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Abstract 

The primary challenge faced by a neural controller in the dynamic model of a mobile robot lies in 
its ability to address the inherent complexity of the system dynamics. Given that mobile robots 

exhibit nonlinear movements and are subject to diverse environmental conditions, they contend with 

a challenging dynamic environment. The neural controllers must demonstrate the capability to 
continuously adapt and effectively learn to manage the variability present in the dynamic of the 

robot. This paper presents two intelligent controllers utilizing neural networks, showcasing their 

relevance in the field of robotics. The first controller, referred to as the neural PID (PIDN), integrates 
the traditional PID controller with a neural component. The second controller leverages the dynamic 

model of a differential robot to improve trajectory tracking, employing a parallel architecture that 

combines PID with neural networks (PID+NN). Our proposals adhere to a cascading structure, 
where the outer loop takes the lead in reducing position errors through a kinematic controller, while 

concurrently, the inner loop is employed to regulate linear and angular velocities through the 

proposed controllers. The controllers are validated in the CoppeliaSIM simulator, offering a realistic 
setting for evaluating the behavior of the chosen Pioneer 3-DX robot. To comprehensively assess 

controller performance, three strategies are examined: PIDN, PID+NN, and the conventional PID. 

Through a blend of qualitative and quantitative analyses, employing diverse performance metrics, 

the advantages of our proposed controllers become apparent. 
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1- Introduction 

Mobile robotics has become a thriving research domain with proven applicability in different fields [1] such as 

military [2], health services [3], exploration, agriculture [4], defense, and surveillance, or to fill in the many human tasks 

that are remote or remain unmanned [5]. The development and implementation of sophisticated controllers for trajectory 

control have been pivotal in this success; enabling successful navigation in the face of complex scenarios for a robot is 

by far the most critical factor. This enhancement in feedback systems enabled mobile robots to prove their worth and 

become very useful to this day in a wide range of operations [6]. 

Path tracking models need to be evaluated by the given trajectory of a pre-determined time period, where adjustments 

must be made to the path to prevent any undesirable deflections from the preplanned way [7]. Especially in autonomous 

operation, it is essential to prevent the plane or spacecraft from colliding with obstacles on the way and the fact that the 

vessel successfully reaches a planned destination without any accidents [8]. In the initial stages, only kinematics was 

 
* CONTACT david.pozo@udla.edu.ec 

DOI: http://dx.doi.org/10.28991/ESJ-2024-08-04-01 

© 2024 by the authors. Licensee ESJ, Italy. This is an open access article under the terms and conditions of the Creative 
Commons Attribution (CC-BY) license (https://creativecommons.org/licenses/by/4.0/). 

http://www.ijournalse.org/
http://dx.doi.org/10.28991/ESJ-2024-08-04-01
http://dx.doi.org/10.28991/ESJ-2024-08-04-01
https://orcid.org/0000-0001-5756-4622
https://orcid.org/0000-0002-7436-3838
https://orcid.org/0000-0002-6064-6925


Emerging Science Journal | Vol. 8, No. 4 

Page | 1244 

considered in the trajectories control system. Hence, a departure from the predicted dynamics can cause an increase in 

unscheduled friction, inertia of mobility mechanisms, and deformations in the trajectory plane. This way, the robot's 

dynamics can change, affecting robot dynamics, trajectory accuracy, and mobile robots [9]. 

To address these dynamics, researchers' interests have shifted toward employing controllers based on dynamic models 

[10]. Nevertheless, the intricacy of core models depicting the higher-order system of state variables hampers its fine-

tuning as a model design for the control systems. In response to this challenge, the use of artificial intelligence has 

emerged as a solution, facilitating the development of control algorithms based on an uncertain model [11]. These 

algorithms achieve precise trajectory tracking in non-holonomic mobile robots, marking a significant advancement in 

the field [12]. Recently, the incorporation of neural networks into control systems has presented a novel approach that 

adeptly navigates the modeling challenges posed by higher-order dynamic systems [13]. Traditional methods frequently 

need help acquiring dynamic models or formulating controllers for such complex systems. This approach is speedily 

getting better with time, as it is one of the gaining areas of research that showcases neural networks' excellent potential 

in mobile robotics regarding tracking trajectory [14]. 

1-1- Related Work 

The development of mobile robots has been expanded thanks to artificial intelligence (AI). These algorithms have 

increasingly become a solution to enhance system responsiveness and performance. Integrating AI into the different 

fields of robotics, especially mobile, has improved performance and resources, and it has also allowed research for more 

complex and adaptive behaviors, making AI-driven robots more versatile and capable of several tasks [15]. This section 

will present different studies, first focusing on research that uses controllers and different artificial intelligence 

techniques, then using models, and finally estimating uncertainties. 

First, it is important to review research that improves the response of trajectory tracking with the use of intelligence 

algorithms in the controller as studied by Alouache & Wu (2018) [16], which explores visual trajectory tracking control 

for wheeled mobile robots. It emphasizes employing a Genetic Algorithms (GA) to increase the effectiveness of the PID 

controller and trajectory estimation. The primary aim is to enable the mobile robot to track a reference trajectory 

generated by another robot while remaining within the fixed camera's field of view. Simulation results conclusively 

showed that the proposed approach, utilizing the GA-PID controller, achieves noteworthy enhancements in control 

performance compared to a conventional PID controller. The research by Matich (2001) [17] proposes the creation of 

an online neural network controller to mitigate position errors arising from the constraints of subpar binary sensors, 

rendering the use of a linear controller impractical. The adoption of a neural network enables continuous learning. The 

suggested approach integrates a feedback structure with a PID-type control mechanism to determine errors. Additionally, 

the neural network weights are computed using gradient descent, and the error is propagated backwards to establish the 

weight update rule.  

Another study in this line was presented by Asai et al. (2019) [18], where a control structure is employed, utilizing 

input and output patterns to adapt weights and achieve a controlled output. If the desired output is not reached, 

adjustments are made to the connection weights to align the obtained output with the desired result closely. This iterative 

process involves continuous learning. Notably, weight adjustments can only be made with prior knowledge of network 

patterns. By providing input pattern information and observing the output, correlations can be identified through 

unsupervised learning, as described in Haykin (2009) [19]. Additionally, in the work of Trujillo et al. (2023) [20], neural 

network-based controllers are implemented to guide the system to the desired reference trajectory by performing a gain 

adjustment by a backpropagation algorithm until the error between the current trajectory and the desired trajectory is 

approximately zero. This proposal has been devoted to improving the robot's positional control and the trajectory tracking 

performance of the kinematic model. In the study by Puentes & Morales (2023) [21], the cascade control strategy for 

trajectory tracking of a mobile robot employs a dual scheme, where two distinct control levels are integrated. First, the 

outer loop minimizes the position error using a model-based kinematic controller. On the other hand, the inner loop 

oversees controlling the linear and angular velocity of the robot, using a neural controller in combination with a PID to 

adapt to possible dynamic changes in the system. The neural networks applied to the dynamic system are subjected to a 

parameter identification process based on the dynamic model. This controller is updated at each sampling interval and 

collaborates with a PID controller to train the network online. 

In the field of using artificial intelligence in models, whether kinematic or dynamic, the research carried out by In 

Hui & Ji-hong (2014) [22], proposes to integrate a neural network into the dynamic system of a ship, taking into account 

the principle of asymptotic stability in a closed system and applying Lyapunov's law to estimate nonlinear uncertainties. 

A trajectory tracking controller is formulated employing the sliding mode method. A Model Predictive Control (MPC) 

is introduced in Deng et al. (2014) [23], which utilizes a dual primal neural network. The system determines errors in 

the robot’s kinematic model based on the inequality of linear variables. The control problem then shifts into a regulation 

problem, considering the dynamic effects on the robot, aiming to propagate errors towards the inputs. This is achieved 

by implementing MPC, wherein estimation and optimization occur at each sampling time to derive the desired variable 
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vector. The approach proposed in da Silva Lima et al. (2023) [24] uses an adaptive Radial Basis Function (RBF) neural 

network to model the uncertain robot dynamics within a nonlinear control law based on the Lyapunov principle. To 

reduce computational complexity, the neural network architecture requires only a single input neuron representing a 

combined error measure. In addition, the neural network weights are updated online by minimizing the combined error 

measure, allowing continuous improvement of the controller as the robot moves without requiring direct measurements 

of the disturbances to be compensated. All control parameters are based on numerical studies, assuming uncertainties in 

the inertia matrix and no prior knowledge of friction effects. 

Additionally, another approach is to use neural networks to compensate for uncertainties. In the paper by Hoang et 

al. (2013) [25], a technique is presented for using a neural network to employ offset uncertainties stemming from the 

robot model. The trajectory tracking of a robot involves the derivation of its kinematic model and the application of 

Lyapunov's law. The external loop integrates the torsion method to manage the robot's dynamics without requiring 

explicit knowledge of its dynamic model. Likewise, in Dang et al. (2023) [26], the controller applied is backstepping, 

which provides stability and tracking. At the same time, the Radial Basis Function (RBF) neural networks increase the 

adaptability to uncertainties and improve the overall control quality of the 3WMR system by regulating the motion angle 

and performing the robot position control, minimizing uncertainty effects. 

1-2- Main Contribution 

Neural controllers have emerged as a forefront solution in the realm of mobile robotics, presenting advanced 

methodologies to navigate through the intricate, nonlinear dynamics characteristic of such systems. These controllers 

harness the power of neural networks to direct robot behavior within both dynamic and unpredictable contexts. A 

significant challenge neural controllers confront in the dynamic models of mobile robots includes the modeling and 

management of nonlinear dynamics, as demonstrated by Lewis et al. (2012) [27]. Furthermore, these controllers exhibit 

the capacity to adapt in real-time to environmental alterations, thereby enhancing the robot's ability to navigate and 

perform tasks efficiently without the need for manual recalibration, as illustrated by Tai et al. (2016) [28]. Moreover, the 

inherent robustness of neural controllers allows mobile robots to effectively manage uncertainties present in sensor data 

and the incomplete information about their surroundings, a principle supported by Huang et al. (2007) [29]. 

Based on the previous analysis, this paper provides a complementary to Puentes & Morales (2023) [21] and 

comprehensive exploration of neural network-based controllers, with a specific focus on their role in guiding a mobile 

robot through trajectory tracking, especially in scenarios marked by uncertain dynamic models [30]. Our proposals stand 

out for their cost-effectiveness in computational terms and their simplicity in implementation, making them easily 

replicable across various programming software. Furthermore, they leverage the conventional PID as a foundational 

support to enhance the response, acknowledging its widespread use in the industry to date. Within this framework, we 

introduce two innovative intelligent controller concepts, both constructed on neural networks, which are proposed upon 

in the subsequent sections of Morales et al. [31]: 

1. A Neural PID (PIDN) controller, functioning as an ongoing learning system. This controller continuously refines 

the weights of the proportional, integral, and derivative gains through the gradient descent method during each control 

action iteration, aiming to reduce the tracking error. 

2. A novel parallel architecture of a PID controller, integrated with Neural Networks (PID + NN), comprises two 

distinct phases: a learning phase utilizing a neural identification approach to acquire the system model, and an application 

phase where the neural network functions as the controller, facilitating continuous learning.  

Hence, three controllers were subjected to testing on the CoppeliaSim platform to showcase the navigation 

capabilities of the Pioneer 3-DX robot [32]: the two previously described controllers and the conventional PID controller. 

This robot, renowned for its two-wheeled differential traction system, has been thoroughly investigated within the realm 

of control system development. Equipped with a motion controller incorporating encoder feedback, it provides 

capabilities for monitoring through mapping/location techniques or remote operation [33]. 

Both proposals are implemented within the framework of the dynamic model of the robot, acknowledging that the 

environment in which the robot operates can significantly influence its performance. Factors such as variations in terrain 

or obstacles encountered can impact crucial aspects such as the center of mass of the robot or its ability to navigate 

smoothly over uneven surfaces. Consequently, these effects must be carefully accounted for and mitigated by the 

controller system. 

For instance, changes in the terrain could lead to shifts in the center of mass of the robot, potentially affecting its 

stability and maneuverability. Similarly, surface irregularities may impede the movement of the robot, necessitating 

adjustments in its control inputs to ensure smooth traversal. By incorporating both proposals into the dynamic model, 

the controller can effectively compensate for these environmental variables, thereby enhancing the overall performance 

of the robot and adaptability. 

In summary, integrating these proposals into the dynamic model enables the controller to proactively address 

environmental challenges, allowing the robot to navigate more effectively and efficiently across diverse terrains and 

conditions. 
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1-3- Outline 

The paper is structured as follows: Section 2 delves into the characteristics of the chosen mobile robot, examining 

both its kinematic and dynamic models along with the corresponding controllers. Section 3 comprehensively discusses 

the results analysis of the controllers based on neural networks, employing both qualitative and quantitative approaches 

through performance indicators (ISE and IAE). Finally, Section 4 presents the conclusions drawn from the study and 

outlines potential applications, and Section 5 outlines directions for future work. 

2- Material and Methods 

To begin with the development of the controllers, all the parameters and variables pertinent to the non-holonomic 

mobile robot are defined and illustrated in Figure 2. The system is characterized by several parameters, among them, d 

represents the distance between the wheels, while B denotes the midpoint between the wheels, (𝑥, 𝑦) is the reference 

point of the position with respect to the 𝑋𝑌 plane, 𝑎 is the distance between the midpoint of the axis of the wheels and 

the reference point, 𝑟 is the radius of the wheels, 𝜔 and 𝑣 are the angular and linear velocity of robot respectively, and 

𝜓 is the orientation angle. 

Then, all the parameters and variables pertinent to the non-holonomic mobile robot are defined and illustrated in 

Figure 1. The system is characterized by several parameters, among them, d represents the distance between the wheels, 

while B denotes the midpoint between the wheels., (𝑥, 𝑦) is the reference point of the position with respect to the 𝑋𝑌 

plane, 𝑎 is the distance between the midpoint of the axis of the wheels and the reference point, 𝑟 is the radius of the 

wheels, 𝜔 and 𝑣 are the angular and linear velocity of robot respectively, and 𝜓 is the orientation angle. 

 

Figure 1. Mobile robot parameters [21] 

2-1- Kinematic Controller 

The kinematic model plays an important role in advancing trajectory tracking within robotics. It provides a robust 

framework for calculating the position of the robot by considering both its linear and angular velocities (known as the 

inverse kinematic model). This capability facilitates the implementation of real-time control strategies, ensuring accurate 

adherence to desired trajectories. However, it's important to note that the kinematic model alone doesn't account for the 

dynamic forces and torques acting upon the robot's mechanism. To address this aspect, we delve into the dynamic model 

of the robot in the subsequent subsection. 

Also, the kinematic model allows for the analysis of mechanical system motion, disregarding the influence of external 

forces acting upon them. It models the linear and angular speed of the robot based on the wheel speeds and geometric 

parameters of the robot [34]. For a given sampling time denoted as 𝑇𝑠 , the discretized kinematic model of the differential 

traction mobile robot can be mathematically represented as: Equation 1. 

[

𝑥(𝑘 + 1)
𝑦(𝑘 + 1)

𝜓(𝑘 + 1)
] = 𝑇𝑠 [

𝑐𝑜𝑠 𝜓(𝑘) 

𝑠𝑖𝑛 𝜓(𝑘)
0

−𝑎 𝑠𝑖𝑛 𝜓(𝑘)

𝑎 𝑐𝑜𝑠 𝜓(𝑘)
1

] [
𝑣(𝑘)
𝜔(𝑘)

] + [

𝑥(𝑘)
𝑦(𝑘)

𝜓(𝑘)
]  (1) 

The kinematic controller Equation 2 relies on the kinematic model, taking into account the coordinates [𝑥, 𝑦]𝑇 of the 

points of interest. The control law, as presented in Zheng et al. (2024) [35], governs the controller’s behavior. 
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[
𝑣𝑟𝑒𝑓
𝑐 (𝑘)

𝜔𝑟𝑒𝑓
𝑐 (𝑘)

] = [

𝑐𝑜𝑠 𝜓(𝑘)

𝑇𝑠

𝑠𝑖𝑛 𝜓(𝑘)

𝑇𝑠

−
1

𝑎

𝑠𝑖𝑛 𝜓(𝑘)

𝑇𝑠

1

𝑎

𝑐𝑜𝑠 𝜓(𝑘)

𝑇𝑠

] ×

[
 
 
 
 𝑥𝑟𝑒𝑓(𝑘 + 1) + 𝑙𝑥𝑡𝑎𝑛ℎ (

𝑘𝑥

𝑙𝑥
𝑒𝑥(𝑘)) − 𝑥𝑟𝑒𝑓(𝑘)

𝑦𝑟𝑒𝑓(𝑘 + 1) + 𝑙𝑦𝑡𝑎𝑛ℎ (
𝑘𝑦

𝑙𝑦
𝑒𝑦(𝑘)) − 𝑦𝑟𝑒𝑓(𝑘)

]
 
 
 
 

,  (2) 

where [𝑣𝑟𝑒𝑓
𝑐 (𝑘)  𝜔𝑟𝑒𝑓

𝑐 (𝑘)]
𝑇
, is the output of the kinematic controller, 𝑒𝑥(𝑘) = 𝑥𝑟𝑒𝑓(𝑘) − 𝑥(𝑘), and 𝑒𝑦(𝑘) = 𝑦𝑟𝑒𝑓(𝑘) −

𝑦(𝑘) are the position errors for the 𝑋 and 𝑌 axes respectively. 𝑘𝑥, 𝑘𝑦 are the controller gains, 𝑙𝑥, 𝑙𝑦 ∈ ℝ are saturation 

constants and 𝑇𝑠 is the capture time used in the case study. The function 𝑡𝑎𝑛ℎ (∙) is added to saturate the control actions 

in case the position error is too large. In the stability analysis, the speed traction is considered 𝑣𝑟𝑒𝑓
𝑐 (𝑘) = 𝑣(𝑘) and 

𝜔𝑟𝑒𝑓
𝑐 (𝑘) =  𝜔(𝑘). Substituting Equation 1 in Equation 2, the closed loop equation is: 

[
𝑒𝑥(𝑘 + 1)

𝑒𝑦(𝑘 + 1)
] +

[
 
 
 
 𝑙𝑥𝑡𝑎𝑛ℎ (

𝑘𝑥

𝑙𝑥
𝑒𝑥(𝑘))

𝑙𝑦𝑡𝑎𝑛ℎ (
𝑘𝑦

𝑙𝑦
𝑒𝑦(𝑘))

]
 
 
 
 

= [
0
0
],  (3) 

Defining the output error vector as ℎ̃(𝑘) = [𝑒𝑥(𝑘)  𝑒𝑦(𝑘)]
𝑇
, thus Equation 4: 

ℎ̃(𝑘 + 1) = −

[
 
 
 
 𝑙𝑥𝑡𝑎𝑛ℎ (

𝑘𝑥

𝑙𝑥
𝑒𝑥(𝑘))

𝑙𝑦𝑡𝑎𝑛ℎ (
𝑘𝑦

𝑙𝑦
𝑒𝑦(𝑘))

]
 
 
 
 

  (4) 

In Morales et al. (2021) [31] study the candidate of the Lyapunov function for the kinematic control law has been 

selected as 𝑉(𝑘) = 1/2 ℎ̃𝑇(𝑘)ℎ̃(𝑘), being positive. The first derivative of the Lyapunov function is: 

𝑉(𝑘 + 1) =
1

2
ℎ̃𝑇(𝑘)ℎ̃(𝑘 + 1) = −𝑥̃(𝑘)𝑙𝑥𝑡𝑎𝑛ℎ (

𝑘𝑥

𝑙𝑥
𝑥̃(𝑘)) −𝑥̃(𝑘)𝑙𝑥𝑡𝑎𝑛ℎ (

𝑘𝑦

𝑙𝑦
𝑦̃(𝑘)),  (5) 

Equation 5 demonstrates the stability of the kinematic control for trajectory following if the parameters are configured 

as 𝑘𝑥 > 0, 𝑘𝑦 > 0, 𝑙𝑥 > 0 and 𝑙𝑦 > 0, then ℎ̃(𝑘) → 0 for 𝑘 → ∞. 

2-2- Dynamic Controller 

Mobile robots operate in dynamic environments that are inherently complex and unpredictable, a fact that 

significantly influences their design, control strategies, and operational capabilities. The nonlinear movements of these 

robots and the varied environmental conditions they encounter introduce layers of complexity that must be skillfully 

managed to achieve efficient and reliable performance. The primary element adding to the complexity is the variable 

dynamics; this is because mobile robots frequently exhibit nonlinear dynamics stemming from their modes of movement, 

such as wheels, legs, or propellers. For example, the relationship between the input commands to a robot (such as motor 

voltage) and its resulting movement (speed or direction) is rarely linear. This nonlinearity, resulting from factors like 

friction, slip, and the changing inertia of moving parts, complicates the prediction and control of robot motion. Another 

significant factor is the necessity for mobile robots to maneuver through environments subject to rapid and unforeseen 

changes. These variations can encompass moving obstacles (such as people, pets, or other robots), shifts in surface 

textures (from smooth to uneven terrains), and changes in environmental elements like lighting or weather conditions. 

Each of these aspects can influence the robot's mobility and the accuracy of its sensor data, further complicating the 

challenges of navigation and task performance. 

Given the numerous parameters inherent in the dynamic model, which include both physical variables and acting 

forces, the identification process in this study involves deriving a first-order plus dead time (FOPDT) model [36]. This 

methodology offers a streamlined portrayal of the dynamics system. The process entails utilizing the reaction curves 

depicted in Figures 2 and 3, where a step-type signal is introduced to the system to assess the behavior of linear and 

angular velocity, respectively. Leveraging the CoppeliaSIM Platform provides a realistic environment and proves 

exceptionally valuable for simulating robotic systems at both kinematic and dynamic levels. Specifically, the platform 

features the Pioneer 3DX robot as proposed in this study. 

𝑋(𝑠)

𝑈(𝑠)
=

𝐾𝑒−𝑡0𝑠

𝜏𝑠+1
  (6) 

Adhering to the procedure detailed in Morales et al. (2021) [31], the model depicted in Equation 6 is obtained. This 

model offers a straightforward method for approximating the mathematical representation of the linear and angular 

velocity of the Pioneer 3-DX robot in the form of First Order Plus Time Delay (FOPTD). The subsequent section presents 

the results obtained for the linear velocity. 𝐾 = 1, 𝜏 = 0.33435 sec and 𝑡0 = 0,12975 sec., and for angular velocity: 

𝐾 = 1, 𝜏 = 0.1527 sec and 𝑡0 = 0,0833 sec.  
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Figure 2. Linear velocity response to a step input [21] 

 

Figure 3. Angular velocity response to a step input [21] 

Drawing from an approximate dynamic model of the robot, the methodology suggests the development of two 

controllers to fulfill the dual velocity requisites. 

To conduct a comprehensive evaluation of the PID+NN performance, it is advisable to compare its response with that 

of a neural PID controller. To facilitate a meaningful comparison with our proposed controller, we first introduce the 

neural PID controller, offering insights into its design principles. By highlighting the common neural characteristics of 

both controllers, this approach ensures a fair and accurate comparison. 

2-3- Neural PID Controller (PIDN) 

The proposed controller relies on a Neural PID adaptive controller, incorporating the parameters 𝐾𝑃, 𝐾𝐼  and 𝐾𝐷 which 

are tuned through the descending gradient method [37]. The main objective is to adjust the controller parameters in each 

iteration [38, 39] to achieve system stability. Initially, conventional PID controller weights Equation 7 are utilized to 

establish a stable starting point. 

𝑜𝜆(𝑘) = 𝑜𝜆(𝑘 − 1) + 𝐾𝑃𝜆(𝑒𝜆(𝑘) − 𝑒𝜆(𝑘 − 1)] + 𝐾𝐼𝜆𝑒𝜆(𝑘)𝑇𝑠 +
𝐾𝐷𝜆

𝑇𝑠
[𝑒𝜆(𝑘) − 2𝑒𝜆(𝑘 − 1) + 𝑒𝜆(𝑘 − 2)]  (7) 

where 𝑒𝜆(𝑘) = λ𝑟𝑒𝑓
𝑐 (𝑘) − λ(k), λ represents the velocity linear v and angular ω, and 𝑜λ is the control action. 

The development of the neural network is derived from the PID control law. Each neuron is governed by an activation 

Equation 8, as illustrated in the neural network depicted in Figure 4. This function conveys information generated by the 
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linear combination of weights and inputs, essentially providing a mechanism for transmitting information through the 

output connections [40]. 

The 𝑡𝑎𝑛 (. ) is the activation function that saturates the move of the motors in both directions clockwise and 

counterclockwise. 

𝑓(𝑜𝜆(𝑘)) = 𝛿 tanh
𝑜𝜆(𝑘)

𝛿
= 𝜆𝑟𝑒𝑓

𝑑 (𝑘)  (8) 

where 𝛿 allows values other than 1. 

 

Figure 4. Neural network in Neural PID controller 

During the weight adjustment process, the error is retroactively propagated. In more straightforward terms, the 

objective is to minimize the error, as specified by Equation 9, with regard to the variable being adjusted. 

𝐸𝜆(𝑘) =
1

2
(𝜆𝑐𝑟𝑒𝑓(𝑘) − 𝜆(𝑘))

2  (9) 

Hence, the application of the chain rule is employed to calculate the derivatives that aid in this computation, as 

delineated in Equation 10. 

𝜕𝐸𝜆(𝑘)

𝜕𝐾𝑃𝜆
=

𝜕𝐸𝜆(𝑘)

𝜕𝜆(𝑘)

𝜕𝜆(𝑘)

𝜕𝜆𝑟𝑒𝑓
𝑑 (𝑘)

𝜕𝜆𝑟𝑒𝑓
𝑑 (𝑘)

𝜕𝑜𝜆(𝑘)

𝜕𝑜𝜆(𝑘)

𝜕𝐾𝑃𝜆
  

𝜕𝐸𝜆(𝑘)

𝜕𝐾𝐼𝜆
=

𝜕𝐸𝜆(𝑘)

𝜕𝜆(𝑘)

𝜕𝜆(𝑘)

𝜕𝜆𝑟𝑒𝑓
𝑑 (𝑘)

𝜕𝜆𝑟𝑒𝑓
𝑑 (𝑘)

𝜕𝑜𝜆(𝑘)

𝜕𝑜𝜆(𝑘)

𝜕𝐾𝐼𝜆
  

𝜕𝐸𝜆(𝑘)

𝜕𝐾𝐷𝜆
=

𝜕𝐸𝜆(𝑘)

𝜕𝜆(𝑘)

𝜕𝜆(𝑘)

𝜕𝜆𝑟𝑒𝑓
𝑑 (𝑘)

𝜕𝜆𝑟𝑒𝑓
𝑑 (𝑘)

𝜕𝑜𝜆(𝑘)

𝜕𝑜𝜆(𝑘)

𝜕𝐾𝐷𝜆
  

(10) 

Deriving the error with respect to the output of the plant, is obtained Equation 11: 

𝜕𝐸(𝑘)

𝜕𝜆(𝑘)
= −𝑒𝜆(𝑘)  (11) 

The output with respect to the control variable 𝜆𝑟𝑒𝑓
𝑑 (𝑘) Equation 12, where ℎ is a change in the output: 

𝜕𝜆(𝑘)

𝜕𝜆𝑟𝑒𝑓
𝑑 (𝑘)

=
𝜆(𝑘−1)−𝜆(𝑘−2)

𝜆𝑟𝑒𝑓
𝑑 (𝑘−2)−𝜆𝑟𝑒𝑓

𝑑 (𝑘−3)
  (12) 

From the activation Equation 8, is obtained: 

𝜕𝜆𝑟𝑒𝑓
𝑑 (𝑘)

𝜕𝑜𝜆(𝑘)
= [1 − 𝑓2(𝑜𝜆(𝑘))],  (13) 

where 𝑓(𝑥) = tanh (𝑥) and 𝑓′(𝑥) = 1 − tanh2 (𝑥): 

The controller output with respect to the weight 𝐾𝑃𝜆 , is obtained Equation 14:  

𝜕𝑜𝜆(𝑘)

𝜕𝐾𝑃𝜆(𝑘)
= 𝑓(𝑒𝜆(𝑘) − 𝑒𝜆(𝑘 − 1)),  (14) 

The controller output with respect to the weight 𝐾𝐼𝜆, is obtained Equation 15:  

𝜕𝑜𝜆(𝑘)

𝜕𝐾𝐼𝜆(𝑘)
= 𝑓(𝑒𝜆(𝑘)𝑇𝑠),  (15) 
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The controller output with respect to the weight 𝐾𝐼𝜆, is obtained Equation 15:  

𝜕𝑜𝜆(𝑘)

𝜕𝐾𝐷𝜆(𝑘)
= 𝑓 (

𝑒𝜆(𝑘)−2𝑒𝜆(𝑘−1)+𝑒𝜆(𝑘−2)

𝑇𝑠
),  (16) 

To obtain the update of the gains at instant 𝑘 + 1 Equation 17. 

𝐾𝜃(𝑘 + 1) = 𝐾𝜃(𝑘) − 𝜂
𝜕𝑒𝜆(𝑘)

𝜕𝐾𝜃(𝑘)
,  (17) 

where 𝜂 is the learning rate and 𝜃 are: 𝑃𝜆, 𝐼𝜆 and 𝐷𝜆. 

Equation 18 shows the output of the neural controller. 

𝑜𝜆(𝑘) = 𝑜𝜆(𝑘 − 1) + 𝐾𝑃𝜆(𝑘 + 1)𝑓[(𝑒𝜆(𝑘) − 𝑒𝜆(𝑘 − 1)] + 𝐾𝐼𝜆(𝑘 + 1)𝑓(𝑒𝜆(𝑘)𝑇𝑠) + 𝐾𝐷𝜆(𝑘 + 1)𝑓 (
𝑒𝜆(𝑘)−2𝑒𝜆(𝑘−1)+𝑒𝜆(𝑘−2)

𝑇𝑠
),  (18) 

Figure 5 shows the complete scheme of the system for the position control of a mobile robot where 𝜆 has been replaced 

by the linear velocity 𝑣 and the angular velocity 𝜔. The linear velocity error is given by 𝑒𝑣(𝑘) = 𝑣𝑟𝑒𝑓
𝑐 (𝑘) − 𝑣(𝑘), where 

𝑣(𝑘) is the linear velocity output and 𝑣𝑟𝑒𝑓
𝑐 (𝑘) is the output of the linear velocity of the kinematic controller. The inputs 

for Neural Controller 1 are linear velocity error, its two previous states, the differential of two previous states of output 

linear velocity, and the linear velocity difference of dynamic model 𝑣𝑟𝑒𝑓
𝑑 (𝑘 − 2) − 𝑣𝑟𝑒𝑓

𝑑 (𝑘 − 3). The procedure 

described above is applied in a similar way to control the angular velocity 𝜔(𝑘), considering the angular velocity error 

𝑒𝜔(𝑘) = 𝜔𝑟𝑒𝑓
𝑐 (𝑘) − 𝜔(𝑘), where 𝜔𝑟𝑒𝑓

𝑐 (𝑘) is the kinematic control action, 𝜔(𝑘) is the angular velocity output of the 

system and 𝜔𝑟𝑒𝑓
𝑑 (𝑘) is the output the angular velocity of the dynamic model. The motors velocities are given by Equation 

19 based on the values of the control actions [𝑣𝑟𝑒𝑓
𝑑 (𝑘) 𝜔𝑟𝑒𝑓

𝑑 (𝑘)]𝑇, where left motor is Ω𝐿  and right motor is Ω𝑅 [40].  

Ω𝐿 =
2𝑣𝑟𝑒𝑓

𝑑 (𝑘)−𝑑𝜔𝑟𝑒𝑓
𝑑 (𝑘)

2𝑟

Ω𝑅 =
2𝑣𝑟𝑒𝑓

𝑑 (𝑘)+𝑑𝜔𝑟𝑒𝑓
𝑑 (𝑘)

2𝑟

  (19) 

 

Figure 5. Neural PID control scheme for trajectory tracking of a mobile robot using neural networks 

The proposed control structure is based on a cascade-type architecture, where an internal loop is employed to 

adaptively control linear and angular velocities. This is achieved through the utilization of a dynamic control block and 

behavior predictions derived from the robot's dynamic model. Meanwhile, the external control loop follows a classical 

architecture aimed at minimizing position errors through kinematic control. The primary concept underlying this 
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architecture is its emphasis on early correction of linear and angular velocities to robustly handle disturbances that could 

significantly impact the robot's position thereafter. 

Within the dynamic controller block, the proposed PIDN controller is situated, comprising two neural networks. These 

neural networks are tasked with adjusting the Kp, Ki, and Kd parameters for both linear and angular velocity PID 

controllers. 

2-4- PID Controller combined with Neural Network (PID+NN) 

The second proposition integrates a PID controller with a parallel neural network [21]. This strategy seeks to minimize 

errors by fine-tuning the control output via the neural network, leveraging the system's dynamic model, which follows a 

first order system model without considering the delay due to its low value Equation 20. 

𝜆

𝑜𝜆
=

𝐾𝜆/𝑧

1−𝛽𝜆/𝑧
  (20) 

where 𝜆 represents the velocities: linear 𝑣(𝑘) and angular 𝜔(𝑘). 𝐾𝜆 represents the gain of the system and 𝛽𝜆 represents 

stability time.  

Discretizing the first order model, is obtained Equation 21.  

𝜆(𝑘) = 𝛽𝜆𝜆(𝑘 − 1) + 𝐾𝜆𝑜𝜆(𝑘 − 1)  (21) 

The control law Equation 22 is obtained by rearranging the terms.  

𝑜𝜆(𝑘) =
1

𝐾𝜆
𝜆(𝑘 + 1) −

𝛽𝜆

𝐾𝜆
𝜆(𝑘),  (22) 

making a change of variable where: 
1

𝐾𝜆
= 𝑏 and 

𝛽𝜆

𝐾𝜆
= 𝑐, is obtained Equation 23.  

𝑜𝜆(𝑘) = 𝑏𝜆(𝑘 + 1) − 𝑐𝜆(𝑘)  (23) 

The variables 𝑏 and 𝑐 are the weights of the neural network to be modified. Figure 6 illustrates the schematic 

representation of the neural network in this approach, where tanh (. ) denotes the activation function. This choice is 

equally applicable for the reasons expounded in the preceding case (8), yielding the output from the neural network 

Equation 24: 

𝑓(𝑜𝜆(𝑘)) = 𝛿 tanh
𝑜𝜆(𝑘)

𝛿
= 𝜆𝑟𝑒𝑓

𝑁 (𝑘)  (24) 

where the error to be minimized is given by (25).  

𝐸𝜆(𝑘) =
1

2
(𝜆𝑟𝑒𝑓
𝑑 (𝑘) − 𝜆𝑟𝑒𝑓

𝑁 (𝑘))2  (25) 

 

Figure 6. PID+NN neural network [21] 

And applying the chain rule, the partial derivatives are obtained Equation 26.  

𝜕𝐸𝜆(𝑘)

𝜕𝑏
=

𝜕𝐸𝜆(𝑘)

𝜕𝜆𝑟𝑒𝑓
𝑁 (𝑘)

𝜕𝜆𝑟𝑒𝑓
𝑁 (𝑘)

𝜕𝑜𝜆(𝑘)

𝜕𝑜𝜆(𝑘)

𝜕𝑏
  

𝜕𝐸𝜆(𝑘)

𝜕𝑐
=

𝜕𝐸𝜆(𝑘)

𝜕𝜆𝑟𝑒𝑓
𝑁 (𝑘)

𝜕𝜆𝑟𝑒𝑓
𝑁 (𝑘)

𝜕𝑜𝜆(𝑘)

𝜕𝑜𝜆(𝑘)

𝜕𝑐
  

(26) 

The derivative of the error with respect to the output of the system, is obtained Equation 27: 

𝜕𝐸𝜆(𝑘)

𝜕𝜆
= −𝑒𝜆(𝑘)  (27) 



Emerging Science Journal | Vol. 8, No. 4 

Page | 1252 

From the activation function Equation 28, is obtained: 

𝜕𝜆𝑟𝑒𝑓
𝑁 (𝑘)

𝜕𝑜𝜆(𝑘)
= [1 − 𝑓2(𝑜𝜆(𝑘))]  (28) 

where 𝑓(𝑥) = tanh (𝑥) and 𝑓′(𝑥) = 1 − tanh2 (𝑥): 

The output of the controller with respect to the weight is 𝑏 Equation 29: 

𝜕𝑜𝜆(𝑘)

𝜕𝑏
= 𝜆(𝑘 + 1)  (29) 

The output of the controller with respect to the weight is c Equation 30: 

𝜕𝑜𝜆(𝑘)

𝜕𝑐
= 𝜆(𝑘)  (30) 

Obtaining neural network parameters at instant 𝑘 + 1, where 𝜂 is the learning rate and 𝜃 are 𝑏, 𝑐: 

𝜃(𝑘 + 1) = 𝜃(𝑘) − 𝜂
𝜕𝑒𝜆(𝑘)

𝜕𝜃(𝑘)
  (31) 

The Equation 32 corresponding to the neural network is obtained finally. 

𝑜𝜆(𝑘) = 𝑏𝑓(𝜆(𝑘 + 1)) − 𝑐𝑓(𝜆(𝑘))  (32) 

Figure 7 shows the proposed scheme, featuring the learning block of linear velocity (Neural Identifier 1). This block 

takes as inputs the measured variable 𝑣 and its previous state, utilizing them to minimize the error 𝑒𝑣(𝑘) =
𝑣𝑟𝑒𝑓
𝑑 (𝑘 − 1) − 𝑣𝑟𝑒𝑓

𝑁 (𝑘 − 2), where 𝑣𝑟𝑒𝑓
𝑁  is the output of the identifier, 𝑣𝑟𝑒𝑓

𝑑  is the sum of the Neural control action 𝑣𝑁𝑁
𝐶  

and output of the PID controller 𝑣𝑃𝐼𝐷
𝐶 . 

 

Figure 7. PID+NN control scheme for trajectory tracking of a mobile robot using neural networks [21] 

The Neural Identifier and the Neural Controller share the same neural network architecture as depicted in Figure 7. 

The primary distinction lies in the application block (Neural Controller 1), where the output 𝑣𝑁𝑁
𝐶 = 𝑜𝜆(𝑘) =

𝑏𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑓(𝜆(𝑘 + 1)) − 𝑐𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑓(𝜆(𝑘)) is obtained, This output is based on inputs including the linear velocity of the 

kinematic controller 𝑣𝑟𝑒𝑓
𝐶  , the linear velocity 𝑣 and the identified parameters. 

The procedure described above is applied in a similar way to control the angular velocity 𝜔, considering the 

minimization of the error 𝑒𝜔(𝑘) = 𝜔𝑟𝑒𝑓
𝑑 (𝑘 − 1) − 𝜔𝑟𝑒𝑓

𝑁 (𝑘 − 2), where 𝜔𝑟𝑒𝑓
𝑁  is the output of the neural network 

identifier and 𝜔𝑟𝑒𝑓
𝑑  is the control action calculated by dynamic control, 𝜔𝑁𝑁

𝐶  is the angular control action of the network 

and 𝜔𝑃𝐼𝐷
𝐶  is the angular control action of the PID controller. The control variables are the motor velocities (19), so it is 

necessary to calculate the speed of the left wheel ΩL and right wheel ΩR, based on the values of the control actions 

[𝑣𝑟𝑒𝑓
𝑑 (𝑘)    𝜔𝑟𝑒𝑓

𝑑 (𝑘)]𝑇. 

The proposed controllers integrate neural networks with traditional PID structures through dynamic adjustment of 

their parameters using real-time data from the system. Neural networks learn from the inputs and outputs of the system, 
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allowing for adaptive responses, especially beneficial for non-linear systems. This fusion combines the flexibility of 

neural network with the stability of PID, offering improved accuracy, adaptability to changing conditions and reduced 

manual adjustment. In robotics, these controllers excel at handling complex dynamics, ensuring smoother operation in 

various environments. They facilitate continuous learning, improving performance over time, making them 

indispensable for robust and efficient robotic control. 

Due to the Neural Identifier and the Neural Controller in Figure 7 sharing the same neural network architecture, the 

parameters 𝑏 and 𝑐 of the neural identifier are continually adjusted based on the dynamic model response. Meanwhile, 

in the neural controller, these previously updated parameters are utilized to generate a corrective output 𝑣𝑁𝑁
𝑐  that is added 

to the output of the classical PID controller 𝑣𝑃𝐼𝐷
𝑐 . The primary concept behind this architecture is to have an adaptive 

correction running parallel to the classical PID controller, based on changes in the dynamic model response of the system. 

This setup aims to maintain the response characteristics of the PID controller in its initial configuration, even in the face 

of disturbances in the linear and angular velocities of the system. 

Finally, as a summary, Figure 8 illustrates the methodology employed for the proposed controllers. Following 

trajectory generation, the kinematic controller ensures the maintenance of the desired position, while the neural network-

based controller mitigates the impact of disturbances arising from dynamic changes in the robot. 

 

Figure 8. Flowchart of the proposed methodology 

3- Simulations and Results 

The Pioneer 3DX robot, employed to validate the controller, operates within the CoppeliaSIM Platform. This platform 

enables the simulation of robotic systems, incorporating considerations for their kinematics, dynamics, and environment. 

The software’s versatility is amplified by the availability of plugins that facilitate connections with other computational 

tools, such as Matlab, housing the programmed algorithms. The connection between CoppeliaSIM and the Matlab 

environment for controlling the Pioneer 3DX robot using the proposed Intelligent controllers (PIDN and PID+NN) is 

illustrated in Figure 9. 
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Figure 9. Connection between CoppeliaSIM and MatLab 

The number of the samples Equation 33 of the trajectory is computed considering the duration time of the simulation 

and the sample time.  

𝑚 =
𝑡

𝑇𝑆
,  (33) 

Below are the square Equation 34 and circular Equation 35 trajectory, where 𝐿 is the side of the square, and 𝐽 is the 

radius of the circle. Creating the vector of positions 𝑥𝑟𝑒𝑓(𝑘) and 𝑦𝑟𝑒𝑓(𝑘), and 𝑘 is the iteration number. 

{
 

 𝑥𝑟𝑒𝑓(𝑘) =
𝐿

2
∀𝑘𝑚 ∈ [0, 𝑘𝑚]; (

𝐿

2
− 4𝑘𝑚𝐿)∀ 𝑘𝑚 ∈ [𝑘𝑚, 2𝑘𝑚] −

𝐿

2
∀ 𝑘𝑚 ∈ [2𝑘𝑚, 3𝑘𝑚]; (−

𝐿

2
+ 4𝑘𝑚𝐿)∀ 𝑘𝑚 ∈ [3𝑘𝑚, 4𝑘𝑚],

  

𝑦𝑟𝑒𝑓(𝑘) = (−
𝐿

2
+ 4𝑘𝑚𝐿) ∀ 𝑘𝑚 ∈ [0, 𝑘𝑚];

𝐿

2
∀ 𝑘 ∈ [𝑘𝑚, 2𝑘𝑚]; (

𝐿

2
− 4𝑘𝑚𝐿)∀ 𝑘𝑚 ∈ [2𝑘𝑚, 3𝑘𝑚];−

𝐿

2
∀ 𝑘𝑚 ∈ [3𝑘𝑚, 4𝑘𝑚],

      

  (34) 

{
𝑥𝑟𝑒𝑓(𝑘) = 𝐽 𝑐𝑜𝑠(2𝜋𝑘𝑚)

𝑦𝑟𝑒𝑓(𝑘) = 𝐽 𝑠𝑖𝑛(2𝜋𝑘𝑚)
 (35) 

In Section 2, a detailed description of the design process of the proposed PID+NNN and PIDN controllers is given, 

laying the foundation for our subsequent comparative analysis. This section involves subjecting these controllers to 

rigorous testing through their application to the Pioneer 3-DX mobile robot. The implementation and programming of 

the controller are executed in Matlab. To validate its performance, experiments were performed in CoppeliaSIM, using 

two different types of trajectories. The kinematic controller was tuned heuristically, with the physical parameters of the 

robot set as 𝑎 = 0.12, representing the distance between the robot reference point and the center point of the wheel axis, 

𝑘𝑥, 𝑘𝑦 = 0.07, are gains that allow minimizing the position error, the constants 𝑙𝑥 , 𝑙𝑦 = 0.1, which allow the saturation 

of the linear and angular velocity of the robot, and 𝑇𝑠 = 0.1 sec being the sampling time. To tune the dynamic controllers, 

we begin by obtaining the constants of the conventional PID controller using the Dahlin method [41-43], which proposes.  

𝐾𝑃 is in charge of increasing the response speed and decreasing the system error, and is calculated with Equation 36: 

𝐾𝑃 =
1

2𝐾
(
𝑡0

𝜏
)
−1

,  (36) 

𝐾𝐷 is responsible for increasing the response of the system, and is calculated with Equation 37: 

𝐾𝐷 = 𝐾𝑃 (
𝑡0

2
)
−1

,  (37) 

𝐾𝐼  is in charge of decreasing the error of the system in steady state and increasing the speed of the system moderately 

and is calculated with Equation 38: 

𝐾𝐷 = 𝐾𝑃 (
𝑡0

2
)
−1

,  (38) 

The traditional PID controller parameters serve as the foundational framework for the PIDN and PID+NN controllers. 

In the PIDN configuration, these parameters serve as initial values to commence the learning process. To ensure equitable 

comparisons, both neural controllers are configured with identical learning rates, designated as α. Specifically, the 

learning rates are designated as 0.009 for linear speed and 0.00005 for angular speed. To evaluate the system's response 

to disturbances, the robot traverses an inclined plane inclined at a 10° angle at various time intervals, as illustrated in 

Figure 10. This incline induces adjustments in the robot's dynamics attributable to shifts in its center of mass): 

+ 

- 
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Figure 10. Programmed inclination in CoppeliaSim 

3-1- Square Trajectory 

The square trajectory comprises a series of right-angle turns and linear movements, acting as a standardized measure 
to assess the controllers' ability to handle sudden shifts in orientation while upholding the robot's stability. In real-world 
scenarios, such as in manufacturing, logistics, and material transportation [39] robots must adeptly navigate unexpected 
changes in orientation. This is particularly pertinent as certain trajectory planning algorithms may generate such 
maneuvers. The results, as depicted in Figure 11 and Figure 12-a, offer a qualitative assessment of performance. Notably, 

along the straight path, the instantaneous mean square distance error attributed to the kinematic controller remains 
consistently below 2 cm. Even during encounters with sharp corners involving abrupt changes in orientation, the error 
does not exceed 15 cm. It is noteworthy that the highest error peak occurs during the initial sharp change in orientation 
along the trajectory. This is primarily due to the robot descending an inclined plane, necessitating a reduction in linear 
velocity. Despite this challenge, the dynamic controllers effectively maintain the robot’s position. 

 

Figure 11. Square path tracking in CoppeliaSIM environment 

The results depicted in Figure 12-b provide a qualitative evaluation of performance. It is evident that, along the 
straight path, the instantaneous mean square distance error attributed to the kinematic controller remains below 2 cm. 
During encounters with sharp corners involving abrupt orientation changes, the error does not surpass 15 cm. Notably, 
the highest error peak occurs during the initial sharp change in orientation along the trajectory. This is mainly due to the 
robot descending an inclined plane, necessitating a reduction in linear velocity. Despite this challenge, the dynamic 

controllers effectively preserve the robot’s position. In the context of maintaining a reference linear velocity of 
approximately 0.2 m/s, as depicted in Figure 12-c, it is evident that the intelligent controllers exhibit a more aggressive 
control action. This results in a rapid attainment of the desired reference, leading to the presence of overshoots. Regarding 
angular velocity, as illustrated in Figure 12-d, it is demonstrated how the intelligent controllers efficiently reduce the 
error to zero during the straight lines of the trajectory. They showcase faster response times in reaching the reference, 
enabling swifter turns while maintaining velocity stability. 

 Comparatively, the PIDN controller displays fewer oscillations than the PID+NN controller. Although the proposed 
PID+NN and PIDN showed a maximum over peak higher to the conventional PID, both controllers are characterized by 
their assertive response, reaching the reference values quicker without compromising the integrity of the actuators. 
Despite experiencing oscillations and overshoots, these controllers maintain consistent linear and angular velocities in 
the face of perturbations, such as the presence of inclined planes, resulting in a significant improvement in trajectory 
tracking accuracy compared to conventional PID. 
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Figure 12. (a) Square Trajectory Tracking, (b) Position error for Square trajectory, (c) Linear velocity for Square 

trajectory, (d) Angular velocity for Square trajectory 

3-2- Circular Trajectory 

The circular trajectory, distinguished by its smooth curve, ensures a constant change of orientation, resulting in more 

precise turns compared to the square trajectory. The consistent curvature facilitates the attainment of a constant linear 

and angular speed, demanding precise control from the dynamic controllers. Figure 13 shows the circular trajectory 

followed by the mobile robot in the environment using the PID+NN controller and Figure 14-a shows the analysis 

between the PID, PIDN, PID+NN controllers and the expected trajectory. 

 

Figure 13. Circular path tracking in VREP environment 
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Figure 14. (a) Circular Trajectory Tracking, (b) Position error for Circular trajectory, (c) Linear velocity for Circular 

trajectory, (d) Angular velocity for Circular trajectory 

The kinematic control results provide a qualitative insight, showcasing an instantaneous mean square distance error 
consistently below 2 cm (refer to Figure 14-b). As the robot transitions onto the inclined plane, an increase in velocity 
is observed, coupled with adjustments facilitated by the controllers. Notably, controllers based on neural networks 
exhibit a swifter response in reaching the linear velocity reference of 0.2 m/s, as illustrated in Figure 14-c. Additionally, 
a distinct velocity correction is noted upon entering the inclined plane, showcasing a lesser overshoot compared to the 

PID controller. Regarding angular velocity at 0.2 rad/s (refer to Figure 14-d), a steady orientation change is encountered. 
However, the PIDN controller exhibits a more pronounced overshoot in tracking the reference compared to the other 
two controllers. Despite this, it effectively enables precise tracking of the circular trajectory, even in the face of dynamic 
changes induced by the inclined plane. 

During the initial phase, the PIDN controller shows less over peak, followed by the traditional PID and, finally, the 
PID+NN controller. All three controllers maintain this until the trajectory is reached. Once the robot is on the path, all 

three controllers present acceptable behavior, and the trajectory error decreases compared to the square trajectory for 
all three variants. 

As depicted in Figures 12-c, 12-d, 14-c, and 14-d, the control actions of the PID+NN proposal exhibit the highest 
level of aggressiveness among the three, facilitating quicker attainment of the reference. Nevertheless, the overshoot 
compared to the others is minimal and even comparable, suggesting that despite the higher energy expenditure, this is 
offset by the ability to swiftly reach the reference. Additionally, it is noteworthy that the control action of PIDN 

demonstrates the smoothest energy consumption profile, as depicted graphically, presenting a significantly acceptable 
and superior response compared to the PID, owing to its adaptive characteristics. 

3-3- Quantitative Analysis 

The effectiveness of the system in minimizing position error becomes apparent when analyzing the ISE index, as 
illustrated in Figure 15-a. Controllers based on neural networks showcase superior precision in trajectory tracking and 
maintaining positional reference, even in the presence of disturbances like the transition from a horizontal to an 
inclined plane. To evaluate error minimization, the IAE index is utilized, as depicted in Figure 15-b. The results 
indicate that the intelligent controllers (PIDN and PID+NN) exhibit smaller absolute errors compared to the 
conventional controller (PID). In broader terms, it is evident that the PID+NN controller enhances the indices by 

approximately 8.4% in square trajectories, which involve abrupt changes in orientation. On the other hand, its 
performance in circular trajectories is comparable to that of the PIDN controller, which is considered the preferable 
choice for accurately following the desired path. 
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Figure 15. Quantitative comparison for the different controllers based on (a) ISE (b) IAE 

4- Conclusion 

In this paper, we developed and deployed two neural network-based controllers for trajectory tracking in a differential 

traction mobile robot. Assessments in CoppeliaSIM demonstrated their impressive performance across diverse 

trajectories. The setup includes a kinematic controller in the outer loop, based on the robot's kinematic model, and a 

dynamic controller in the inner loop, integrating neural networks (PID+NN and PIDN). This configuration ensured 

consistent maintenance of velocities despite disturbances like inclined planes, achieving the reference trajectory swiftly 

compared to conventional PID. 

The findings of this paper not only refine trajectory tracking precision but also carry substantial practical implications. 

Neural network integration improves response speed, diminishes tracking error, and enhances adaptability, especially 

beneficial in navigating robots through intricate environments. As the controller adapts, performance thrives even amidst 

uncertainties, rendering it invaluable for real-world robotic tasks. Notably, the PIDN and PID+NN controllers excel for 

their distinct attributes. They effectively manage oscillations and overshoots within a tolerable range, safeguarding 

actuator operability and robot structural integrity. This blend of swift response and adept disturbance handling 

underscores their efficacy and superiority in motion control applications. Their assertive response, coupled with 

meticulous control action regulation within the robot's physical and mechanical limitations, mitigates overload scenarios 

and minimizes component damage risks. 
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The successful fusion of a traditional PID with neural networks paves the way for future exploration of hybrid 

algorithms featuring diverse and intricate control techniques applicable in agricultural contexts, military operations, and 

service robotics, among others. Improving human-robot interaction is a promising avenue for future research as it 

provides insights into human behavior. Additionally, neural network-based controllers can facilitate collaborative efforts, 

enabling the design and implementation of cooperation and coordination between multiple robots. Beyond controller 

development, neural networks can assist in plant identification and predictive control refinement, addressing 

uncertainties in the environment to improve controller performance. 
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