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Abstract 

The study aims to optimize internal logistics processes by applying Lean philosophy and data 
science tools, with a primary focus on qualifying processes to determine their value-added 

contribution within the logistics context. Utilizing a novel two-step methodology, the research first 

employs a modified DBSCAN algorithm to analyze indoor positioning data and categorize activities. 
This is followed by multi-layer network modeling to understand processes and create a framework 

that enables the reduction of idle activities through optimization algorithms. A real warehouse case 

study, using a UWB-based Indoor Positioning System (IPS) to track forklifts, demonstrates the 
method's effectiveness in identifying non-value-added activities. The results reveal specific 

opportunities for reducing idle, enhancing resource utilization, and improving operational 

efficiency. This innovative combination of advanced data analysis techniques and Lean principles 
provides a comprehensive framework for logistics optimization, significantly enhancing process 

efficiency through optimized task scheduling and resource allocation. 
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1- Introduction 

The Lean philosophy and logistics processes are interrelated, as the application of Lean principles helps to optimize 

logistics activities [1, 2]. Digital technologies such as advanced analytics and IoT (Internet of Things) can support 

Lean practices in manufacturing and supply chain management by outlining eight waste reduction mechanisms that 

improve operational efficiency and decision-making, giving companies a clear framework for selecting the most 

effective technologies to improve their processes [3]. The concept of "Digital Lean" focuses on how digital 

technologies, such as ITs (Information Technologies) and OTs (Operational Technologies), enhance lean 

manufacturing by detecting and preventing physical waste through simulations and real-time monitoring while also 

addressing digital waste that arises from the underuse or overuse of advanced smart manufacturing technologies [4]. 

Lean 4.0 builds on this by incorporating a broader set of Industry 4.0 technologies like artificial intelligence (AI), 

robotics, and cloud computing to further optimize processes, enabling more intelligent automation and deeper 

integration of lean principles into the manufacturing environment [5]. The essence of industrial muda is to identify 

and reduce waste such as transport, inventory, motion, waiting, over-processing, overproduction, and defects within 

processes [6]. Idle activities of transportation are activities that do not contribute to value creation; therefore, they can 

be considered non-value-added activities from the point of view of logistics. Minimizing idle activities is crucial for 

effective resource utilization and improving process efficiency [7]. 
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One challenge is to identify these activities. Several methods are used for the solution, for example, the Spaghetti 

Diagram [8-10], a visualization tool that helps to understand and depict the movement and interactions that occur during 

a process or activity, which can be classified and characterized. Another solution is Value Stream Mapping (VSM) [11-

13], which involves reviewing intralogistics processes to identify idle times and eliminate unnecessary steps, improving 

material flow and reducing downtime. Gemba Walks allow leaders and workers to directly observe work areas, also 

providing opportunities to make intralogistics processes more efficient and reduce downtime [14]. Another approach is 

to use manufacturing execution system (MES) and indoor positioning system (IPS) data, combined with data analytics 

and data science techniques, to identify non-value-added activities. MES, a software system that monitors and controls 

manufacturing operations on the shop floor, provides detailed, real-time production data, while IPS provides precise 

location information for tools, materials, and personnel. By integrating these data sources, advanced analytics can be 

used to identify inefficiencies such as idle time, unnecessary movements, or bottlenecks, enabling a more detailed 

understanding and optimization of intralogistics processes. 

IPS provides accurate, real-time location data, significantly improving logistics efficiency by enabling accurate 

tracking of material flows, goods, and machinery within warehouse environments [15, 16]. These systems address critical 

logistics challenges such as improving the accuracy of warehouse positioning and ensuring reliable monitoring of goods 

in transit within large facilities [17]. In addition, IPS facilitates real-time VSM, helping to identify bottlenecks and 

optimize processes through accurate state tracking [18]. In manufacturing environments, IPS can also monitor tool 

locations and calculate utilization, despite challenges related to measurement uncertainty [19]. Ultra-wideband-based 

(UWB-based) IPS also utilize precise position data to predict human movement in shared workspaces, enabling safer 

and more efficient navigation for automated guided vehicles (AGVs) in manufacturing and warehouse environments 

[20]. Clustering techniques, such as DBSCAN (Density-Based Spatial Clustering of Applications with Noise), can be 

applied to position data provided by the IPS to identify patterns in resource movements, helping to distinguish between 

value-added and non-value-added activities, thus optimizing logistics processes and improving overall efficiency. 

Clustering [21, 22] is a method that can assist in identifying areas or periods where the movement or activity of 

resources significantly deviates from the norm or in identifying potential areas for optimization. Time-series 

classification (TSC) is widely utilized in manufacturing systems, including applications such as supply chain 

optimization. The importance of TSC has grown significantly in smart manufacturing systems, driven by the integration 

of Machine Learning (ML) and Deep Learning (DL) algorithms, which are essential for processing the vast amounts of 

time-series data generated by these systems [23]. Additionally, ML-based methods [24] facilitate the creation and 

training of models to recognize different states, analyzing data to detect anomalies, such as periods of idleness, through 

various algorithms. Movement Trajectory Analysis [25] examines resource movement patterns to identify areas or routes 

where resources are less active or exhibit significantly different trajectories. Algorithms like K-Means and DBSCAN, 

which can also be applied in logistics, enable the automatic detection of the types of work performed by AGVs and the 

identification of anomalies, thus further improving the optimization of manufacturing processes and supporting 

predictive maintenance efforts [26]. The DBSCAN algorithm is particularly robust for identifying dense regions within 

datasets, making it suitable for applications requiring spatial cluster delineation. In logistics, it can be used to determine 

customer clusters and optimize truck planning based on shipping demands and capacity constraints [27]. Hierarchical 

clustering methods can also be applied to detect throughput bottlenecks in production systems [28]. In the context of 

internal logistics, DBSCAN is effectively utilized to classify forklift movements, distinguishing between value-added 

and non-value-added activities to enhance process efficiency and resource allocation [29]. 

A multilayer network framework enables the analysis of complex systems by capturing multiple types of interactions 

between entities across different layers, providing a comprehensive understanding of interconnected subsystems [30]. 

These networks are also utilized for inventory optimization in e-commerce platforms, integrating material flow, 

inventory management, and pricing strategies to improve supply chain efficiency [31]. Furthermore, a multilayered 

temporal network-based model distinguishes value-added from nonvalue-added resource flows, enabling a 

comprehensive view of the flow of resources in the system [32]. 

Based on the literature, it is evident that clustering is an important research topic in prioritization tasks related to 

logistics and production. However, in the context of Lean philosophy, multi-layer network-based clustering—

specifically for identifying value-added and non-value-added processes—can greatly assist in identifying and 

understanding the underlying issues. By accurately distinguishing between value-added and non-value-added activities, 

organizations can more effectively optimize their processes, reduce waste, and improve overall efficiency. Our work 

addresses this specific challenge by introducing a novel approach that uses clustering to identify these types of processes 

within a multi-layer network framework, a method that has not been extensively explored in previous research. This 

approach provides valuable insights into process optimization by providing a clearer understanding of where 

inefficiencies exist and how they can be minimized. 

The purpose of this paper is to present a methodology for identifying non-value-added activities in logistics processes. 

The methodology uses the DBSCAN algorithm to distinguish between value-added and non-value-added networks. The 

effectiveness of this approach is demonstrated through a case study that analyzes forklift movements based on indoor 

positioning data within a warehouse environment. The paper is structured as follows: the next section outlines the 

proposed methodology, followed by a detailed case study, and concludes with a discussion of the results and implications 

for future research. 
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2- Methodology of Clustering the IPS-Based Data 

In this section, we provide a detailed methodological overview based on the steps illustrated in Figure 1. 

 

Figure 1. Classification and optimization of activities based on IPS 

The aim of the methodology is to classify process-related activities into value-added and non-value-added categories 
based on indoor positioning data. Our method combines clustering, time series analysis, and movement trajectory 
analysis. By clustering, we identify the places where the resource performs value-added and non-value-added activities, 
for which we use movement trajectory analysis. After that, we can identify the state transitions with a time series analysis, 
thereby identifying the idle activities for optimization. Activities are discerned through the analysis of positional data, 

wherein the spatial coordinates serve as crucial indicators. The contextual background of the data plays a pivotal role in 
the identification of various states associated with these activities. To enhance the precision of this process, positional 
data undergoes clustering through the application of DBSCAN [33], which is meticulously tuned to delve into the typical 
positions and places where activities unfold. In this study, we utilize a modified version of DBSCAN, which focuses on 
identifying whether a resource is engaged in value-added or non-value-added activities based on positional data. Without 
this modification, we would not be able to construct the multilayer-based clustering, as the standard DBSCAN algorithm 

would not sufficiently differentiate between value-added and non-value-added activities based on positional data. This 
approach creates separate cluster groups depending on the activity category, and these clusters are represented as 
multilayers. This multilayer representation assists in uncovering inefficiencies and optimizing processes. Additionally, 
the modified DBSCAN is specifically tailored to support the processing of positional data, enhancing the precision of 
activity classification. This clustering results in the formation of coherent groups or clusters, each representing the set of 
value-added and non-value-added activities. Subsequently, a multilayer network is constructed, drawing upon the tuples 

that encapsulate the relationships between activities, positions, and states. The two-step methodology, based on the 
provided text, includes the following steps: 

1. Step - Identification and Grouping of Activities: 

 Activities are discerned through the analysis of positional data using spatial coordinates. 

 The contextual background of the data plays a pivotal role in identifying various states associated with these 
activities. 

 Positional data undergoes clustering using DBSCAN (Density-Based Spatial Clustering of Applications with 
Noise), meticulously tuned to explore typical positions and places. 

2. Step - Network Modelling and Optimization: 

 The groups or clusters formed in the previous step represent activities, including both value-added and non-value-
added activities. 

 A multilayer network is constructed using tuples encapsulating relationships between activities, positions, and 
states. 

The available 𝑻𝒌 database is structured as follows: 

𝑇𝑘 = (𝑡𝑘, 𝑑𝑘 , 𝑟𝑙 , 𝑙𝑘)  (1) 

where 𝑘 = 1…𝑁 represents the index of the recorded position data, 𝑡𝑘 is the time of the k-th recorded data, 𝒅𝒌 =
[𝑑𝑥  𝑑𝑦 𝑑𝑧]  ∈ 𝑫 is the k-th position data vector, 𝑟𝑙 is the unique identification number of the 𝑟𝑙 ∈ 𝑅 resources and 
𝑙𝑘 = {𝛼, 𝛽} is the activity qualifying flag, what identify the value-added (𝛼 = 0) and non-value-added (𝛽 = 1) 

activity of the 𝑟𝑙 resource at the k-th position. 

The next step is to define value-added and non-value-added activities based on position data with DBSCAN 
algorithm. Figure 2 shows the steps of applying the algorithm: 
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Figure 2. Steps of applying Modified DBSCAN algorithm 

When using the algorithm, we define a W vector with a window size for the time-dependent 𝑫 data stream for 

clustering. This is necessary because we are dealing with time series data, so it is important to see the sequence among 
the clusters created. It is possible that several clusters are defined for the same position of the layout, but we interact 
with them at different times in chronological order. 

For DBSCAN algorithm the following parameters should be set: 

 Data stream contains all of 𝒅𝒌 positions in chronological order based on 𝑡𝑘: 𝑫 

 Radius of the neighborhood: 𝜀 

 Vector used to collect data that meets the determined conditions: 𝒊𝒅𝒙 

 Minimum number of points required to from a 𝑪 cluster: 𝑀𝑖𝑛𝑃𝑡𝑠 

 𝑾 vector with window size of the time-dependent 𝑫 data stream for clustering: 𝑖: 𝑤 

 𝑫 data stream within 𝑖: 𝑤 time window: 𝑫𝒊:𝒘 

 Set of clusters: 𝑪 = 𝑪𝟏, 𝑪𝟐, … , 𝑪𝒌, where 𝑘 is the number of the created cluster and (𝒅𝑪𝒌 , 𝒕𝑪𝒌) ∈ 𝑪𝒌 

 𝑪𝒋 tuple of the 𝑪 clusters based on 𝑙𝑘 = {𝛼, 𝛽} activity qualifying flag 

The method is the following: 

Algorithm 1. The pseudo code of the DBSCAN algorithm 

1: for j= 0: 1 

2: Initialize 𝐶 as an empty list and 𝑖 = 1 

3: Initialize vector, Window 𝑾 with size 𝑤 forall each new data point 𝒅  𝜖 𝑫 

4: Mark all 𝒅  𝜖 𝑫 as not visited 

5: if |𝑫| < 𝑤 

6: Add all 𝒅 ∈  𝑫𝒊:𝒘 to 𝑾  

7:  𝑑1 = 𝑾𝟏 

8:  if all elements of 𝑾 are not visited 

9. for 𝑑 ∈ 𝑾 

10: if |𝒅 − 𝑑𝑖| < 𝜀 AND (𝑙𝑘 = 𝑗) then add 𝒅 to 𝒊𝒅𝒙 

11:   end for 

12:   if |𝒊𝒅𝒙| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 

13:    Let 𝑪 = 𝒊𝒅𝒙 be a new cluster 

14:    Add all 𝒊𝒅𝒙 related 𝑡 time of the recorded data to 𝑪 

15:    Mark all 𝒅 ∈ 𝑪 in 𝑫 as visited (no overlap) 

16:    Add 𝑪 to 𝑪𝒋 

17: else 

18: Mark 𝑑𝑖 point as outlier 

19:   end if 

20:   Clear the elements of 𝒊𝒅𝒙 

21:           end if 

22:  Clear the elements of 𝑾 

23:           𝑤 = 𝑤 + 1  

24:           𝑖 = 𝑖 + 1 

25: end if 

26: end for 
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From the 𝑪𝒋 qualified clusters - where the value-added activities are from 𝑗 = 0 clusters and the non-value-added 

activities are from 𝑗 = 1 and by matching the position data-based cluster centers to the layout, the 𝑽 state vector could 

be determined. The elements of the state vector were based on the positions of layout-based clusters to identify where 

activity occurred within the examined production or logistics environment under study. The number of the unique states 

are the number of areas defined based on the layout |𝑽| = 𝑁𝑉. Since the cluster itself identifies a value-added activity, 

for each state there is a state transition that points back to itself, which shows the activity in the position according to the 

given layout. 

Based on the previous paragraph, we already know the state of the resources, which indicates their layout-based 

position and the type of activity they perform (value-added or non-value-added). However, it is important to study the 

state transitions, because by classifying these transitions we can also characterize the transport activities and minimize 

the idle. This requires a multi-layered network analysis. 

Based on the 𝑡𝑘 time data, the 𝑡𝑠
𝐶 start and 𝑡𝑒

𝐶 end times in the given state can also be determined, therefore the Time 

Series Analysis with focus on the state can created the 𝑬 = 𝑽 × 𝑽 state transition matrix. We can create based on this 

information a 𝑮 = (𝑽, 𝑬, 𝑭) multi-layer network, where (𝑟, 𝑙) ∈ 𝑭 set of dimensions (labels of resources and 

utilizations). If we focus on one resource, the multi-layer network based on 𝛼 dimension is the following: 

𝐺𝛼 = (𝑉𝛼 , 𝐸𝛼)  (2) 

where 𝑽𝜶 are the nodes of the multi-layers and 𝑬𝜶 is the set of intra-layer connections are represented by the elements 

of the 𝑨𝜶 adjacency matrices defined as: 

𝑨𝜶 = [𝑎𝑝,𝑞
𝛼 ]

𝑁𝑉𝑥𝑁𝑉
  (3) 

𝑎𝑝,𝑞
𝛼 = {

> 0, 𝑖𝑓 (𝑣𝑝
𝛼 , 𝑣𝑞

𝛼) ∈ 𝑬𝜶

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (4) 

where 𝑎𝑝,𝑞
𝛼  represent the weight of the state transitions from the p state to q according to the 𝛼 type of activity. 

The 𝑎𝑝,𝑞
𝛼,𝛽

 interlayer connections between the nodes of the layers are defined as: 

𝑎𝑝,𝑞
𝛼,𝛽

= {
≥ 1, 𝑖𝑓 (𝑣𝑝

𝛼 , 𝑣𝑞
𝛼) ∈ 𝑬𝜶,𝜷

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (5) 

State transitions can be: 

𝑎𝑝,𝑞 =

{
 
 

 
 
𝑎𝑝,𝑞
𝛼,𝛼 = 𝑎𝑝,𝑞

𝛼 :  𝑣𝑎𝑙𝑢𝑒 − 𝑎𝑑𝑑𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑒𝑠             

𝑎𝑝,𝑞
𝛽,𝛽

= 𝑎𝑝,𝑞
𝛽
:  𝑛𝑜𝑛 − 𝑣𝑎𝑙𝑢𝑒 − 𝑎𝑑𝑑𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑒𝑠

𝑎𝑝,𝑞
𝛼,𝛽
:  𝑣𝑎𝑙𝑢𝑒 − 𝑎𝑑𝑑𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑒𝑠                          

𝑎𝑝,𝑞
𝛽,𝛼
:  𝑛𝑜𝑛 − 𝑣𝑎𝑙𝑢𝑒 − 𝑎𝑑𝑑𝑒𝑑 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑒𝑠            

  (6) 

Figure 3 illustrates how connections define the value-added and non-value-added transitions. With the help of the 

method, we can qualify the processes, which is indirectly useful for process optimization. Resource utilization can also 

be determined, and non-value-added processes (as idle route) can be reduced to perform value-added tasks by reducing 

them with an effective optimization procedure. 

 

Figure 3. Multilayer network representation of the value-added (upper) and non-value-added (lower) activities of one 

resource 
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3- Results of the Applied IPS Based DBSCAN Clustering 

3-1- Description of the Environment and the Used Resources in the Case Study 

Our use case originates from a real logistics environment, where forklifts are tracked by a UWB-based IPS during 

the storage process. The forklifts are equipped with one tag (as seen in Figure 4) moves with the fork and five forklifts 

are monitored. 

 

Figure 4. Sensor placed on the forklift 

These tags continuously transmit real-time position data at specified intervals during movement. If the forklift is not 

moving, the data recording time intervals are longer. The Figure 5 represents the layout of warehouse environment where 

material flow is managed using the aforementioned forklifts and blue markings are the movement of one forklift based 

on the integrated IPS sensor tag data. This includes storage operations as from the delivery zone to the high warehouse, 

as well as the reverse process as picking out. 

 

Figure 5. Indoor positioning data-based movement of forklift in a warehouse environment. Sufficiently accurate location 

data is important for identifying the logistics area 

3-2- Definition of the Used States for DBSCAN Clustering 

Based on 𝒅𝒌 position data we should determine two states: when the forklift is active (moving) and not active 

(waiting). These can be identified from the 𝛿𝑘 data recording frequency: 

𝛿𝑘 = 𝑡𝑘 − 𝑡𝑘−1 = {
≤ 𝑑𝑡 → 𝒅𝒌 ∈ 𝑫𝒂 
> 𝑑𝑡 → 𝒅𝒌 ∈ 𝑫𝒏

  (7) 

𝑫𝒂 ∩ 𝑫𝒏 = 𝟎 (8) 
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where 𝑑𝑡 is the limit of the active recording frequency, 𝑫𝒂 is the vector of active position data and 𝑫𝒏 is the vector of 

non-active position data. In our case 𝑑𝑡 is three seconds. The working of the forklift can be defined by the fact that the 

member attached to the fork moves in the z-coordinate direction: 

𝒅𝒌(𝑑𝑧) = {
> 𝑚 → 𝑤𝑜𝑟𝑘𝑖𝑛𝑔         
≤ 𝑚 →  𝑛𝑜𝑡 𝑤𝑜𝑟𝑘𝑖𝑛𝑔

  (9) 

where 𝑚 is the movement limit in z direction. The Table 1 summarizes, what states should be defined based on the 

position data, and the Table 2 represents the classification of the activities based on given state transitions. The methods 

of defining the states are presented in detail in the remaining parts of the chapter. 

Table 1. Defined states based on position data driven clustering 

 Forklift is active (𝒅𝒕 ≤ 𝟑) Forklift is not active (𝒅𝒕 > 𝟑) 

Forklift is working (𝑑𝑘(𝑑𝑧) > 𝑚) Cluster 1: value-added activity Cluster 3: not applicable 

Forklift is not working (𝑑𝑘(𝑑𝑧) ≤ 𝑚) Cluster 2: non-value-added activity Cluster 4: waiting 

Table 2. State transitions based classification of the activities 

State transition Classification of the activities 

1 - 1 Value-added (on itself) 

1 - 2 Value-added 

1 - 3 Going to waiting 

2 - 1 Non-value-added 

2 - 2 Non-value-added (on itself) 

2 - 3 Going to waiting 

3 - 1 Going to do value-added activity 

3 - 2 Going to do non-value-added activity 

3 - 3 Waiting (on itself) 

Second step we have to determine the clusters of the Table 3 with DBSCAN algorithm. For DBSCAN algorithm the 

following parameters should be set: 

 Data stream contains all of active positions in chronological order based on 𝑡𝑘: 𝑫𝒂 

 Data stream contains all of non-active positions in chronological order based on 𝑡𝑘: 𝑫𝒏 

 Radius of the neighborhood: 𝜀 

 Movement limit in z direction: m 

 Vector used to collect data that meets the determined conditions: 𝒊𝒅𝒙 

 Minimum number of points required to from a 𝑪 cluster: 𝑀𝑖𝑛𝑃𝑡𝑠 

 W vector with window size of the time-dependent 𝑫𝒂 or 𝑫𝒏 data stream for clustering: 𝑖: 𝑤 

 𝑰 matrix contains the 𝑫𝒂 and 𝑫𝒏 data stream separated by m condition 

 𝑫𝒂 or 𝑫𝒏 data stream within 𝑖: 𝑤 time window: 𝑫𝒊:𝒘
𝒂 , 𝑫𝒊:𝒘

𝒏  

 Set of clusters: 𝑪 =  𝑪𝟏, 𝑪𝟐, … , 𝑪𝒌, where 𝑘 is the number of the created cluster 

 𝑪𝒇,𝒃 tuple of the 𝑪 clusters based on 

 Variables to handle the number of for loop iterations: f, b 

The method of the cluster determination is the following: 
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Algorithm 2. The pseudo code of the modified DBSCAN algorithm 

1: Initialize 𝐶 as an empty list  

2: 𝑫 = [𝑫𝒂 𝑫𝒏]  

3: 𝑨 = 𝑫(𝒅𝒛) > 𝑚  

4: 𝑩 = 𝑫(𝒅𝒛) ≤ 𝑚  

5: 𝑰 = [
𝑨
𝑩
] = [

𝑫𝒂(𝒅𝒛) > 𝒎 𝑫𝒂(𝒅𝒛) ≤ 𝒎

𝑫𝒏(𝒅𝒛) > 𝒎 𝑫𝒏(𝒅𝒛) ≤ 𝒎
]  

6: for f = 1:2  

7: for b = 1:2  

8: Initialize vector, Window 𝑾 with size 𝑤 forall each new data point 𝒅  𝜖 𝑰𝒃,𝒇   

9. Mark all 𝒅  𝜖 𝑰𝒃,𝒇  as not visited  

10: if |𝑰𝒃,𝒇 | < 𝑤   

11:  Add all 𝒅 𝜖 𝑰𝒃,𝒇𝒊:𝒘 to 𝑾  

12:  𝑑1 = 𝑾𝟏  

13:  if all elements of 𝑾 are not visited  

14:   for  𝒅 𝜖 𝑾  

15:    if |𝒅 − 𝑑1| < 𝜀 then add 𝒅 to 𝒊𝒅𝒙  

16: end for  

17:   if |𝒊𝒅𝒙| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠  

18:    Let 𝑪 = 𝒊𝒅𝒙 be a new cluster  

19:    Mark all 𝒅  𝜖 𝑪 in 𝑰𝒃,𝒇 as visited (no overlap)  

20:    Add 𝑪 to 𝑪𝒇,𝒃  

21: else  

22:    Mark 𝑑1 point as outlier  

23:   end if  

24:   Clear the elements of 𝑾  

25:   𝑤 = 𝑤 + 1  

26:   𝑖 = 𝑖 + 1  

27:  end if  

28: end for  

29: end for  

Table 3. Defined clusters based on the states 

 𝑫𝟏 = 𝑫𝒂: Forklift is active 𝑫𝟐 = 𝑫𝒏: Forklift is not active 

𝐼1 = 𝐴 =  𝑖𝑑𝑥(𝑑𝑧) > 𝑚: Forklift is working 𝐶1,1: Clusters of value-added activities 
𝐶2,1: Empy clusters (not applicable the not 

active worklift and working state together) 

𝐼2 = 𝐵 =  𝑖𝑑𝑥(𝑑𝑧) ≤ 𝑚: Forklift is not working 𝐶1,2: Clusters of non-value-added activities 𝐶2,2: Clusters of waiting 

4- Result of the DBSCAN clustering 

The cluster groups created based on DBSCAN are shown in Figures 6 and 7. The first layout in Figure 6. shows the 

𝐶1,1 clusters of value-added activities, the second the 𝐶1,2clusters of non-value-added activities and the third the 𝐶2,2 

clusters of waiting. 

 

Figure 6. Indoor positioning data-based clustering in a warehouse environment 
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Figure 7. Created clusters based on Table 3 activities 

With the center of the cluster groups, they can determine which area of the warehouse environment the given activity 

applies to (Figure 8): 

 

Figure 8. Centre of clusters for identifying the layout-based states 

With the help of the cluster groups, we can classify individual states of the forklift, and by defining the state transitions 

defined in Table 2, the classifications of the movement of the forklift can also be determined. The multi-layer network 

of the non-value-added (red arrows) and value-added (green arrows) activities is seeable in Figure 9. The value 45 marks 
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the locations forklifts arrive from outside the warehouse. Item for storage is temporarily stored in Aisle I (A1). As can 

be seen in the left-hand diagram, non-value-added routes typically lead from Aisles I (A1) and II (A2) to the high-bay 

area marked “P”. This is understandable, as this is where forklifts depart to picking tasks. Conversely, there are 

movements in the opposite direction, albeit to a lesser extent, indicating instances where forklifts embark on storage 

tasks, also idle. Typical empty trips occur between Packing (Pa) and Aisle I (A1), indicating the idle before the packed 

products transport or idle after transport of awaiting packing products. There are also movements towards the Delivery 

zone (DZ), explaining forklifts travelling to pick up finished products. Frequent value-added movements can be seen in 

the right-hand diagram, typically go from the high-bay area, marked “P”, to Aisle I (A1), which makes sense as forklifts 

are carrying out storage operations. Of course, there are also movements in the opposite direction, representing picking 

operations. Value-added activities from the delivery zone are also storage activities. 

 

Figure 9. Representation the multi-layer network of the forklift activities 

By adopting a multi-layered network approach, we open possibilities for optimizing both value-added and non-value-

added processes. Through techniques such as resource reallocation, we can effectively minimize idle and reduce the 

number of required resources and improve utilization. This comprehensive strategy allows ultimately leading to 

improved productivity and cost-effectiveness. 

Without the modified DBSCAN algorithm, we would only be able to identify clusters. However, by monitoring the 

movement of the forklift forks, we can distinguish these clusters more effectively, as demonstrated in Figure 10. 

Naturally, the way these activities should be defined and incorporated into the algorithm as additional conditions depends 

on the specific case being examined. If you have any suggestions or adjustments in mind, they can be tailored to better 

fit the context of the study. 
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Figure 10. With the modified DBSCAN algorithm, the position data-based clusters can be classified and differentiated based 

on forklift fork movements, enabling the identification of distinct value-added, non-value-added, and waiting activities 

The algorithm processes position data from five forklifts, representing more than 800,000 data points collected over 

three days, in 27.877153 seconds in a MATLAB environment, including the generation of map-based visualizations. 

While the algorithm can be further optimized to reduce processing time, the current limit on the number of resources 

that can be analyzed is primarily determined by the computational power and time required to process the data. 

5- Conclusion 

This article proposed a method to classify resource activities as value-added and non-value-added based on indoor 

positioning system data with the DBSCAN algorithm. The presented multilayer network-based solution can be used to 

provide information for the analysis of supply chains. By classifying the position data and with the help of layout-based 

clustering, we can determine the status of the activity of the resource belonging to the given cluster group (performing 

value-added activity, performing non-value-added activity, waiting). The state transitions also characterize transport 

activities as value-added or non-value-added, and these can be represented on a multi-layer network. The presentation 

methodology is illustrated by processing an indoor position database from a logistics environment, where we monitor 

five forklifts. The sensors providing the position data are placed on their forks, enabling us to determine and classify the 

states of the activities based on the movement and the different data recording frequencies. Using this information, we 

can identify state transitions, which helps classify transport activities. A multi-layer network-based representation of 

these transport activities helps us understand our processes and can reveal potential optimization opportunities, which 

may be the focus of future research. 

In addition, this method has the potential for broader applicability in various industries where tracking and optimizing 

resource activities is critical. Future research could explore the implementation of this approach in manufacturing or 

warehousing environments to improve operational efficiency. Compared to existing methods, the proposed approach 

provides a more granular and dynamic classification of activities by leveraging the strengths of the multilayer network 

representation and the DBSCAN algorithm. This allows for a more detailed analysis of state transitions and activity 

patterns, providing insights that static or less sophisticated models may not capture. The practical implications of this 
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study are significant for logistics and supply chain management. By accurately classifying activities and identifying 

value-added processes, companies can streamline operations, reduce waste, and improve overall efficiency. The multi-

layered network visualization also helps to better understand complex processes, making it easier to identify bottlenecks 

or inefficiencies. However, it is important to note some limitations of this study. The accuracy of the classification is 

highly dependent on the quality of the positioning data and the specific characteristics of the logistics environment. 

Future research could address these limitations by integrating more advanced sensor technologies or by applying the 

method in different contexts to assess its robustness and generalizability. 

One of the main challenges in implementing this methodology in the warehouse environment was the accuracy of the 

position data. The accuracy of the data was inhomogeneous due to environmental factors such as noise and physical 

obstructions. To address this issue, we developed a data reconciliation method to improve the accuracy of the position 

data. This method involved the use of advanced filtering techniques and algorithms to reconcile discrepancies and 

improve data accuracy [34]. Five forklifts were equipped with IPS tags, which transmitted positional data. The sample 

case demonstrates the applicability of the method; however, it would fundamentally require the involvement of more 

equipment to effectively implement resource reallocation and optimization. 

Another significant challenge was clustering, especially when cluster groups were in close proximity. This situation 

occasionally resulted in "jumping" between clusters, where data points inaccurately moved from one cluster to another. 

This issue was mitigated by refining the clustering algorithms and further improving the data accuracy through our 

reconciliation process. These combined efforts helped stabilize the cluster assignments and provided a more reliable 

representation of the position data, ultimately improving the overall effectiveness of the methodology. 
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