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Abstract

Affordable IoT PM,5 sensors, enabled by the Internet of Things, offer new ways to monitor air
quality. However, concerns exist about their data accuracy. This study aimed (1) to investigate the
low-cost PM sensor's performance under various outdoor ambient circumstances and (2) to evaluate loT;

seven calibration methods, which include decision trees, gradient-boosted trees, linear regression,  Sensors;
nearest neighbors, neural networks, random forests, and the Gaussian Process. The Davis AirLink
was used as a reference to compare the Plantower PMS3003 sensor's performance. The data from
the Plantower PMS3003 sensor were then compared to the Davis AirLink values using calibration
curves created by machine learning algorithms. Calibration curves were generated using machine
learning algorithms trained on sensor measurements collected in two Thai cities (Nakhon Si
Thammarat and Phuket). Our results show that all machine learning methods outperformed Received: 28  August 2024
traditional linear regression, with decision trees and neural networks demonstrating the most Revised: 20 November 2024
significant improvement. This research highlights the need for sensor calibration and the limitations ;
of current calibration methods and paves the way for advancements in cloud-based calibration and  Accepted: 25  November 2024
machine learning for improved data accuracy in IoT PM, 5 sensor technology. Published: 01 December 2024

Machine Learning.
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1- Introduction

Globally, airborne particulate matter (PM) concentrations pose concerns about their impact on human health and well-
being [1]. Over an extended period, exposure to airborne PM adversely affects health, leading to increased risk of
different cancers, cardiovascular diseases, higher infant mortality rates, chronic diseases, and neurodevelopmental
impairments [2, 3]. Moreover, 90% of deaths in resource-constrained countries are linked to high levels of air pollutants,
especially particulate matter, due to fast industrialization, reliance on biomass fuels for domestic energy needs, and
insufficient emissions controls [4]. PM concentrations exhibit significant spatial and temporal variability as a
consequence of the interplay between various sources (e.g., dust storms, wildfires, vehicle emissions, industrial activities,
and residential heating) and atmospheric conditions (such as air temperature, relative humidity, precipitation, and wind
speed) [5, 6]. Hence, it is imperative to have an accurate and precise monitoring method for air quality to ensure the
safety of every individual [7]. Implementing air quality monitoring stations outfitted with PM sensors to continuously
monitor PM levels in critical areas such as agricultural districts, traffic intersections, industrial areas, and forests
damaged by fires might yield significant insights for the fight against air pollution [8].
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The necessity of monitoring air quality for environmental preservation and public health has prompted the
development of a wide range of sensor technologies [9]. Numerous sensor quality monitoring stations frequently
integrate sensors, accelerometers, dust sensors, 0zone, carbon monoxide, nitrogen dioxide, and sulfur dioxide [10, 11].
Conventional air quality monitoring networks with robust and high accuracy rely on high capital and operation costs,
technical challenges, and limited spatial coverage [10, 12]. Newer technologies like low-cost sensor networks offer
reduced acquisition and maintenance costs, simplified deployment and operation, and the potential for denser spatial
coverage [13, 14]. However, data quality and calibration concerns must be addressed. [15]. Numerous studies have
validated the low-cost sensor performance against high-cost reference instruments in labs and real-world conditions [7,
16]. A more precise assessment of the air quality at each location is provided via calibration at many places, which
enhances the capacity to discriminate between sites. By calibrating equipment, discrepancies in readings across the
locations can be explained to ensure that observed air quality data came from environmental conditions, not sensor
performance issues [13]. Previous research has created robust calibration models for low-cost PM2s sensors, reducing
systematic biases, enhancing data accuracy and comparability to reference-grade devices, and improving the reliability
of low-cost sensors for air quality monitoring. These models include machine learning algorithms (e.g., random forest,
neural network, support vector machines, K-nearest neighbor, XGBoost) and primary and multivariate linear regression
[17, 18].

Despite existing research on low-cost sensor calibration using machine learning, a gap exists regarding sensor types
and temporal representation, limiting their application to broader time scales and diverse environmental conditions.
While affordability is critical for low-cost PMa s sensors, ensuring reliable and accurate data necessitates careful sensor
selection, calibration, and data validation. The study aims to (1) investigate the low-cost PM sensor's performance under
various outdoor ambient circumstances and (2) evaluate seven machine learning calibration methods, which include
decision trees, gradient-boosted trees, linear regression, nearest neighbors, neural networks, random forests, and the
Gaussian Process. A visual depiction of the research approach is visualized in Figure 1.
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Figure 1. The research process flowchart

2- Material and Methods
2-1-Study Area

We investigated two field locations within Southern Thailand: (1) Supalai Hotel, Phuket (coordinates: 8.08414° N,
98.43329° E) and (2) Walailak University, Nakhon Si Thammarat (coordinates: 8.642305° N, 99.89164° E) (see Figure
2). At both field sites, low-cost Plantower Laser PM, s dust sensors (model PMS3003) were co-located with a Davis
AirLink reference instrument to facilitate comparative measurements of PM s concentrations.
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Figure 2. (a) Thailand map, Phuket (yellow color) and Nakhon Si Thammarat (pink color), (b) study sites (green color) at
Phuket, and (c) study site (green color) at Nakhon Si Thammarat, Southern Thailand

2-2-Low-Cost PM Sensor and Davis AirLink

We considered several criteria for choosing PM sensors for this investigation, such as price, usability, performance
(accuracy, precision, etc.), ability to monitor a variety of particle sizes, and real-time data collection. We chose the
Plantower PMS3003 because Plantower PMS3003 was the most frequently used manufacturer in low-cost sensor studies
and a commercially available sensor providing cost-effectiveness (around $15) [7]. This study used a network of
reasonably priced PM_ s sensors made by Location Aware Sensing Systems. With a precision of 1 pg/m?, the sensor can
detect even minute variations in concentration and monitors PM concentrations between 0 and 500 pg/ms. A DHT22
sensor measured air temperature and relative humidity. Average Southern Thailand temperature/humidity aligns with
the sensor range. We constructed a Plantower Laser PM. s dust sensor with an ESP32 Node MCU. We evaluated the
Plantower PMS3003's accuracy and performance by comparing the recorded PM. 5 concentrations from the Plantower
PMS3003" with Davis AirLink equipment data as reference measurements. The Davis AirLink reference instrument,
typically stationed at the Center of Excellence for Ecoinformatics on the second floor of the Innovative Building Parking
Lot at Walailak University, was temporarily co-located with the low-cost PM2 s sensors at the measurement site for direct
performance comparison.

2-3-Data Collection

Following instrument deployment in Phuket, a two-day data collection campaign was initiated on February 26 to 27,
2023, capturing measurements at high temporal resolution (e.g., 1-minute sensor readings). Following instrument
deployment in Nakhon Si Thammarat, a six-day data collection campaign was conducted between April 10-15, 2023,
acquiring measurements at high temporal resolution (e.g., 1-minute sensor readings). To compare the data with readings
from the Davis AirLink, one-minute sensor measurements from the low-cost sensors were averaged over an entire 24-
hour day. The Davis AirLink reference data was retrieved from davisnet.com, available as 5-minute sensor readings
aggregated over 24-hour intervals stored on a cloud service. The two-day and six-day field campaigns comparing
measurements of atmospheric PM1, PM.s, and PM1g concentrations allowed the evaluation of the efficacy of low-cost
sensors. By obtaining measurements under various environmental circumstances, we used a multi-phase data-collecting
effort to assess low-cost sensors' accuracy and ecological dependability thoroughly. We installed the Davis AirLink and
low-cost sensors for two days in Phuket (by the Andaman Ocean with many tourists) and six days in Nakhon Si
Thammarat (by the Gulf of Thailand with fewer tourists). These two sites were selected purposely to expose sensors to
various environmental conditions. These lengthened installations enabled the comprehensive evaluation of their
measurements and the detection of any inconsistency between low-cost sensors and the reference station. This prolonged
deployment allowed the sensors to be exposed to various environmental conditions, allowing their measurements to be
assessed more thoroughly and identify any discrepancies from the Davis AirLink measurements.
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2-4-Calibration

This study calibrated the PM low-cost sensor data with seven machine-learning algorithms: random forests, neural
networks, decision trees, gradient-boosted trees, linear regression, nearest neighbors, and the Gaussian Process. We
separated low-cost sensor data into a training set to develop models and a test set to evaluate the model [10]. We used a
test set once to assess the machine learning mode’s performance to be reliable. We used the test set only once to
objectively evaluate the developed model's accuracy prediction performance [19].

2-5-Data Analysis

We used a two-day dataset of sensor measurements in Phuket and a six-day dataset of sensor measurements in Nakhon
Si Thammarat to create a calibration curve with seven machine-learning algorithms. We used linear regression analyses
to examine two relationships: (1) the relationship between PM concentrations measured with the Davis AirLink reference
instrument and low-cost sensors at Phuket and Nakhon Si Thammarat, and (2) the relationship between PM;s
concentrations and PM1 and PMyo concentrations at both locations.

3- Results
3-1-PM Sensor Data

For PM Sensor Set 1 at Phuket, PM3, PM2 5, and PMyo sensor data with 10T were positively correlated with the Davis
Airlink sensor data (Simple linear regression test: PM1: R? = 0.970, F 2520 = 82013.25, P < 0.001, y = 1.81x - 17.08;
PM;s: R? = 0.960, F1,2520) = 63925.87, P < 0.001, y = 1.85x - 27.86; PM1o: R? = 0.950, F(12500) = 44670.87, P < 0.001, y
= 1.41x - 17.80, Figure 3a). For PM Sensor Set 2 at Phuket, PM; sensor data with 10T was negatively associated with
the Davis Airlink sensor data, but PM1o sensor data with 10T was positively related to the Davis Airlink sensor data, and
PM_5 sensor data with 10T had no association with the Davis Airlink sensor data (Simple linear regression test: PM;: R?
= 0.040, F(1,2354 0. 86 ns; PM;s: R2 0. 000 F(l 2354) = =0. 14 ns; PMio: R2 0. 010 F(1 2354) = =0. 12 ns)

For Sensor Set 1 at Nakhon Si Thammarat, PM1, PM25, and PM1o sensor data with 10T were positively related to the
Davis Airlink sensor data (Simple linear regression test: PM1: R? = 0.900, F1,5135 = 46341.43, P < 0.001, y = 2.24x —
23.29; PMys: R? = 0.900, F(15064) = 45870.36, P < 0.001, y = 2.23x — 37.51; PM10: R? = 0.890, F(15064) = 40091.60, P <
0.001, y = 1.86x — 34.71, Figure 3b). For Sensor Set 2-4 at Nakhon Si Thammarat, PM1, PMas, and PM1o sensor data
with 10T were not associated with the Davis Airlink sensor data (Simple linear regression test: Sensor Set 2: PM;: R? =
0.010, F 50209y = 0.709, ns; PMyss: R2 = 0.010, F,50209) = 0.706, ns; PMo: R2 = 0.010, F 5020y = 0.745, ns; Sensor Set 3:
PM;i: R2 = 0030 F(1495e 16404 ns; PMss: RZ 0020 F(14955) 0. 855 ns, PMio: R2 0020 F(14955) 0.974, ns,
Sensor Set 4: PM1: R2 =0. 030 F(l 3754) = =1. 214 ns, PM,s: R2 0. 00 F(1 3754) = 0.10, ns; PMio: R2 = 0.030, F(1,3754) =
1.023, ns).

We tested the intrinsic correlation between sensors. The Davis AirLink PM2s sensor data was positively associated
with the Davis AirLink PM; and PMy, sensor data (Simple linear regression test: PM s with PM1: R? = 0.990, F(1,9669) =
114736, P < 0.001, y = 0.63x + 0.65, PM5 with PMio: R? = 0.990, F1,9668) = 1055943, P < 0.001, y = 1.24x - 2.51,
Figure 3c). At Phuket, for Sensor Set 1 and 2, the PM; s sensor data with 10T was positively associated with the PM; and
PM 3 sensor data (Simple linear regression test: Sensor Set 1: PM, s with PM1: R? = 0.980, F1 2520 = 143500.2, P < 0.001,
y = 0.66x - 0.48, PM,5 with PM1o: R? = 0.990, F1.2500) = 273784.6, P < 0.001, y = 1.02x + 2.93; Sensor Set 2: PMy 5 with
PMi: R2 = 0570, F(1,2354) 3174. 27 P <0. 001 y= 0.55x - 1. 40 PM25 with PMlo R2 0. 880 F(l 2354) = 1671509, P<
0.001, y = 1.21x + 7.28, Figure 4a). At Nakhon Si Thammarat, for Sensor Set 1-4, the PM2s sensor data with 10T was
positively associated with the PM; and PMjo sensor data (Simple linear regression test: Sensor Set 1: PM; s with PM;:
R? = 0.980, Fs669) = 312453.8, P < 0.001, y = 0.59x + 2.61; PM5 with PMzo: R? = 0.990, F(15669) = 766536.9, P <
0.001, y = 1.09x - 1.38; Sensor Set 2: PM_s with PM1: R? = 0.880, F(1,s601) = 41552.80, P < 0.001, y = 0.50x - 0.25; PM2s
with PMio: R? = 0.360, F.s601) = 3089.24, P < 0.001, y = 1.24x + 78.25; Sensor Set 3: PM2s with PM1: R? = 0.580,
Fs639) = 7780.10, P < 0.001, y = 0.34x - 0.55; PM_5 with PM1o: R? = 1.00, F(15634) = 1149195, P < 0.001, y = 1.01x +
0.33; Sensor Set 4: PMy5 with PM1: R? = 0.520, F1.4403 = 4768.24, P < 0.001, y = 0.16x - 0.92, PMy5 with PM1o: R? =
0.330, F1,4403 = 2185.59, P < 0.001, y = 1.48x + 58.17, Figure 3c).
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Figure 4. Machine learning predictor measurements between actual and predicted PMzs values: (a) decision tree, (b) neural network, (c) gradient boosted trees, (d)
nearest neighbors, (e) random forest, (f) Gaussian process, (g) linear regression, and (h) Davis AirLink and loT PM2s data with red x represents the predictive value of
machine learning from gradient boosted trees.
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3-2-Machine Learning Calibration

To test seven machine-learning techniques for calibrating the PM. 5 data, we used 44,059 test examples. The best
predictor measurement ranked from the highest to the lowest: the decision tree method with R? = 0.397, the neural
network method with R? = 0.393, the gradient-boosted trees with R? = 0.387, the nearest neighbors with R? = 0.384, the
random forest with R? = 0.345, the Gaussian process with R? = 0.334, and the linear regression with R?=0.328 (Figure
4a-g). We plotted Davis AirLink data with 0T PM2s data, with red x representing the predictive value of machine
learning from gradient-boosted trees (Figure 4h).

4- Discussion
4-1-Response of Sensors

Several prior investigations reported a constraint related to the short-term sampling period, wherein the samples were
taken over a few hours [20-22] and, in some cases, for slightly less than an hour [23, 24]. Our results showed that when
we installed two low-cost sensors for two days in Phuket and six days in Nakhon Si Thammarat, the data obtained were
adequate for investigating the objectives of this study. In Phuket, data from one low-cost sensor exhibited high agreement
(correlation coefficient > 0.90) with the reference data, indicating consistent and reliable performance. This highlights
the accuracy of low-cost sensors, making them suitable for citizen science initiatives and local community air quality
tracking. Davis Airlink data and the first low-cost PMi, PM.s, and PMyo sensor data with 10T showed positive
correlations, with a high R? range of 0.950 to 0.970. On the other hand, the second low-cost PM1, PMs, and PM1o sensor
data with 10T were unreliable by showing no correlation with the Davis Airlink data, with a low R? in the range of 0.000-
0.040.

The results of the four low-cost sensors installed in Nakhon Si Thammarat showed that only one of the four low-cost
sensors exhibited reliable data. In this case, the low-cost PMi, PM2s, and PMyo sensor data with 10T and the Davis
Airlink data showed a positive correlation (R* = 0.890-0.900), indicating its potential for accurate data collection.
However, results from the other three inexpensive instruments showed PM1, PM2s, and PM1o sensor data using loT to
have R? in the range of 0.000-0.040, which is reliable compared to the Davis Airlink data. Our results of the Plantower
PMS3003 sensor align with some existing research about the potential unreliability of these sensors without proper
calibration [25]. The reliable results obtained from two low-cost instruments installed in our two study sites - Phuket and
Nakhon Si Thammarat, agree with Sayahi et al.’s [24] findings of successful applications of Plantower sensors with R2
> (.858 after implementing a suitable calibration model over a 320-day study. This suggests that Plantower sensors can
achieve high accuracy with proper calibration. The ultimate goal is to achieve real-time PM,s monitoring with cost-
effective sensors while maintaining data quality comparable to reference equipment. By addressing these considerations
and overcoming limitations identified in previous studies, this research paves the way for a more affordable and effective
air quality monitoring system in Southern Thailand. This can promote public health awareness and potentially enable
cost-effective air quality management strategies.

4-2-Comparison of Sensors to Davis AirLink

A statistically significant positive association was observed between the Davis AirLink PM2s sensor data and the
same instrument's PM; and PM3g sensor data over an observation period. The Davis AirLink sensor data exhibited lower
variability than the low-cost sensor data. Meanwhile, lower variability can suggest potentially higher precision. This low
variation indicates that the data readings from the Davis AirLink would be more precise and accurate than the low-cost
sensors. Interestingly, a positive association was observed between Davis AirLink's PM;s data and its PM; and PMg
data (on smaller and larger particulate matter sizes). This suggests a logical relationship between the measurements of
different particulate matter sizes. Additionally, all PM s sensor data with 10T showed positive correlations with PM; and
PMjo data in both locations. This finding implies a potential alignment between PM, PMy s, and PMyo levels captured
by the sensors, offering initial promise for low-cost PM; s data in capturing broader air quality trends.

While most inexpensive sensors had significant volatility, few had minimal variance. The observed amount of volatile
data in most low-cost sensors poses issues with reliability. Based on the results, it is emphasized that there is a need for
a rigorous evaluation method to test the accuracy and precision of low-cost sensors. Employing a thorough evaluation
process for quantifying the measurement errors associated with low-cost sensors is vital for building trust and confidence
in the data. Following the necessary standards, the transformative power of low-cost sensors in democratizing air quality
monitoring and enhanced public health protection will be maximized. If not, we must transform the low-cost sensor data
into actionable insights. Our findings indicate that further research should address the inconsistency observed in low-
cost PM sensors. We need to ensure consistent performance across sensors to enable the ubiquitous deployment of low-
cost PM sensors. Sayahi et al. [24] suggested that effective calibration models can enhance the reliability of low-cost
sensor data.
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Our findings suggest that sensor data can be calibrated using a linear relationship with the reference Davis AirLink
sensor data. This aligns with previous studies [25-27] that reported high correlation coefficients when calibrating
Plantower sensors using reference data. However, acknowledging two critical limitations of low-cost sensors, including
the Plantower model, is crucial. Low-cost sensors may exhibit data drift over time, requiring frequent calibration to
maintain accuracy. These sensors may be sensitive to temperature and humidity [28], potentially influencing PMas
readings even if the actual particulate matter concentration remains constant.

When we compared 24-hour readings to the reference technique, previous research has shown that the Plantower
sensors provided the highest correlation coefficient [25, 29]. Our study highlights a significant cost advantage of the
Plantower sensor (around $15) compared to alternative sensors like Panasonic and DC1700, which can accurately
measure PM s at hourly and minute resolutions (costing around $400). However, these higher time resolutions are not
suited for measurement with the Plantower Laser PM2 s sensor. This presents a trade-off between affordability and data
granularity. The ultimate goal is to leverage low-cost sensors for real-time PM. s monitoring while balancing affordability
and data accuracy.

4-3-Low-Cost Sensors Calibration with Machine Learning Methods

Sensor data quality has increased due to the development of inexpensive sensors and calibration methods [30].
Numerous research calibrations revealed that we must confirm data from low-cost PM. 5 sensors to equip the public with
accurate readings through sensor networks [14, 25, 31]. The research on PMys low-cost sensors manufactured by
AirBoxlab was the only one to show that the raw data could correctly depict the spatiotemporal trend of PM25 [13]. The
findings suggest that, even among identical sensors and platforms, there may be differences in performance. We found
significant differences in the two sensors' performances during field tests. Measurement bias and errors were reduced by
using field calibration, particularly for sensors having larger initial offsets. Our findings demonstrate that all six machine
learning methods we evaluated (decision trees, gradient-boosted trees, nearest neighbors, neural networks, random
forests, and Gaussian Processes) outperformed linear regression. Regression models were typically employed in the
literature evaluating PM ambient data for statistical calibration, as demonstrated by many studies [13, 31, 32]. As an
illustration, a few researchers have employed the non-parametric regression method known as the generalized additive
model (GAM) [13, 32]. Based on previous studies [33, 34], our work confirms that neural networks can outperform
linear or multilinear regression for field calibration in specific situations.

Unlike more straightforward methods, neural networks have the advantage of learning complex, non-linear
relationships between sensor data and environmental factors, which can lead to more accurate results. Neural network
performance can be sensitive to the data quality and the specific training parameters implemented. Micrometeorological
factors (e.g., air temperature, relative humidity, wind, pollutants) can influence PM2 s sensor measurement in non-linear
ways. Neural networks capture the complex interaction, enhancing PM2s sensor calibration more reliably [26]. Neural
networks are powerful tools, but their success requires large practical training datasets with high computational demands
and lengthy execution times. When neural networks are trained on uncleaned data, poor-quality data can lead to
overfitting neural networks. These challenges hinder the extensive deployment of neural networks for PM sensor
calibration. In a more straightforward scenario, regression methods (e.g., linear regression or GAM) might be more
practical choices due to more computational efficiency.

Whatever method is used for sensor calibration, it is necessary to know the ability of the methods to calibrate a low-
cost sensor’s reliability in monitoring PM2s. Calibration tailors the output reading of low-cost sensors from research-
grade, highly accurate PM»s devices. Moreover, it adjusts built-in biases in the sensors and corrects “drifts,” a
phenomenon in which sensor data resolution changes from actual value over time [35]. By integrating machine learning
architecture like neural networks, we can build adaptive and wholesome calibration algorithms for low-cost I0T sensors
that can address complex environmental conditions [36], which could minimize the bias associated with PMys
measurements. Hence, low-cost sensors need to be calibrated for the reliability and validity of PM;s monitoring.

5- Conclusion

The possibility of widely deploying and utilizing cost-effective 10T PMzs sensors introduces novel solutions for
calibration models using several machine learning algorithms for high-quality, accurate, and reliable data resolutions.
Based on the streamlined results for PM2s measurements in Southern Thailand using the Plantower sensors, the sensor
displayed good internal consistency, and validation against reference readings is essential. The Plantower sensor's strong
intra-sensor correlation suggests steady internal functioning and needs further assessment. A two-day and a six-day field
test showed promise for real-world, round-the-clock PM2 s monitoring using a couple of low-cost sensors but not for the
other four sensors, and further research is needed. Based on the performed correlation coefficient, decision trees, and
neural networks showed promising operational measurements for calibrating low-cost sensors compared to other linear
regression models. As analyzed in the literature, when selecting a low-cost PM2 s sensor, any research should consider
several factors, such as the study site, the device specifications and cost of the sensor, the sampling duration, the emission
sources, and the local meteorology at the time of the study. Even if the initial sensor deployment of some sensors shows
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no positive association with a reference sensor, the calibration and recalibration for these low-cost 10T PM; s sensors in
the future will create significant savings since sensors are already up and running and collocated with the reference
sensor. Hence, the new recalibration procedure will be easier and readily accessible. In addition, allowing a more
extended time deployment and a wide coverage area for data capturing and monitoring will allow the low-cost 0T PM:s
sensors to increase their performance reliability.

Furthermore, future works may need to strongly consider environmental conditions like temperature, humidity, and
seasons across different ecological settings and correlate them to the sensors’ performance. In addition, developing
hybrid calibration-recalibration algorithms to account for environmental effects on sensor accuracy is crucial. The
ultimate goal is to achieve real-time PM.s monitoring with cost-effective sensors while maintaining data quality
comparable to reference equipment data. By addressing these considerations, this research paves the way for a more
affordable and effective air quality monitoring system in Southern Thailand, promoting public health awareness and
potentially enabling cost-effective air quality management strategies.
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