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Abstract 

This study investigated land use and land cover (LULC) patterns and changes in the Bandon Bay 
area of Thailand from 1991 to 2021 using satellite imagery, the first comprehensive effort to assess 

historical LULC trends over the past 30 years and forecast future LULC scenarios using the CA-

Markov model for 2031, 2041, and 2051. Results showed the predominant LULC during 1991-2001 
was the abandoned paddy fields, and during 2006-2021 was the oil palm plantations. During 1991-

2001, the abandoned paddy fields changed significantly, with a net gain of 59.28 km2. From 2001-

2011 and 2011-2021, the oil palm plantations experienced the most crucial change, with a net gain 
of 292.94 km2 and 70.06 km2. In 2031, 2041, and 2051, the LULC was predicted to be oil palms, 

shrimp farms, mangroves, and urban and built-up lands. The LULC changes were consistent with 

the government policies implemented and indicated government policy as a driving force in LULC 
dynamics on Bandon Bay area forestry, aquaculture, and agriculture, particularly on oil palm 

cultivation. Government management and regulation on land use is crucial for reducing the 
expansion of agricultural areas, especially oil palm plantations and aquaculture areas, to mitigate 

negative impacts on the Bandon Bay ecosystem. 

Keywords:  

LULC Change;  

Bandon Bay; 

Remote Sensing; 

Geographic Information System. 

 

 

Article History: 

Received: 08 May 2024 

Revised: 19 September 2024 

Accepted: 25 September 2024 

Published: 01 October 2024 
 

 

 

1- Introduction 

Land use and land-over land (LULC) classification is a dynamic and multifaceted process driven by a complex 

interplay of natural and anthropogenic factors. Socioeconomic forces like population increase, urban sprawl, and 

industrial growth fuel land-use intensification, potentially leading to accelerated LULC changes and subsequent 

ecological repercussions such as habitat fragmentation and ecosystem service decline [1]. Land use transition results 

from complicated interactions among regional conditions, economic and social development, and government policies 

[2]. Various public policies have contributed to the change in LULC classes [3]. Social and economic development 

conditions are intricately linked with land use policies, which manifest through human activities such as deforestation 

[4, 5], plantation [6, 7], duration [8], etc. Transitions in LULC classes have been demonstrably linked to environmental 

degradation, such as biodiversity decline [9], diminished air quality [10], altered water quality [11], habitat loss for 

terrestrial and aquatic species [12], human settlement, and other factors. 

A recent approach to track LULC classes is through the use of satellite imagery. Satellites could document images, 

provide comprehensive coverage, and display multiband and multi-resolution images so that the data covers the past and 
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present. Spatiotemporal analysis of LULC changes using historical data is crucial for developing informed and 

sustainable LULC management plans for the future. LULC change analysis provides a robust methodology for 

quantifying human influence on land use practices' magnitude, spatial patterns and ecosystem dynamics. In recent years, 

the assessment and modeling of LULC change have been critical key aspects as LULC change influences socio-economic 

and environmental structures [13]. Monitoring changes in LULC is crucial in supporting efficient LULC decision-

making in LULC management [14, 15].  

Bandon Bay is a critical coastal embayment in Surat Thani Province, Thailand. The bay's extensive coastline stretches 

approximately 120 km, encompassing 695.32 km2 [16]. Notably, the bay exhibits shallow bathymetry, with depths 

ranging from one to five meters [17]. The Tapi River serves as the primary freshwater source for the bay, with a network 

of smaller canals further enriching the aquatic ecosystem. Bandon Bay plays a vital ecological role as a fishery, spawning 

ground, and nursery for various marine life [18]. The bay's economic significance stems from its abundance of 

commercially valuable shellfish species, including blood cockles, mussels, and oysters. Surat Thani Province, with 

Bandon Bay as a critical contributor, represents Thailand's second-largest producer of shellfish farming, with an annual 

yield of 11,381.18 tons in 2021, valued at 1.08 billion Baht [19]. Furthermore, Bandon Bay is recognized as a significant 

source of blue swimming crabs in Thailand. According to the Fisheries Development Policy and Planning Division [20], 

the bay's blue swimming crab fishery yielded an estimated 703 tons in 2021, with an economic value of 130.19 billion 

Baht. 

A time series analysis of ecological and environmental changes in Bandon Bay was conducted, dividing the study 

period into three intervals: pre-development (before 1961), development (1961-2001), and the contemporary period 

(2002-present) [21]. During the pre-development phase, the community structure exhibited autonomous ecological 

system characteristics by the villagers practicing a subsistence livelihood strategy, relying on agricultural production, 

small-scale horticulture, and nearshore fisheries to meet their basic needs. After the pre-development period, government 

policy shifts were observed. During the 1961-2001 intervals, private entities were granted concessions to harvest timber 

from mangrove ecosystems restricted to designated zones [21]. However, anthropogenic pressure intensified as these 

concessions triggered incursions into adjacent mangrove stands for shrimp aquaculture establishments. Driven by the 

high profitability of shrimp aquaculture, a rapid expansion was observed during this period. This intensification 

coincided with a 1987 governmental policy shift promoting shrimp farming for export. This policy change resulted in 

expanding shrimp farming areas into mangrove forests. Subsequently, shrimp farming production witnessed a significant 

increase from 1997-2002 [21]. Economic considerations, including declining shrimp market prices and escalating 

aquaculture input costs, resulted in the cessation of shrimp farming activities by smaller-scale operations during the 

contemporary period (2002-present) [21]. These economic pressures led to financial losses and debt accumulation, 

rendering shrimp farming unsustainable for these entities. Conversely, large, privately owned shrimp aquaculture 

enterprises possessed the financial resources to navigate these economic challenges and continue production.  

The Ocean Food Bank Project was implemented in 2002 following this economic shift. This initiative aimed to 

promote the cultivation of cockles as an alternative aquaculture practice with the potential for increased financial and 

ecological sustainability. As a result, Bandon Bay has been occupied for raising cockles since then [21]. Concurrently, 

additional governmental policies have demonstrably influenced LULC changes within the Bandon Bay region. Notably, 

the strategic framework implemented by the oil palm industry from 2004 to 2029 underscores a focus on transitioning 

towards a global export-oriented production model, emphasizing supplying Malaysia and Indonesia. Additionally, this 

strategy emphasizes the development of the industry as a sustainable source of domestic energy [22, 23]. In late 2005, 

Thailand established a national strategy to promote and develop palm biodiesel as a biofuel alternative [22, 23]. The 

policy prioritized advancements in rural agriculture, potentially expanding the nation's agricultural exports [24-26]. 

Past studies have shown problems with community wastewater and shrimp farming in the Bandon Bay area [18, 27]. 

These problems are due to poor seawater quality, microplastic spread in surface seawater [28], and heavy metal 

contamination in marine sediment [29]. These issues impact aquatic animals, as shown by the contamination of heavy 

metal and fecal coliform bacteria found in cockles and oysters [30, 31]. To ensure sustainable development, we need to 

analyze the past, current, and predicted changes in LULC driven by economic and social forces. Existing research on 

LULC changes in Bandon Bay and surrounding areas needs to be revised and updated. Previous studies have investigated 

LULC changes across the following years: 1990, 1993, 1996, and 1999 [32]; 1994, 2001, 2005, and 2017 [33]; 2007 

[34]; 2000, 2009, and 2012 [25]; 2000, 2009, and 2016 [26]; and 2001, 2007, and 2011 [35]. This research is the first 

comprehensive effort to assess historical Land Use/Land Cover (LULC) trends over the past 30 years and forecast future 

LULC scenarios in Bandon Bay. Understanding these trends would inform the development of a sustainable management 

plan for Bandon Bay, mitigating negative environmental consequences. The study objectives are (i) to investigate the 

LULC classes in 1991, 1996, 2001, 2006, 2011, 2016, and 2021; (ii) to study the change in LULC in 1991-2001, 2001-

2011, and 2011-2021; and (iii) to forecast LULC classes for 2031, 2041, and 2051 by using the CA-Markov model. The 

research methodology schema is outlined in Figure 1. 
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Figure 1. Research methodology schema 

2- Material and Methods 

2-1- Study Area 

This study was conducted within a 10-km coastal buffer zone surrounding Bandon Bay, Surat Thani, Thailand (Figure 

2A, B). The study area is situated along the Gulf of Thailand coastline (latitude 9°06′–9°30′ N; longitude 99°05′- 99°39′ 

E). This region comprises six districts: Chaiya, Tha Chang, Phun Phin, Muang Surat Thani, Kanchanadit, and Don Sak. 

The total area encompassed by the study site measures 979.51 km2. Bandon Bay experiences a tropical monsoon climate 

regime characterized by alternating wet and dry seasons driven by the interplay of the southwest and northeast monsoon 

winds. The southwest monsoon, originating from the Indian Ocean, delivers moisture-laden air masses to the region, 

resulting in widespread precipitation events between mid-May and mid-October. Conversely, the northeast monsoon, 

dominant over Thailand from mid-October to mid-February, brings cooler temperatures to the Bandon Bay area. 

However, precipitation persists during this period, with November experiencing the highest rainfall. The annual 

temperature in Bandon Bay exhibits a range of 23.2-32.9°C, with a mean annual temperature of 27.1°C. Yearly 

precipitation averages 1,669.8 mm [36]. 

  

(A) (B) 

Figure 2. Location of the study site within Thailand. (A) Map of Thailand highlighting Bandon Bay (red) and (B) An enlarged 

view of Bandon Bay encompasses the six administrative districts: Chaiya, Tha Chang, Phun Phin, Mueang Surat Thani, 

Kanchanadit, and Donsak. 
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2-2- Satellite Data and Criteria 

This study leveraged multispectral imagery acquired by Landsat satellites for LULC classification. This analysis 

utilized bands 3, 4, and 5 from the Landsat 5 Thematic Mapper (TM) sensor and bands 4, 5, and 6 of the Landsat 8 

Operational Land Imager (OLI) sensor. Landsat imagery was acquired from the USGS Earth Explorer data portal 

(https://earthexplorer.usgs.gov/) for 1991, 1996, 2001, 2006, 2011, 2016, and 2021. Landsat 5 TM and Landsat 8 OLI 

sensors have a spatial resolution of 30 m. Following the acquisition, all Landsat scenes for path/row 129/054 were 

subjected to a rigorous geometric correction process to ensure spatial accuracy. The data underwent re-projection to the 

Universal Transverse Mercator (UTM) coordinate system; precisely, Zone 47 North referenced the WGS-84 datum. To 

improve classification accuracy and aid in visual interpretation, high-resolution imagery from Google Earth, existing 

land-use data, and topographical maps were utilized as ancillary data sources. 

2-3- Data Processing and Analysis 

2.3.1. Data Collection 

Landsat images for 1991, 1996, 2001, 2006, 2011, 2016, and 2021 were used to classify the LULC classes and create 

LULC maps. Before image classification, pre-processing steps were implemented, including geometric and radiometric 

corrections, image sub-setting, and potential image enhancement techniques [37]. Bandon Bay is mainly covered with 

evergreen forests, mangroves, rubber trees, and oil palms. Based on the pre-processed imagery, false-color composite 

images were generated using specific band combinations: band combination RGB (4, 5, 3) for Landsat 5 TM and band 

combination RGB (5, 6, 4) for Landsat 8 OLI. These band combinations were chosen to enhance the visual discrimination 

of LULC classes [38]. 

2.3.2. LULC Classification and Accuracy Assessment 

The visual interpretation was used to classify satellite images. Like aerial photography, satellite image interpretation 

leverages fundamental visual interpretation elements for feature recognition: shape, size, spatial pattern, spectral 

response (color/ton), texture, shadows, geospatial context, and spatial association. It is based on training, field 

experience, geographical knowledge, observation, and the interpreter's patience. While acknowledged as a time-intensive 

methodology, visual interpretation offers distinct advantages. It is a flexible approach that excels at extracting spatial 

information from imagery and has been demonstrated to achieve high classification accuracy [39]. Following a LULC 

classification scheme established by the Land Development Department of Thailand, the study categorized the imagery 

into 14 distinct classes as follows: (1) Urban and built-up lands (U), (2) Abandoned paddy fields (A100), (3) Active 

paddy fields (A101), (4) Perennial crop (A3), (5) Para rubber (A302), (6) Oil palms (A303), (7) Orchards (A4), (8) 

Abandoned aqua-cultural lands (A900), (9) Shrimp farms (A903), (10) Evergreen forests (F1), (11) Mangrove forests 

(F3), (12) Swamp forests (F4), (13) Water bodies (W), and (14) Miscellaneous lands (M). Evaluating classification 

accuracy is a critical step to ensure the reliability of LULC maps. The last step in the classification process was to assess 

accuracy. The current method compares random points with the Google Earth engine [40, 41]. For accuracy assessment, 

a reference dataset of ground-truth points was acquired from Google Earth to evaluate the number of correctly classified 

land-cover pixels [42]. Agreement between the classified map and reference data was quantified using accuracy 

assessment metrics derived from a random point-based error matrix. Overall accuracy, producer's accuracy, user's 

accuracy, and Kappa coefficient were calculated [43]. The Kappa coefficient indicated a high level of agreement between 

the classified map and reference data, exceeding 0.81 [44]. 

2.3.3. LULC Change Analysis 

LULC change dynamics were quantified by calculating area gains, net changes, and losses for various categories 

using a simple overlay technique of ArcGIS 9.2. The overlay technique, which combines multiple layers into a single 

map, can also detect changes in LULC between two specific years [45]. This study classified maps in 1991, 2001, 2011 

and 2021 enabled spatiotemporal analysis of LULC change patterns across three decades (1991-2001, 2001-2011, 2011-

2021) [46] and provided an overview of changes spanning 30 years (1991-2021). 

2.3.4. LULC Prediction 

The CA-Markov model has emerged as a powerful tool for analyzing and predicting LULC dynamics [47], 

including agriculture [48] and urban expansion [49]. CA-Markov models offer several advantages when studying 

LULC changes such as integration of spatial and temporal dynamics, long term predictions, ease of use, scenario 

analysis and flexibility. CA-Markov models have two key limitations: reliance on past trends and data dependence. 

The Markov chain model has been established as a valuable quantitative tool for predicting LULC change trajectories 



Emerging Science Journal | Vol. 8, No. 5 

Page | 1787 

[40]. The CA-Markov model leverages the strengths of both CA and Markov chains to spatially simulate and predict 

LULC class transitions and their characteristics over time [50]. Predicting future LULC changes using historical data 

(e.g., CA-Markov) informs policy and planning [44]. The CA-Markov module in the Quantum GIS software (Version 

2.18.23) was used to predict LULC for 2031, 2041, and 2051. This study selected the 2031, 2041, and 2051 

projections to intentionally be consistent with Surat Thani's 20-year Provincial Development Plan (2017-2036). It 

had to be validated before the model could project LULC classes for 2031, 2041, and 2051. This study used LULC 

maps in 2011 as the baseline and LULC maps in 2016 as the final year to project LULC classes in 2021. Model 

validation was achieved by comparing the interpreted 2021 LULC map derived from reference data with the 

corresponding LULC map predicted by the model for 2021. Kappa validation (≥ 0.81 suggests near-perfect 

agreement) [44] supports the model's use for future LULC projections.  

3- Results 

3-1- Image Classification and Analysis 

The accuracy assessment generated a confusion/error matrix for each LULC class. High-resolution satellite imagery 

from Google Earth Pro, acquired in 2006, 2011, 2016, and 2021, was used to collect ground truth data for map 

generation. The analysis revealed that the total accuracy ranged from 89.32-95.74%, and the Kappa coefficient (K) 

ranged from 0.87-0.95. Our results (Table 1, Figure 3 and 4) showed that between 1991 and 2001, most of the LULC 

classes in the Bandon Bay area were abandoned paddy fields, and there was an increasing trend over time. Abandoned 

paddy fields covered 214.52 km2 in 1991, 229.70 km2 in 1996, and 273.8 km2 in 2001. From 2006 to 2021, most 

LULCs in the Bandon Bay area were oil palm plantations. It covered an area of approximately 323.20 km2 in 2006, 

329.6 km2 in 2011, 345.9 km2 in 2016, and 400.31 km2 in 2021. Abandoned paddy fields significantly decreased area 

coverage, declining from 47.31 km2 to 18.9 km2 between 2006 and 2021. The abandoned paddy fields increased 

between 1996 and 2001 from 214.52 km2 to 273.80 km2. Since 2006, the area of abandoned rice fields has been 

decreasing dramatically. The area of active paddy fields has declined steadily since 1996-2021, from 142.92 km2 to 

8.23 km2. Mangroves decreased between 1991 and 2011 from 106.03 km2 to 79.52 km2; between 2016 and 2021, the 

mangrove area increased from 89.88 km2 to 94.91 km2. As for the shrimp farming area, they increased from 1991 to 

2001 (104.98 km2 to 144.40 km2). After that, in 2006-2021, the trend decreased from 104.72 km2 to 96.83 km2. 1991-

2011, the Para rubber area increased from 104.02 km2 to 151.94 km2. After that, between 2016 and 2021, the area 

decreased from 148.12 km2 to 140.46 km2. 

Table 1. Total area cover and the percentage of LULC classes in Bandon Bay, Thailand, from 1991 to 2021 

LULC classes 

1991 1996 2001 2006 2011 2016 2021 

Area 

(km2) 
% 

Area 

(km2) 
% 

Area 

(km2) 
% 

Area 

(km2) 
% 

Area 

(km2) 
% 

Area 

(km2) 
% 

Area 

(km2) 
% 

Urban and built-up land (U) 39.48 4.03 50.23 5.13 50.89 5.20 75.09 7.67 79.54 8.12 83.97 8.57 86.35 8.82 

Abandoned paddy field (A100) 214.52 21.90 229.7 23.45 273.80 27.95 47.31 4.83 37.70 3.85 27.12 2.77 18.9 1.93 

Active paddy field (A101) 142.92 14.59 76.48 7.81 23.60 2.41 20.89 2.13 11.94 1.22 12.17 1.24 8.23 0.84 

Perennial crop (A3) 0.93 0.09 0.81 0.08 0.82 0.08 8.92 0.91 8.43 0.86 8.14 0.83 5.94 0.61 

Para rubber (A302) 104.02 10.62 125.81 12.84 125.98 12.86 150.35 15.35 151.94 15.51 148.12 15.12 140.46 14.34 

Oil palm (A303) 25.54 2.61 36.79 3.76 37.16 3.79 323.20 33.00 330.10 33.70 345.90 35.31 400.16 40.85 

Orchard (A4) 96.21 9.82 95.57 9.76 92.10 9.40 52.81 5.39 57.85 5.91 52.49 5.36 40.72 4.16 

Abandoned aquaculture land (A900) 2.17 0.22 10.59 1.08 9.45 0.97 21.16 2.16 24.52 2.50 20.41 2.08 10.33 1.05 

Shrimp farm (A903) 104.98 10.72 132.97 13.58 144.40 14.74 104.72 10.69 106.39 10.86 101.60 10.37 96.83 9.89 

Evergreen forest (F1) 9.72 0.99 9.27 0.95 9.41 0.96 7.39 0.75 8.65 0.88 7.38 0.75 8.62 0.88 

Mangrove forest (F3) 106.03 10.83 94.91 9.69 95.12 9.71 88.95 9.08 79.52 8.12 89.88 9.18 94.91 9.69 

Swamp forest (F4) 5.27 0.54 4.59 0.47 4.85 0.50 1.10 0.11 0.86 0.09 1.17 0.12 0.86 0.09 

Water body (W) 27.94 2.85 27.84 2.84 27.86 2.84 30.49 3.11 27.82 2.84 30.54 3.12 27.8 2.84 

Miscellaneous land (M) 99.78 10.19 83.95 8.57 84.07 8.58 47.13 4.81 54.25 5.54 50.60 5.17 39.4 4.02 

Total 979.51 100 979.51 100 979.51 100 979.51 100 979.51 100 979.51 100 979.51 100 
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Figure 3. LULC classes in Bandon Bay, Thailand (A: 1991, B: 1996, C: 2001, D: 2006, E: 2011, F: 2016, and G: 2021) 
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Figure 4. Trends in LULC classes in the Bandon Bay area, Thailand, from 1991 to 2021 

3-2- LULC Change Detection 

In 1991-2001, one of the significant LULC classes in Bandon Bay was the abandoned paddy fields, which 

substantially increased over this decade. The area of abandoned paddy fields had lost 49.58 km2 and gained 108.86 km2, 

with a net gain of 59.28 km2 (Figure 5). Active paddy fields had significantly lost 119.77 km2 and gained 0.45 km2, with 

a net loss of 119.32 km2. About 108.86 km2 of the active paddy area was converted into abandoned rice fields. At the 

same time, approximately 18.35 km2 of abandoned paddy fields, 17.2 km2 of mangrove forests, and 10.37 km2 of 

miscellaneous lands have been converted into shrimp farms. A significant change in the LULC classes in 2001-2011 

was the oil palm plantations, which had gained 296.8 km2 and lost 3.74 km2, with a net gain of 292.94 km2, while the 

abandoned paddy fields lost 240.59 km2 and gained 4.49 km2, with a net loss of 236.10 km2. Approximately 174.27 km2 

of abandoned paddy fields were turned into oil palm plantations. Similarly, in 2011-2021, the oil palm plantations had 

gained 73.76 km2 and lost 3.70 km2, with a net gain of 70.06 km2 (Figure 5). The increase of 70.06 km² in the oil palm 

area was mainly converted from 19.0 km² of orchards, 17.14 km² of abandoned paddy fields, and 12.91 km² of Para 

rubber area. The most significant changes in LULC patterns from 1991 to 2021 were found in the area of oil palm 

plantations, with an increase of up to 370.70 km2. Most of this change was attributed to the conversion of abandoned 

paddy fields, accounting for 124.85 km2, and active paddy fields, accounting for 111.70 km2. 

3-3- Future LULC Prediction 

The predicted LULC changes generated by the CA-Markov model are presented in Table 2 and Figure 6. Overall, the 

land use forecast results for 2031, 2041, and 2051 showed that the predominant LULC will be covered with oil palms. 

A continued expansion is predicted in the oil palm area, which increased from 407.00 km2 in 2031 to 408.96 km2 in 2041 

and then to 409.62 km2 in 2051. The Para rubber cover is predicted to experience a decline from 140.06 km2 in 2031 to 

128.48 km2 in 2051. The shrimp farm cover is predicted to maintain its increasing trend between 2031 and 2051 as the 

total area cover increased from 96.47 km2 to 97.63 km2, respectively. Similarly, the urban and built-up land cover area 

is predicted to increase from 87.95 km2 in 2031 to 88.89 km2 in 2051, whereas mangrove forests were reduced from the 

predicted 93.77 km2 (9.57%) in 2031 to 92.99 km2 (9.49%) in 2051. The other eight LULC classes in Table 2 had 

minimal changes during the study period. The CA-Markov to predict LULC changes has been validated, resulting in a 

Kappa coefficient of 0.89. 
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1
1
.4

1

1
0
8
.8

6

0
.4

5

0
.0

8

3
2
.1

1

1
3
.1

1

5
.9

3

8
.3

8

5
3
.9

5

0
.1

4

7
.7

2

0
.0

1

5
.2

6

-4
9
.5

8

-1
1
9
.7

7

-0
.1

9

-1
0
.1

5

-1
.4

9

-1
0
.0

4

-1
.1

0

-1
4
.5

3 -0
.4

5

-1
8
.6

3 -0
.4

2

-0
.0

9

-2
0
.9

7

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

A
r
e
a

 (
k

m
2
)

2
8
.6

5

4
.4

9

8
.5

6

7
.6

1

4
8
.3

6
2
9
6

.6
8

6
.9

8 2
1
.0

0

1
1
.1

3

1
.7

1

9
.2

4 2
1
.8

7

-2
4
0
.5

9

-2
0
.2

2

-2
2
.4

0

-3
.7

4

-4
1
.2

3

-5
.9

3

-4
9
.1

4

-2
.4

7

-2
4
.8

4 -3
.9

9

-0
.0

4

-5
1
.6

9

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

A
r
e
a

 (
k

m
2
)

6
.8

1

0
.4

6

0
.6

8

0
.4

0

3
.0

6

7
3
.7

6

4
.0

0

0
.2

3

0
.8

4 1
5
.7

6

0
.3

0

1
.3

1

-1
9
.2

6

-4
.3

9

-2
.8

9

-1
4
.5

4

-3
.7

0

-2
1
.1

3

-1
4
.4

2

-1
0
.4

0

-0
.0

3

-0
.3

7

-0
.3

2

-1
6
.1

6

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

A
r
e
a

 (
k

m
2
)

4
8
.6

8

8
.6

8

7
.5

1

5
.1

1

6
1
.2

5
3
7
6
.6

1

9
.2

6

1
5
4
.5

2

3
9
.1

4

0
.3

9

2
9
.8

7

1
0
.0

9

2
1

-1
.8

1

-2
0
4
.3

-1
3
5
.4

1

-0
.1

-2
4
.8

1 -1
.9

9

-6
4
.7

5

-2
.0

8

-4
7
.2

9

-1
.4

9

-4
0
.9

9

-4
.4

1

-1
0
.2

3

-8
1
.3

8

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

A
r
e
a

 (
k

m
2
)



Emerging Science Journal | Vol. 8, No. 5 

Page | 1791 

Table 2. Comparison of the LULC class areas and the percentage in 2021, and the predicted LULC class areas and the 

percentages for 2031, 2041, and 2051, in Bandon Bay, Thailand 

LULC classes 
2021 2031 2041 2051 

Area (km2) % Area (km2) % Area (km2) % Area (km2) % 

Urban and built-up land (U) 86.24 8.80 87.95 8.98 88.62 9.05 88.89 9.07 

Abandoned paddy field (A100) 18.90 1.93 18.86 1.93 18.87 1.93 18.89 1.93 

Active paddy field (A101) 9.08 0.93 8.88 0.91 8.01 0.82 7.98 0.81 

Perennial crop (A3) 5.94 0.61 5.76 0.59 5.74 0.59 5.72 0.58 

Para rubber (A302) 140.06 14.30 130.96 13.37 129.06 13.18 128.48 13.12 

Oil palm (A303) 400.31 40.87 407.00 41.55 408.96 41.75 409.62 41.82 

Orchard (A4) 40.73 4.16 39.35 4.02 39.21 4.00 39.19 4.00 

Abandoned aquaculture land (A900) 10.33 1.05 12.55 1.28 12.94 1.32 12.96 1.32 

Shrimp farm (A903) 96.33 9.83 96.47 9.85 97.21 9.92 97.63 9.97 

Evergreen forest (F1) 8.62 0.88 8.52 0.87 8.51 0.87 8.49 0.87 

Mangrove forest (F3) 94.91 9.69 93.77 9.57 93.31 9.53 92.99 9.49 

Swamp forest (F4) 0.86 0.09 0.84 0.09 0.82 0.08 0.81 0.08 

Water body (W) 27.80 2.84 29.89 3.05 29.90 3.05 29.93 3.06 

Miscellaneous land (M) 39.40 4.02 38.71 3.95 38.35 3.92 37.93 3.87 

Total 979.51 100 979.51 100 979.51 100 979.51 100 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 6. LULC classes in Bandon Bay, Thailand: (a) 2021, (b) 2031, (c) 2041, and (d) 2051 
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4- Discussion 

4-1- Image Classification and Change Detection 

Our results showed that between 2006 and 2021, the area covered by oil palm plantations increased significantly. 

This expansion came primarily at the expense of abandoned land and paddy fields. Our findings align with Saswattecha 

et al. [25], who documented a rising trend of oil palm cultivation in Thailand's southern Tapi River basin between 2000 

and 2012. This study extends their analysis by examining oil palm expansion specifically in the Bandon Bay area up to 

2021. Oil palm's footprint in the region surged from just 7% in 2000 to 16% by 2016, fueled by the conversion of paddy 

fields, fallow paddies, orchards, and previously unused land. Our observations mirror those of Srisunthon & Chawchai 

[26], who reported a similar surge in oil palm cultivation across Southern Thailand between 2000 and 2016. This 

expansion coincided with a consistent decline in paddy field area during the same period. 

An important turning point began in 1999 when the Thai government encouraged oil palm plantations to expand. The 

cultivation of good oil palms was being promoted as a replacement for palms older than 20 years [23], particularly the 

oil palm industry's 2004-2029 [22, 23] strategy and the strategies for developing and promoting biodiesel from palm 

2005. This indicated that, consistent with the study results from 2001 to 2006, the number of oil palm areas increased 

significantly from 37.16 km2 to 323.20 km2. Since the early 2000s, Thai government policy has consistently favored the 

expansion of oil palm plantations. This support stems from three main factors: biofuel alternatives, investment 

incentives, and potential for economic growth. First, biofuel alternative: in 2006, the government specifically promoted 

oil palm cultivation as a source of biodiesel (2006-2009). This aimed to reduce reliance on imported fossil fuels and 

enhance energy security. Secondly, investment incentives: The government provided financial aid programs to 

encourage farmers to switch to oil palm. These subsidies helped offset the initial costs of establishing new plantations. 

Finally, potential for economic growth: Oil palm cultivation was viewed as a driver of economic development in rural 

areas. The crop offered farmers a potentially lucrative income source and created jobs within the palm oil industry.  

The 2007 oil palm industry development plan incorporated a project targeting land reform areas. This project, running 

from 2008 to 2012, aimed to unlock the potential of oil palm cultivation for these communities by providing resources, 

training, or infrastructure support to help farmers benefit from oil palm production in land reform areas. The Thai 

government significantly bolstered oil palm cultivation between 2008 and 2012. This initiative included two key 

measures: ambitious area expansion and Land use conversion incentives. For ambitious area expansion, in 2008, the 

government set a target for farmers to increase oil palm cultivation by a substantial 500,000 rai annually for the following 

four years (2008-2012). For land use conversion incentives, the following year (2009), a specific policy was introduced 

to promote oil palm as a replacement crop for aging fruit orchards and abandoned paddy fields. This policy likely offered 

incentives, such as subsidies or tax breaks, to promote the conversion of existing land uses to oil palm plantations. 

Between 2014 and 2016, a government initiative provided high-quality oil palm seeds to farmers, to replace their aging 

trees. This program aimed to support plantation renewal and boost yields. However, it is essential to note that widespread 

replacement of older palms could raise concerns about deforestation, especially if it incentivized farmers to clear 

additional land for new plantings. In line with the 2017-2036 oil palm and palm oil reform strategy [51], 2016 saw the 

promotion of large-scale oil palm cultivation projects. These projects aimed to leverage conversion systems to enhance 

production efficiency and reduce farmers' costs. However, it is crucial to acknowledge that large-scale land conversion 

can raise environmental concerns, so sustainable practices and economic benefits must be a key consideration. Surat 

Thani's development plans (2005-2017 [52] and 2018-2022 [53]) likely played a role in boosting domestic crude palm 

oil demand [54]. This surge in demand is suspected to be a significant factor behind the dominance of oil palm expansion 

in the region.  

According to the agricultural statistics of Thailand, market prices of palm fruit bunches increased from 1,660 Baht/ton 

in 2000 to 2,300 baht/ton in 2005 and 6,500 baht/ton in 2021 [55, 56]. Rising prices drove farmers to plant oil palms 

instead of other crops (e.g., rice and para rubber) [57]. Following palm oil expansion and LULC change, market price 

has minimal influence as a driver in this region. Several factors likely influenced the observed LULC changes, including 

government policy support for LULC shifts, a potential diversification trend among farmers, and decreased labor 

requirements for oil palm cultivation compared to para rubber [25]. Since 2012, Surat Thani Province has had the largest 

palm plantation area in Thailand [56], whereas the rubber plantation areas have tended to decrease [56]. The reason is 

that farmers were cutting down old rubber trees and shifting to oil palm and fruit trees [25, 53]. 

This study revealed a concerning decline in mangrove cover between 1991 and 2006, coinciding with extensive 

forestry concessions and coastal aquaculture expansion in Thailand (1961-2002). During this time, government policy 

significantly impacted mangrove ecosystems in two ways: logging concessions and shrimp farming encroachment. For 

logging concessions, the government granted private companies rights to harvest timber from designated mangrove 

areas. This directly led to the destruction of these ecologically valuable forests. For shrimp farming encroachment, even 

mangroves outside concession zones faced threats. Shrimp aquaculture emerged as a lucrative industry, and some 

farmers invaded these areas to create ponds, further contributing to mangrove loss. Due to the high yield, shrimp farming 

expanded rapidly. Our findings align with Muttitanon & Tripathi's research [32], which documented a decline in 

mangrove cover and increased shrimp farm area between 1993 and 1999. This overlap strengthens the evidence that 

shrimp aquaculture expansion was a significant driver of mangrove loss during this period in Thailand. 
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In 1987, the government had a policy to promote shrimp farming for export, thus expanding shrimp farming areas to 

mangrove areas. Shrimp farming increased significantly in 1997-2002. Economic pressures stemming from declining 

shrimp prices and rising aquaculture costs since 2002 have driven small-scale shrimp farmers to abandon aquaculture 

due to financial losses and accumulated debt. Only large private companies could continue to produce shrimp [58, 21]. 

In response to the economic shift impacting shrimp farming, the Ocean Food Bank Project was initiated in 2002 [21]. 

This project aimed to introduce cockle cultivation as a more sustainable alternative aquaculture practice, targeting 

economic viability and ecological benefits. 

The project's implementation has seen Bandon Bay become a center for cockle farming activity [21]. In 2014, 

Thailand implemented a policy framework to address deforestation, public land encroachment, and encourage 

sustainable natural resource management practices [59]. This framework aligned with the environmental and economic 

objectives outlined in the 12th National Economic and Social Development Plan [60]. Notably, the policy framework 

incorporated a specific directive to expand the national mangrove area. The policy framework included a particular 

directive to expand the national mangrove area. A study conducted between 2016 and 2021 investigated the effects of 

these policy measures on mangrove cover [3]. The study's findings utilizing LULC classification techniques revealed an 

upward trend in mangrove forest cover, suggesting a positive association between the implemented public policies and 

changes in LULC classes [3]. 

4-2- LUCC Prediction 

The spatiotemporal analysis of LULC changes revealed a dominance of agricultural land uses within the Bandon Bay 

region, particularly on oil palm plantations, rubber plantations, and shrimp farms. This study demonstrates that 

agricultural land, particularly oil palm plantations, rubber plantations, and shrimp farms, comprise the dominant current 

and predicted LULC classes. The area of the oil palms has continued to increase over the study period, while the 

productivity of other food crops, such as active paddy fields and perennial crops, has decreased, leading to food insecurity 

[25, 26]. Agricultural activities have employed fertilizers, pesticides, and other chemicals to improve crop growth and 

prevent pests; however, these chemicals are a source of pollution [61, 62]. Surat Thani's plan (2017-2036) for oil palm 

should balance development with sustainability through controlled expansion and technological improvements. LULC 

management will help prevent potential future adverse impacts on the Bandon Bay ecosystem. 

5- Conclusion 

This study employed a spatiotemporal analysis of LULC changes in the Bandon Bay region using multi-temporal 

Landsat imagery acquired between 1991 and 2021. Based on the classification of LULC classes in 1991, 1996, 2001, 

2006, 2011, 2016, and 2021, the land use pattern can be divided into 1991-2001 and 2006-2021. From 1991 to 2001, 

LULC classes mainly comprised abandoned paddy fields, shrimp farms, para rubber plantations, and mangroves. In the 

second period, from 2006-2021, LULC classes were dominated by oil palms, para rubber, shrimp farms, and mangroves. 

The detection of LULC changes was a 10-year change detection study split into three periods: 1991-2001, 2001-2011, 

and 2011-2021. Our analysis revealed the most significant increase in abandoned paddy fields between 1991 and 2001. 

This abandonment primarily occurred through converting active paddy fields to other land-use categories. Changes 

throughout 2001-2011 showed that abandoned paddy fields experienced the most significant decrease in area, where 

they were transformed into oil palm areas. During 2011-2021, the oil palm areas have increased the most, as in the past, 

with the transition from orchards, abandoned paddy fields, and para rubber plantations. The driving factors of LULC 

reform in Bandon Bay mainly came from government policies and population growth. The results of the LULC class 

predictions for 2031, 2041, and 2051 showed that most of the LULC classes will be oil palms, shrimp farms, mangroves, 

and urban and built-up lands. Based on the forecasts, most Bandon Bay areas will become agricultural. Sustainable land 

management practices are crucial for the future. This includes strategically limiting the expansion of farming areas, 

particularly oil palm plantations and aquaculture. Instead of increasing areas for oil palms, land management should 

focus on using technology and increasing productivity for the oil palms already planted to prevent or minimize adverse 

impacts on the Bandon Bay ecosystem, a source of shellfish cultivation, aquatic animal nurseries, and essential fisheries 

in Thailand. 
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