 

the decision tree model achieved an AUC score of 0.921 and a CA of 0.875, indicating a solid capability to differentiate 
between legitimate access points and RAPs. However, the system encountered challenges distinguishing between certain 
RAP types, highlighting the need for further refinement and development. In the open environment, the system 
maintained robust performance with an AUC score of 0.952 and a CA of 0.994, successfully identifying RAPs that 
utilized existing infrastructure. The system performed exceptionally well under the de-authentication attack scenario, 
achieving its highest accuracy with an AUC score of 0.955 and a CA of 0.996. This scenario, while challenging, 

demonstrated the model's resilience, and linear regression analysis provided valuable insights into RAP behaviors and 
distribution patterns. Despite its strengths, the confusion matrix revealed difficulties in accurately identifying legitimate 
access points with private connections in the initial setup. Future work will focus on enhancing the detection mechanism 
to address the identified challenges, particularly improving the differentiation between various types of RAPs. This 
includes integrating additional features and exploring advanced machine learning techniques, such as ensemble or deep 
learning, to enhance the model's accuracy and robustness. Moreover, integrating real-time detection and automated 

response capabilities will be prioritized to provide immediate alerts and effective mitigation against RAP threats. 
Invisible Scout aims to advance as a comprehensive solution for securing wireless networks from RAP-related 
vulnerabilities by addressing these aspects. 
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