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Abstract 

Objectives: This study discusses work performed within the context of the SAINT R&D project 

concerning the correlation of the prices of cybercrime services with the costs of investing in cyber 

security technologies. The main goal is to investigate how various financial and business-related 
cybercrime parameters relate to cybersecurity costs. In this context, the paper also examines the 

involved stakeholders and how they interact with each other. Methods/Analysis: Given the above 

considerations, from a theoretical standpoint, it is to describe a generic model for pricing illicit 
cybercrime products and services. This model, namely the Capacity Value Based Pricing (CVBP) 

model, has been proposed in the context of pricing “normal” products and services. Our study adapts 

this model suitably to apply the pricing modeling of illicit cybercrime products and services. 
Findings: The findings elucidate the professionalization of cybercrime, the significance of the 

emerging market for illicit services, and the pressing need for advanced AI methods to process 

qualitative data into quantitative insights. Novelty/Improvement: This paper contributes to 
establishing theoretical and econometric models vital for stakeholders navigating the financial 

terrain of the cybercrime economy. Future research should refine the methodologies presented and 

enhance data reliability for such critical analyses. 
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1- Introduction 

In the contemporary era of the 4th industrial revolution, providing digital services to citizens holds the utmost 

significance in guaranteeing effective governance and the delivery of public services. Moreover, the modern digital 

economy is based on the notion of secure electronic transactions to facilitate a healthy e-commerce ecosystem. 

Nevertheless, the escalating incidence of cybercrime presents substantial obstacles to the security and integrity of the 

digital transformation. Establishing a resilient cybersecurity framework is imperative to protect individuals' digital and 

physical assets as well as their personal data. This introductory section explores the convergence of digital services for 

individuals, emphasizing the necessity of a multi-parameter optimization model for cost-benefit analysis in the realm of 

cybercrime and cyberdefense. The escalation of cybercrime has emerged as a significant societal concern, as evidenced 

by the daily occurrence of cyberattacks that inflict substantial financial harm on nations, organizations, large enterprises, 

SMEs, and individuals. The dependence on digital services for various facets of our lives, such as government 
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engagements, financial transactions, and personal communications, has led to an amplified susceptibility to cyberthreats. 

For various reasons, be they political or financial, cybercriminals find it particularly attractive to target the digital 

infrastructure of modern societies. Consequently, mitigating cybersecurity risks has become a significant concern, 

emphasizing the necessity of proactive measures to reduce cyber threats and safeguard digital assets. Building trust 

among citizens is crucial for the success of smart government services and the digital economy, serving as essential 

factors in the process of digital transformation. The multifaceted nature of addressing cyberthreats within the context is 

further emphasized by the impact of cybersecurity knowledge on attack detection and the determination of confiscation 

of evidence in cyber-crime [1, 2]. 

In this context, the main goal of this paper is to propose a generic but sufficiently practical model for some financial 

aspects of cybersecurity, such as how prices of illicit services are determined and how decisions to invest in cybersecurity 

are taken. The model aims to integrate the interests of all the main stakeholders, the costs and benefits associated with 

their decisions/actions, and the considerations on how these stakeholders maximize/optimize their revenues. The results 

we describe are parts of work conducted in the context of the SAINT project related to the correlation of the price of 

Deep Web digital goods with security methodologies, technologies, and legislation. 

To achieve our goals, the approach we follow is based on two anchor points. The first stems from the results of our 

research efforts. We investigated existing literature concerning theoretical models of cybercrime and its financial aspects 

for stakeholders (e.g., targeted businesses and attackers). We noticed a lack of fine-grained multiparameter models that 

encompass, at the same time, all the relevant stakeholders, their decision-making processes, and their financial 

interactions, as well as parameters that reflect cost/benefit decisions. For instance, to the best of our efforts, we were not 

able to find literature about illicit service pricing models, which could be used as a vehicle for modeling the pricing 

decisions of illicit service developers under various constraints stemming from either legislation, persecution by law 

enforcement agencies, investment decisions, and investment sizes of businesses. These models are critically needed to 

strengthen businesses’ defense strategies against cyberattacks. The second anchor point was that the World Wide Web 

and the Dark Web contain an immense volume of data and information primarily spread in human-readable formats such 

as pictures, histograms, and natural language text. However, the Dark Web is much less accessible than the web. As a 

result, primary data stemming directly from the Dark Web cannot be gathered in quantities that would allow us to derive 

reliable conclusions. Thus, in this study, we focus, apart from proposing a theoretical model, on developing a more 

practical model to consider the different financial aspects of cybercrime using statistical techniques rather than 

optimization formulations. These statistical instruments permit us to analyze the data we collected, mostly from the web, 

using the tools developed in the SAINT project. 

Because of these challenges, our approach in this paper extends along two directions: a theoretical one based on 

suitable adaptations of a service pricing model (taken from the literature outside the cybercrime domain) and a more 

practical one based on the information gathered and analyzed by OSINT information sources and tools. Our goal is to 

demonstrate two key factors. Firstly, there is a clear negative correlation between the amount invested in enhancing 

cybersecurity and the efforts cybercriminals are willing to exert to attack well-protected entities. In other words, 

malicious actors act reasonably by targeting well-secured entities only when they anticipate significant gains. Otherwise, 

they seek soft targets that can be easily exploited, aiming to collect as much 'easy money' as possible." Secondly, the 

price of illicit services, also known as Cybercrime-as-a-Service (CaaS), serves as an indicator of the quality and strength 

of existing cybersecurity technologies. Effective cybersecurity technologies are challenging to bypass, leading 

cybercriminals to be willing to pay significantly more for techniques that can neutralize them, such as 0-day exploits. 

Even within the white-hat or ethical hacking community, bug bounties or security contests for secure applications are 

much higher than in the case of poorly maintained and insecure software. Our game-theoretical approach demonstrates 

that a robust cybersecurity policy can not only withstand massive 'blind' cyberattacks but also serve as a strong deterrent 

against targeted intrusion attempts by more determined and capable cybercrime groups. The Latin quote “Si vis pacem, 

para bellum” appears to be effective even in cyberspace. 

The paper is organized as follows: Section 2 cites related work focused on cybercrime modeling and its financial 

impact. Section 3 explains the approach to modeling the financial aspects of cybercrime and how they influence the 

decisions of defenders and attackers to defend or attack, respectively. Section 4 identifies the main stakeholders involved 

in the proposed model. Section 5 describes a simple theoretical 2-person game central to the model, which can be used 

to compute equilibrium points where defenders and attackers make optimal decisions regarding investment in defense 

measures or attack efforts. Section 6 discusses the Capacity and Value-Based Pricing (CVBP) model, proposed for 

optimally determining digital goods prices based on developers' and buyers' characteristics and capacities, and how it 

can be applied to model the valuation of illicit goods and services by developers, depending on buyers' needs. Section 7 

outlines an approach for cost/benefit analysis for defenders, modeling the decision process of investing or not investing 

in cybersecurity defense measures. Section 8 presents the approach for cost/benefit analysis for attackers, modeling their 

decision to invest in or abstain from attacking an organization. Section 9 adapts the game described in Section 5 to 

account for the cost/benefit analysis of both attackers and defenders, leading to the computation of corresponding 

equilibria. Finally, Section 10 concludes the paper and suggests directions for future research. 



Emerging Science Journal | Vol. 8, No. 4 

Page | 1322 

2- Literature Review 

The cybercrime landscape is undergoing changes, characterized by the emergence of advanced hacker groups and the 

prevalence of Advanced Persistent Threats (APTs), which present substantial obstacles to the field of cybersecurity. As 

highlighted in the current literature [3], most damaging cyberattacks are nowadays conducted by well-organized and 

focused cybercrimegroups rather than single hackers who seek peer recognition and glory and temporary monetary 

rewards (i.e., “pocket money”). However, APTs do not follow the mode of operation of cybercriminals in terms of 

motivation, rewards, and investment in cybercrime. Our research delves into the intricate characteristics of cybercrime, 

with a specific emphasis on hacker collectives, and the operational dynamics of the cybercrime ecosystem, and, thus, we 

will not include APTs but other types of illicit cybercrime products and services. For instance, the latest trends indicate 

an explosion of ransomware attacks, demonstrating that the primary motive for most cybercriminals is financial gain. 

Organized cybercrimegroups have emerged as a notable element within the realm of cybercrime, exhibiting a scope that 

surpasses individual exploits and encompasses collaborative and structured criminal endeavors. 

All advanced nations are actively working towards improving their ability to defend against cybercrime and are 

continuously seeking to reform their cybersecurity capabilities [4, 5]. To succeed in this goal, it is crucial to develop a 

fine-grained multi-parameter optimization model for conducting a cost-benefit analysis to effectively examine the 

intricate dynamics among cybercrime, and cyberdefense. The proposed model should consider the economic, social, and 

technical dimensions of cybercrime, incorporating perspectives from diverse fields, including computer science, 

economics, and public policy. By integrating these various viewpoints, it becomes feasible to construct an analytical 

framework that guarantees the durability and protection of essential digital services amidst the increasing challenges 

posed by cyberthreats. For instance, Lagazio et al. (2014) [6] proposed a multi-level approach through a thorough 

literature review to comprehend the ramifications of cybercrime on the financial sector. This approach highlights the 

interconnected and distinct factors that influence cybercrime and its economic and social costs. This approach follows 

the requirement for a model that considers multiple parameters. Furthermore, the significance of employing multi-agent 

modeling and simulation in cyberdefense was underscored, particularly in evaluating the repercussions of intricate 

occurrences on vital infrastructure and resources [7]. This statement supports the advancement of a theoretical framework 

capable of evaluating the cost-benefit analysis of strategies employed in cyberdefense.  

Moreover, an extensive investigation has been carried out to examine the financial implications of cybercrime, 

focusing on the importance of precisely assessing its economic consequences [8]. This research offers significant 

contributions to understanding cybercrime's economic dimensions, which are essential for conducting an extensive cost-

benefit analysis. Additionally, Ospina et al. (2023) [9] made a significant contribution by proposing a quantitative 

approach to enhance the security of cyber-physical energy systems. This approach considers the physical and cyber 

network vulnerabilities and employs a multi-criteria decision-making technique. Integrating this method into the 

optimization model allows for evaluating the cost-effectiveness of cyberdefense strategies within energy systems. 

Furthermore, Bilen & Özer (2021) [2] conducted a study that centered on predicting cyber-attacks through utilizing 

machine learning algorithms. The authors emphasized the significance of diverse datasets and parameters associated 

with cybercrime. The observation mentioned above holds significant value in developing a realistic optimization model 

that considers a range of cyber-attack scenarios. Furthermore, it highlights the constraints of current cyberdefense 

frameworks in managing multi-phase attacks characterized by uncertainty and contradictory information [10, 11]. This 

highlights the necessity of employing a sophisticated optimization model to tackle these challenges effectively. In 

summary, developing a multi-parameter optimization model for conducting a cost-benefit analysis of cybercrime and 

cyberdefense necessitates a new approach that considers cybercrime's economic, social, and technical dimensions.  

Armin et al. (2020) [12] identified serious research gaps in the quantification and measurement of the spread and 

severity of cybercrime in our days and its impact as well as its financial effects on markets of different sectors. In addition 

to the lack of quantification, there is a lack of industry-related best practices, which prevents the development of a more 

precise and more accurate understanding of the actual “cost of cybercrime”, both concerning the pricing of illicit services 

and the pricing (or cost) of strengthening cybersecurity. 

The study conducted by Dupont et al. (2017) [13] examines the social and market dynamics of Darkode, a restricted 

cybercrime forum, providing insights into the recruitment patterns and transactional characteristics of this infamous 

hacker community [14]. Moreover, the study offers valuable perspectives on the varied identities and behaviors exhibited 

by hacker collectives, highlighting the complex and multifarious characteristics of these entities within the realm of 

cybercrime activities [15]. Concurrently, the rise of Advanced Persistent Threats (APTs) has generated apprehension 

regarding the persistent and covert cyber risks that specifically target crucial infrastructure and confidential information. 

On the other hand, most, if not all, APT groups are state-sponsored and, therefore, do not pursue financial rewards; 

instead, they aim to weaponize the digital infrastructure of enemy nations. Since their objective is not profit maximization 

but rather the paralysis of other countries, as well as the fact that they receive direct support from foreign governments, 

they are not well-suited for our model. 
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The study by Yip et al. (2013) [16] examines the potential risks presented by cybercrimegroups that mostly specialize 

in ransomware attacks and emphasizes the significance of advanced technologies in the field of cybercrime 

investigations. Furthermore, the study investigates the trust dynamics within carding forums among cybercriminals, 

shedding light on the organizational structures that enable organized cybercrime and reduce transaction expenses [17]. 

Gaining insight into the subcultures and motivations of cybercriminals is imperative to effectively address and mitigate 

cyberthreats. It specifically draws attention to the interconnectedness between hacking activities and the processes of 

radicalization, as well as the manifestation of terrorist behaviors [18]. Furthermore, the research presented in this study 

serves to question the prevailing perception of cybercrime as an activity conducted in anonymity. It provides valuable 

insights into the concealed aspects of cybercrime, as well as its offline manifestations and local implications [19]. The 

study of the economic and systemic consequences of cybercrime is a crucial field of research that sheds light on the 

overall risk posed by cyber threats and the cumulative effects they have. This research highlights the diverse nature and 

patterns of cyber incidents, as well as the associated financial burdens they impose [20]. 

Moreover, the study emphasizes the worldwide proliferation of cybercrime enterprises by non-state entities, thereby 

emphasizing the imperative to tackle cyber threats within the framework of both international development and security. 

In summary, this study highlights the intricate and varied nature of cybercrime, which encompasses a range of actors 

such as hackers groups, advanced persistent threats (APTs), subcultural dynamics, and systemic consequences. Through 

the synthesis of various perspectives, a deep understanding of the emerging cybercrime model can be attained, thereby 

enabling the development of effective strategies to counter evolving cyber threats. 

Additionally, over the recent years, cyberattacks have increasingly been launched by well-organized, focused groups 

operating professionally, mimicking the functioning of real businesses in the ICT domain [12, 21–23]. All successful 

cybercrimegroups follow a well-organized structure and a group of various people with different skills and expertise, 

which resemble how regular ICT companies do business. As a result, they can be expected to rely on similar pricing 

models as legitimate businesses. 

Arguably, organized cybercrime [24] appears as the most worrisome of present and future threats to businesses and 

our societies, given our increasing reliance on digital technologies. Although cybercrime groups are primarily active in 

ransomware, we take a more relaxed view to include groups offering cybercrime services as regular ICT businesses with 

legitimate products and services. 

The stakeholders populating this ecosystem include other cybercrime groups, businesses, individuals, and law 

enforcement agencies. Cybercrime groups essentially design and develop illicit services on demand, acting much like a 

professional software solutions development business, upon receiving specific orders from interested parties (possibly 

even from governmental agencies, as it is discussed in Broadhurst et al. (2014) [21], to whom they sell their illicit services 

and products. As a professional illicit service developer, a ransomware group employs cybercrime specialists, invests in 

infrastructure and software tools, and, in general, acts much like a business operating in the services development 

domain, charging a given price for its services, making a profit, enduring costs, and facing competition from other 

cybercrime groups. Members of ransomware groups expend considerable effort to combine multiple attack 

methodologies and toolsets, aiming to penetrate well-protected targets. Ransomware groups operate with a high level of 

professionalism—methodical, orderly, and focused on achieving their set goals. This requires constant monitoring, 

feedback, and corrective actions, much like completing a significant software project; therefore, ransomware groups 

pose a severe threat level because their workforce is very skilled and also very determined. These characteristics render 

ransomware development a particularly suitable target for our model since it follows, in some sense, a pricing/selling 

process similar to the process followed by sellers of legal goods and services. 

In summary, the picture that emerges is that the cybercrime market is transforming into an ecosystem operated by 

several loosely coupled hacker groups and professionals that cooperate but also compete against each other, much like 

in the real economy. This competition tends to drive down the prices of the illicit goods and services they offer. Similar 

to any business, their strategies are built on cost-benefit analyses to thrive as legitimate players in the black-market 

economy. 

3- Modeling Scope, Assumptions, and Limitations 

The cybercrime landscape is highly complex, fast-changing, and includes several stakeholders. Its financial aspects 

are equally complex, and a complete coverage of them is impossible within a single model, at least within the scope and 

lifetime of this project. Here, we outline the first necessary steps to model the numerous criminal financial interactions 

in cyberspace, which call for further refinements once more accurate data and information about the involved 

stakeholders becomes available. The main objective of the proposed methodology rests on the following assumption: as 

a general rule, the more secure a technology or application is, the higher the regard for a security researcher or an ethical 

hacker will be. Similarly, the more protected a target is, the more effort and tools most cybercriminals are willing to 

invest in order to reap greater gains. These directly contradictory motives between security professionals and 

cybercriminals are formulating the foundation of our game-theoretic approach.  



Emerging Science Journal | Vol. 8, No. 4 

Page | 1324 

We gather information for our model from various resources. One such source is information about the cost of damage 

from organizations that have been cyberattack victims. "Victim organizations" are unwilling to release such information 

for obvious reasons (e.g., to avoid further tarnishing their image and reputation on the market). Also, pricing information 

for illicit services and products can probably be found, as demonstrated indirectly by our work with the SAINT tools 

through legal information sources. In the SAINT project, we explored and analyzed data from ethical hacking platforms 

such as bug bounties and vulnerability discovery programs. It was more challenging to obtain pricing information 

directly from the Dark Web. Despite our best efforts, we developed a Deep Web Crawler with limited success, which 

did not manage to acquire data from various Black Markets. The lesson learned from the partially successful endeavor 

with the SAINT Deep Web Crawler was that most Black Markets enforce stringent operational security (OPSEC), 

incorporating strong authentication mechanisms, rigorous monitoring of registered members, and access limited to join-

by-invitation only. Nonetheless, we managed to locate dumps of hacked Black Markets, which were made available for 

research purposes. As a result, we managed to obtain approximate estimates about the prices of illicit digital goods, 

which we then used to compare to prices that the proposed model derives. 

Another significant point is that, although the Internet contains a vast amount of cybersecurity and cyberattack-related 

information, this information is not easily exploitable by automated means. There is a large volume of publicly available 

literature related to the financial aspects of cybercrime, but it is often uncategorized and fragmented. This literature 

forms a secondary information source about the cybercrime ecosystem and its impact on businesses and society. These 

documents include quantitative and qualitative studies, surveys on the cost of successful cyberattacks on companies 

(with results typically reported at an aggregate level to protect victims' anonymity), cybercrime field analyses conducted 

by security companies, specialists, researchers, and state agencies, as well as bug bounties, vulnerability/exploit/attack 

repositories, white-collar hacker organizations, and even non-technical articles on well-established mass media sites. 

While most secondary sources are directly and easily accessible, some are scarce, such as those on 0-day vulnerability 

exploit prices. For example, Zerodium provides such information, which can be used within the SAINT project’s 

development framework for gathering data with a Deep Web crawler. However, Zerodium publishes information only 

in image format, not text, making it difficult to extract using automated methods, as this requires advanced image 

processing and OCR (Optical Character Recognition) techniques, which are beyond the scope of this paper. The primary 

issue with this extensive quantitative and qualitative data is that it is primarily presented in a format understandable by 

humans and not necessarily suitable for machine-based analyses. Only a few sites offer information in a standard, 

machine-readable format (e.g., CVE, XLS, HTML, XML, etc.), such as the HackerOne bug bounty site. 

One of the main objectives of our work is the promotion of the exploitation of such information sources in modeling 

the financial aspects of cybercrime. The model we propose in this paper builds on a moderate, pragmatic, and 

immediately applicable approach, which will pave the way to the above-mentioned approaches. We take a realistic but 

simplified view of the complex ecosystem of cybersecurity to provide a fully quantitative, machine-workable model for 

the financial aspects of cybersecurity. Among other simplifications, we limit the number of potential stakeholders that 

interact in the cybersecurity ecosystem, and we have set aside considerations of certain categories of costs, mostly 

intangible ones, related to cybercrime to reduce the complexity of the analysis. For instance, we do not consider 

individuals as a class of stakeholders; we ignore societal costs and disruptions costs that may affect the daily lives of 

people following the occurrence of a cyberattack directed, for example, at a utility operator. 

Our goal in this paper is to start "small" and within a moderate scale to propose a simple, fully quantitative, and 

algorithmic theoretical model, which we will study concerning its applicability potential and its aptitude to address the 

financial aspects of cybercrime and cybersecurity. We also propose a more practical model based on the information 

gathered by the tools developed by SAINT in order to provide a more directly applicable model to complement the 

theoretical one, whose validation is more demanding and cannot be accomplished within the scope of the project. 

However, attempts to achieve at least partial validation will be implemented. 

In summary, the model we propose targets the following goals: 

• To develop a multi-parameter theoretical model that links various parameters that model and reflect financial 

aspects of cybercrime according to stakeholders' interests and illicit service developers' financial goals. 

• To propose a decision support tool for organizations targeted by cybercriminals that will quantify the costs and 

benefits of investing in cybersecurity and will allow decision-makers to make well-supported (by data and theory) 

decisions about if, when, and how much to invest in their defense against cybercrime.  

• To obtain a better understanding of the financial aspects of cybercrime for all involved stakeholders. 

• To obtain a better understanding of the motives for investing in cyber-security from an exposed organization's 

point of view and the motives of engaging in cyber-criminal activities from an illicit service developer's point of 

view. 

• To show how primary and secondary information sources can be exploited in order to provide values for the 

parameters of the model. 
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Below we provide an overview of the flowchart of the proposed methodology: 

 

Figure 1. Flowchart of the methodology 

4- Principal Stakeholders in the Emerging Cybercrime Economy 

This section lists the most relevant types of stakeholders that coexist and interact in the emerging cybercrime 

economy. These stakeholders will be represented through specific parameters and variables in the model we introduce 

in the subsequent sections. 

4-1- Illicit Service Developers 

As explained in the introduction, illicit service developers fall into the cybercrime framework: they are dedicated and 

focused professional groups that operate like regular service-developing businesses. Therefore, these groups obey the 

same market rules as any other type of business: they face competition, hire and pay highly skilled personnel, set the 

price of their services, try to maximize their profit, and minimize their operational costs simultaneously. 

Most of the following skills and roles are actively sought among cybercriminals, according to a representative of the 

US Federal Bureau of Investigation’s Cyber Division [22]:  

• Malware Developers: The development of new malware strains to infect potential victims typically involves an 

automated process using a Malware Generator Kit. This kit can continually enhance and mutate malicious code to 

evade detection from antivirus (AV) engines. Techniques employed for this purpose include polymorphism, 

metamorphism, and code obfuscation. Groups developing these malware generator tools provide other 

cybercriminals with the option to order new malware, ensuring it comes with a guarantee of non-detection by AV 

software. The repetitive purchasing of new malware strains can be cost-prohibitive. In response, cybercrime groups 

provide their customers with the option to invest in a Malware Generator Kit as a one-time purchase, offering a 

potentially better Return on Investment (ROI). The provision of malware to interested parties as a commodity is 

known as MaaS (Malware-as-a-Service). Malware is developed by programmers skilled in both high- and low-

level computer languages who devote their efforts to discovering vulnerabilities in targeted systems and designing 

exploits. They create sophisticated malware, discover software exploits, modify penetration tools to suit their 

needs, and manipulate any ICT component necessary to fulfill an illicit service development assignment. 

• Exploit Brokers: Typically, they are black-hat hackers who develop and sell 0-day exploits to the highest bidder. 

There are also vendors and brokers who trade knowledge about specific vulnerabilities and exploits, but they 

operate in a gray area, supposedly selling only to law enforcement agencies of democratic countries. On the other 

Open 
information 
gathering

• This step uses intelligent information gathering tools to gather cybercrime related data and information

• This data and information includes incidents, bug bounty sites, vulnerability repositories, financial impact of incidents etc.

Determination of 
the parameters of 
the illicit goods 
pricing model

• Based on the gathered information, determine estimates of the parameters and decision variables for the illicit goods and 
services pricing model (Section 6 of this paper)

• The output of the model gives the prices (beneffits) for illicit product developers (i.e. incentive to attack)

Conduct 
costs/benefits 
analysis for 
defenders

• Based on the gathered information, determine costs (i.e. successful cybeattack impact) and benefits (i.e. frome successful 
cyberdefense actions) for organizations (Section 7 of this paper)

• The costs include GDPR violation fines, legal costs etc. as stated in Section 7 of this paper

Conduct 
costs/benefits 
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attackers

• Based on the gathered information and the results from the model in Section 6 of this paper, determine the benefits and costs
(i.e. legal impact and financial damages) of the attackers (Section 8 of this paper)

Determing 
euillibria points for 

attackers' and 
defenders' actions 

• Determine the decision game parameters based on the outputs of the steps above (Sections 5 and 9 of this paper).

• Determine the equillibria points which provide the probabilities of actions (defend/not defend and attack/not attack) of 
defenders and attackers (Sections 5 and 9 of this paper).
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hand, white-hat hackers and security researchers, when they discover a critical vulnerability, will responsibly 

disclose it and may claim a bug bounty if the owner has a similar program. In our work, we categorize black-hat 

hackers as offensive operators and ethical hackers as defensive. Given the complexity of the gray market of 

vulnerabilities and exploits, we decided not to include them in our model. 

• Bulletproof Service and Infrastructure Providers: Companies that operate in a gray area at the boundaries of the 

law are preferred by criminals to host fraudulent websites, obtain IP addresses, and domain names, as these 

companies ask no questions whatsoever regarding the nature of their clients' businesses. More importantly, 

bulletproof service providers take a very long time to comply with law enforcement requests to take down offending 

services and share information about their clients, as they often fail to keep records, providing a safe harbor for the 

cybercriminals.  

• Black Markets: They offer covert and secure storage facilities for illicit services, stolen information, data for sale, 

and targeted sites. Additionally, they provide anonymity services via sophisticated botnets and proxy 

infrastructures using infected systems. Black Markets operate in the Deep Web and function as one-stop shops for 

various criminal activities, including cybercrime. Many bad actors offer their illicit services in one or more Black 

Markets. 

• Spamming and Infection Campaigns: Fraud specialists design and deploy various social engineering methods, 

such as phishing, spamming, and domain squatting, to infect as many systems as possible and deliver the malicious 

payload. Spamming serves as their preferred method of attack. 

• Administrators and support technicians: These individuals play a crucial role in supporting developers by creating 

and maintaining development infrastructures. This includes managing servers, configuring operating systems, 

enforcing security operations, deleting tracks, and encrypting sensitive information. 

• Money Laundering Operators: These individuals, often referred to as 'cashers,' oversee drop accounts—typically 

addresses for receiving payments in digital currencies such as Bitcoin and Monero. Cashers also frequently 

supervise individual cash couriers, known in criminal jargon as 'money mules.' Money mules are usually 

unsuspecting individuals who transfer earnings from illicit services or products to other secure locations or 

accounts, believing they are engaged in a lawful job. The 'tellers,' who assist in the money laundering of illicit 

services through digital currency transactions and other fiat currencies, control the money mules. All of them 

operate under the authority of 'cybercrime bosses' who manage client relations, negotiate deals, recruit skilled 

personnel, define strategies, and oversee the distribution of earnings. 

The proposed model includes the skill parameter and the human resources/costs needed to develop illicit services (the 

cost parameters), as both influence the decision variables. While obtaining relevant information directly from primary 

sources (e.g., contacting specific hackers or cybercrime groups) is challenging, one can rely on 'educated guesses' derived 

from estimates found in leaked private communications between cybercriminals, hacked databases, and forums of black 

markets. 

4-2- Targeted Organizations 

The targeted organizations are those most attractive to illicit service developers, i.e., those that offer the highest return 

on investment (ROI) when attacked. In the proposed model, we categorize the victim organizations through the sector 

in which they are active since cyberattack costs for a victim organization appear to differ significantly depending on the 

sector [25]. We have identified some of the main sectors and the typical failures in cybersecurity that characterize them 

and induce the corresponding damage costs on the victim organizations. These sectors include the following: Healthcare, 

Utilities (including smart energy grids, innovative metering systems, water supply, electricity production, nuclear 

factories, etc.), Transportation, Social Networks, Financial Institutions, and the IoT. The proposed model includes the 

sector parameter since the afflicted cost parameter differs according to the sector where a victim organization is active. 

Specifically, the cost parameter for the targeted organizations includes various cost types, all of which are 

incorporated in the proposed model: 

• Proactive costs are those incurred by an organization during regular operations to enhance its security against 

cyberattacks and reduce vulnerabilities in its systems. Examples of such costs include payments made to security 

companies for penetration tests, formal security analyses of networks and deployed cybersecurity products, and 

checks for compliance with legislation (e.g., GDPR compliance and certification). These costs, which are integrated 

into the proposed model, can be estimated based on service prices set by security companies or by contacting 

organizations that consistently invest in proactive security measures. This approach ensures that the estimates reflect 

current security market prices. 

• Remedial costs refer to expenses incurred by the victim organization's infrastructure and business operations as a 

result of a successful cyberattack. The proposed model utilizes the afflicted damage costs model from the Deloitte 
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research report (2016) [26] to quantify these costs. Our research indicates that this model is both comprehensive and 

realistic, and the two example applications provided in the cited research report support this assertion. 

• Third-Party and Law Enforcement Agencies Liabilities: These are the afflicted costs resulting from lawsuits and 

penalties imposed by legislation such as the GDPR in Europe. Our model includes these costs as a parameter in 

determining an organization's cost and benefit balance to provide decision guidance. 

4-3- Illicit Service Clients 

This stakeholder category comprises the users of illicit services offered by illicit service-developing groups. Most 

often, these users are other cybercrime groups with limited capabilities in the development of efficient malware and an 

insufficient understanding of effective delivery methods to their targets. In rare situations, the clients may include 

governments of rogue countries seeking plausible deniability or corrupted industrial parties aiming to inflict damages on 

their competitors. 

The proposed model includes various service user types in the form of parameters that define their different benefits, 

the prices they are willing to pay, and the utility each user type assigns to the different services offered on the illicit 

service market. As a final remark, the proposed model allows the illicit service users to coincide with the illicit service 

developers, as is usually the case of customary hackers or hacker teams that design, implement, orchestrate, and launch 

their attacks themselves. 

4-4- Security Solutions Developers 

This stakeholder group includes companies specializing in cybersecurity solutions and in the security analysis of the 

ICT infrastructures and company data of other organizations, as agreed by the contract terms. The prices that the security 

companies charge for these services are included in the proposed model within the cost/benefits factor, which determines 

whether organizations decide to invest in cybersecurity solutions. 

4-5- Law Enforcement Agencies and The Judicial System 

The function of this stakeholder group in the model is twofold. First, law enforcement agencies act as a deterrent or, 

if the crime is committed, as a prosecution instrument for perpetrators. Beyond this function, law enforcement agencies 

incentivize organizations to invest in security solutions to avoid punishment for non-compliance with security and 

customer privacy legislation (e.g., GDPR in Europe [27]). 

The proposed model incorporates all these aspects of the role of law enforcement agencies and the judicial system, 

showcasing their efficiency in addressing cybercrime and its impact on targeted organizations. These factors directly 

influence the financial parameters of the model and play a key role in decisions regarding investments in security 

solutions for targeted organizations or engaging in cybercrime for illicit service providers. 

5- Modeling Main Stakeholders’ Decisions: A Simple Attack-Defense Game and its Equilibria 

Game Theory is a framework for modeling stakeholder decisions. Among the available game theoretical techniques 

and decision models, we decided to adopt a simple two-agent, complete information, non-cooperative game for modeling 

the decisions of the two main stakeholders: the targeted organization and the illicit service developer/user. The two 

decisions are for each player, respectively, “invest/not invest in defense” and “invest/do not invest in attack”. 

There have been numerous proposals for games that model security-related situations, but simplicity, fast solvability, 

and direct applicability to our goals were our main selection criteria within the scope of this paper. The game we describe 

in the present study is slightly altered in notation to reflect our specific context. Table 1 presents the usual representation 

of the chosen game (see, also, [28] for more details and a deeper analysis, as well as [29] for an excellent introduction 

to Game Theory). 

Table 1. A simple two-person attack/defense game 

 Invest in attack Do not invest in attack 

Invest in defense (𝑎, −𝛽) (−𝑏, 0) 

Do not invest in defense (−𝑐, 𝛾) (0,0) 

In this setting, one of the two players is displayed in the rows, and the other player is displayed in the columns of the 

table. This game allows only simultaneous decisions, i.e., the two players decide independently of each other and 

simultaneously on their actions. This is in contrast with sequential games where one of the two players takes the first 

decision and then the other one follows. In such games, the ordering of the players is important. However, we believe 

that in cybersecurity-related game situations it is most appropriate to study simultaneous moves of the defender and 
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attacker since, usually, cybersecurity investments or decisions to attack are not publicly announced. The exception to 

this is if espionage or information leak takes place, cases which we do not consider here for simplicity. To handle these 

cases would require the use of the sequential game model or even a mixture of the simultaneous and sequential models, 

which, however, would complicate our study beyond the scope of our work. 

Continuing our discussion on the game’s characteristics, the players’ payoff values (we changed, slightly, the letters 

used in Alpcan & Basar (2003) [28] to improve readability) are positive real numbers, and the relationship between these 

parameters defines the outcome of the game (i.e., the game equilibrium). The payoff values used here result from the 

model that is described in the above sections [28, 29]. 

Based on the information in Table 1, we can interpret the numbers (players’ payoffs) as follows: 

• Upper-left corner, (𝑎, −𝛽): This is the case where both players do invest in either security to strengthen defense 

(the defender), or in attack (the cyber-criminal). In this case, we assume that the payoff for the defender is positive 

(the value can be estimated within the context of the model that we propose in this paper), while the payoff for 

the attacker is negative (which can also be estimated in the context of the proposed model). The latter negative 

payoff results from the fact that the investment of the attacker is not sufficient to countervail the increase in cyber-

security implemented by the defender. 

• Lower-left corner, (−𝑐, 𝛾): This is the case where the defender has decided not to invest in cybersecurity measures 

while the attacker has decided to invest in developing and/or implementing an attack. In this case, the damages 

inflicted on the defender are reflected by the negative payoff value " − 𝑐" (which can be estimated in the context 

of the proposed model), while the success of the attacker is reflected by the positive payoff value given by "𝛾" 

(which can also be estimated by the proposed model). 

• Upper-right corner, (−𝑏, 0): This is the case where the defender is not an attractive or feasible target for the 

attacker, but he/she still decides to invest in cybersecurity. In that case, the defender’s strategy involves 

unnecessary spending and makes him/her worse off than without investment in cyber-security (as displayed by 

the negative payoff value " − 𝑏"). As for the attacker, the payoff is 0 since no attack has been launched. 

• Lower-right corner, (0,0): This is the easiest case, where none of the two players takes some action, i.e. the 

defender does not invest in defense and the attacker does not invest in attack. The payoffs are 0 for both players. 

According to the theoretical analysis of this simple (but practical) decision model [29] for the mathematical and 

algorithmic details), under the rather reasonable condition that 𝑐 > 2𝑏, (i.e. not investing in defense inflicts on the 

organization theoretically more than double the cost than investing in defense, see the discussion in the model described 

in Section), there exists a unique Nash Equilibrium (NE) in mixed strategies. This unique NE point is shown in Table 2: 

Table 2. The (unique) Nash equilibrium in mixed strategies 

 Invest in attack Do nothing 

Invest in defense (
𝛾

𝛽 + 𝛾
,

𝑏

𝑎 + 𝑏 + 𝑐
) (

𝛾

𝛽 + 𝛾
,

𝑎 + 𝑐

𝑎 + 𝑏 + 𝑐
) 

Do nothing (
𝛽

𝛽 + 𝛾
,

𝑏

𝑎 + 𝑏 + 𝑐
) (

𝛽

𝛽 + 𝛾
,

𝑎 + 𝑐

𝑎 + 𝑏 + 𝑐
) 

In this table, the values that appear in the parentheses represent probabilities of choosing the corresponding strategies. 

For instance, based on the table we see that the targeted organization decides to “invest in defense” with probability i.e. 

rate of adoption 
𝛾

𝛽+𝛾
 and decides to “do nothing” with probability 

𝛽

𝛽+𝛾
. Similarly, the illicit service developer decides to 

“invest in attack” with probability 
𝑏

𝑎+𝑏+𝑐
 and decides to “do nothing” with probability 

𝑎+𝑐

𝑎+𝑏+𝑐
. 

As pointed out in Alpcan (2003) [28], the mixed strategy choices of the players in the NE makes the opponent players 

indifferent as to which decision to take as all choices appear equally optimal given the opponents’ choices (this is a well-

known fact in Game Theory – [29]). 

6- Modeling Illicit Service Developers’ Service Pricing 

6-1- The model’s Variables and Parameters 

The Capacity and Value Based Pricing (CVBP) model was proposed in Wardell et al. (2008) [30], and it is composed 

of several variables and parameters. The main idea of the model is that the service developer, in our case the illicit service 

developer, serves a number of customers, in our case illicit service buyers, under a contract whose value depends on 

several parameters such as customer type (e.g., government, lone hacker, industrial, etc.), delivery time, available 

resources of the service developer and their cost, the utilities of the services to the customers that order them, etc. The 
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model defines an optimization problem that allows the service provider to maximize profits by suitably selecting prices 

for the services it offers to customers, considering constraints and parameters defined by the model [31]. This 

optimization function considers several interplay interactions among the parameters and variables to take into account 

all stakeholders’ interests [32]. 

In the following, we define the model’s variables and parameters, adapting the definitions from Wardell et al. (2008) 

[30] where necessary. We also explain their role in the proposed, in this paper, model for modeling the financial aspects 

of cybersecurity and the interests of the involved stakeholders and customer categories. 

• 𝑁: this is the number of customer segments, i.e. categories of criminals, that have been identified in the cybercrime 

territory using contracted illicit services. Of course, this parameter can be adjusted to reflect the number of customer 

types we consider each time we need to use the model. In general, the cybercrime markets for a specific illicit 

service or product can be segmented with respect to how each customer segment values, assigning specific utility 

values in the proposed model, a service or product (e.g. malware or a specific exploit kit). Thus, cybercriminal 

groups can set the prices of their illicit services as a function of specific parameters associated with a particular 

class of customers. A customer segment can even be a singleton, i.e. a group consisting of a single customer where 

prices are adjusted to the needs of a specific individual. Frequently, customer segmentation is performed in a 

straightforward way according to, for instance, whether the customer is a governmental intelligence agency, an 

individual hacker, an industry player, a political regime etc. The adapted model can handle any segmentation type 

or size and it outputs a range of illicit service prices tailored to the needs and utilities of each customer type 

separately. 

• 𝑀: this parameter denotes the total number of active assignments or contracts. An assignment to the illicit service 

developer consists of the development of one or more illicit services or products (i.e. a “service bundle”) under a 

contract with a customer coming from one of the customer segments predefined in the model. 

• 𝑆: this is the number of business sectors in which organizations which are targeted by the illicit service developers 

and their customers (i.e. illicit service users) are active. To avoid overloading the notation, we can incorporate this 

parameter into other parameters, e.g. the cost parameters of a data breach. 

• 𝑇: this parameter denotes the number of time instances (discrete time interval) considered. The model performs 

illicit service price (i.e. profits) optimization within a predefined time interval consisting of 𝑇 time instances (e.g. 

days or months, depending on the desired time granularity). The model allows choosing a time interval as a 

parameter since illicit service pricing and profits may depend on the time and length of the targeted time period 

(e.g. prices may fluctuate depending on whether targeted police persecution is active or not, for instance). 

• 𝑅: this is the number of professional specialties or skills which are required by an illicit service developer in order 

to meet his/her customers’ challenges. The required specialties for such services directly affect prices since they 

form part of the total operational costs of a developer r. 

• 𝑑𝑖
𝑠: is the total demand over all engagements assigned by a customer segment 𝑖, at a specific time period 𝑠. 

Estimates of this parameter may be deduced through the history of transactions of the illicit service developer with 

the various customer segments. 

• 𝜇𝑖𝑗: This parameter denotes the average length of a contract assignment in days, for contract type 𝑗 and for customer 

segment 𝑖. This parameter affects the costs parameter of the illicit service provider for completing a contract 

assignment. 

• 𝜌𝑘
𝑡 : denotes the daily pay rate for a skill/specialty of type 𝑘, when used for the time period 𝑡. 

• 𝑧𝑘
𝑡 : reflects the available “quantity” of a particular skill of specialty type 𝑘, at time period 𝑡. This is a critical 

parameter that affects pricing as well as the availability of human resources for future assignments. 

• 𝑣𝑖𝑗: this parameter is the utility a customer from segment 𝑖 enjoys from the work performed under a contract 

assignment of type 𝑗, without considering the cost of the contract. In other words, the utility reflects how a customer 

feels about receiving the illicit service described in the contract assignment. 

• 𝜁𝑖𝑗: is the sensitivity of customers from segment 𝑖 to the price of the service with contract assignment type 𝑗. 

• 𝛽𝑖𝑗: this parameter reflects the sensitivity of customers belonging in customer segment 𝑖 to a delay in the start of 

work for a contract assignment of type 𝑗. With this parameter, the model captures how a specific customer segment 

feels about delays in the start of the execution of the work described in the contract they have with the illicit service 

developer. 

In general, the sets of parameters 𝑣, 𝜁 and 𝛽 are estimated through transaction history information about an illicit 

service developer’s customers choice or may be estimated using surveys on experts’ opinions (since it is difficult to 

obtain information from Dark Web sources). 
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• 𝛩: is a parameter of the Logit probability function that indicates the level of uncertainty of customers when making 

choices (see [30] and [33] for more explanations on discrete choice models and their parameters as well as the use 

of logit functions). 

• 𝐴 ∈ ℝ𝑀×𝑅: this is the daily staffing matrix where matrix element 𝑎𝑗𝑘 represents the percentage of time that an 

individual possessing skill of type 𝑘 is assigned to tasks related to contract assignment of type 𝑗. 

6-2- The Decision Variables of the Model 

The model’s primary optimization variables are the prices of the illicit services [34]. Variations of prices affect other 

model variables, such as customer utility and the probabilities of choosing a particular service, as these two variables are 

interdependent. 

As a result, the main decision variables of the model are the following: 

• 𝑟𝑖𝑗
𝑠𝑡: these are the principal optimization variables of the model, i.e. the prices that illicit service developers assign 

to their illicit goods within a contract. More specifically, this variable denotes the price of a contract for a service 

of type 𝑗 for a customer from customer segment 𝑖, given that the current time instance is 𝑠, and the work on the 

contract will start at time period 𝑡, i.e. the illicit service developer will delay the execution of the contract by a 

time period 𝑡. In what follows, 𝑟 denotes the price vector 𝑟𝑖𝑗
𝑠𝑡 for all possible values of the subscripts and 

superscripts. 

• 𝑈𝑖𝑗
𝑠𝑡(𝑟): this variable denotes the utility of a customer from segment 𝑖 for an engagement of type 𝑗, given that the 

current time instance is period 𝑠 and the assignment in the contract starts at instance 𝑡. The utilities are functions 

of the prices of the services. 

• 𝑝𝑖𝑗
𝑠𝑡(𝑟): this crucial variable denotes the probability that a customer from segment 𝑖 will decide to form a contract 

for a service of type 𝑗, given that the current time period is 𝑠 and the assignment in the contract starts at time 𝑡. 

These probabilities are functions of both the illicit service prices and the customers’ expressed utilities from 

“consuming” these service (see below). 

• 𝑔𝑖
𝑡(𝑟): denotes the expected number of active contract assignments for services of type 𝑗 at time instance 𝑡. These 

are functions of both the prices and probabilities of selecting the available service types. 

6-3- The Constrained Price Optimization Problem 

The model’s primary optimization variables are the prices of the illicit services. Variations of prices affect other 

model variables, such as customer utility and the probabilities of choosing a particular service, as these two variables are 

interdependent. 

The goal of the chosen model is to define the prices of illicit services that maximize the following objective function: 

𝑚𝑎𝑥𝑟 ∑ ∑ [∑ (∑ 𝑑𝑖
𝑠𝑁

𝑖=1 𝑝𝑖𝑗
𝑠𝑡(𝑟)𝑟𝑖𝑗

𝑠𝑡 − 𝑔𝑗
𝑡(𝑟) ∑ 𝑎𝑗𝑘

𝑅
𝑘=1 𝑝𝑘

𝑡 )𝑡
𝑠=1 ]𝑇

𝑡=1
𝑀
𝑗=1   (1) 

Without the maximization operator, i.e. given a specific price vector, the expression above gives the expected profit 

over the specific time frame under consideration: 

𝑃𝑅𝑂𝐹𝐼𝑇𝑖𝑗
𝑠𝑡(𝑟) = 𝑑𝑖

𝑠𝑝𝑖𝑗
𝑠𝑡(𝑟)𝑟𝑖𝑗

𝑠𝑡 − 𝑔𝑗
𝑡(𝑟) ∑ 𝑎𝑗𝑘

𝑅
𝑘=1 𝑝𝑘

𝑡   (2) 

More specifically, the equation above gives the net profit gained by the illicit service developer if the developer uses 

the price vector 𝑟 for its contracted services of type 𝑖, for customers coming from customer segment 𝑗 and for contracts 

signed at time instance 𝑠 that will start at time instance 𝑡. The first term, 𝑑𝑖
𝑠𝑝𝑖𝑗

𝑠𝑡(𝑟)𝑟𝑖𝑗
𝑠𝑡 , gives the gross profit while the 

second term 𝑔𝑗
𝑡(𝑟) ∑ 𝑎𝑗𝑘

𝑅
𝑘=1 𝑝𝑘

𝑡  gives the expenses due to the engagement of skilled personnel (i.e. salary expenses). 

The maximization problem is, also, constrained by the following relationship: 

∑ 𝑎𝑗𝑘𝑔𝑗
𝑡𝑀

𝑗=1 (𝑟) ≤ 𝑧𝑘
𝑡 , ∀𝑡= 1 … 𝑇, ∀ 𝑘 = 1 … 𝑅  (3) 

This is the capacity constraint that states that the personnel required for fulfilling the obligations imposed by the total 

number of contracted services during a specific time interval cannot exceed the available personnel for the time period 

under consideration. 

In addition, we have the following quantity in the model: 

𝑔𝑗
𝑡(𝑟) = ∑ ∑ [∑ 𝑑𝑖

𝑠𝑝𝑖𝑗
𝑠𝑣(𝑟)𝑡

𝑣=max (𝑡−𝜇𝑖𝑗+1,𝑠) ]𝑡
𝑠=1

𝑁
𝑖=1  ∀ 𝑗 = 1 … 𝑁, ∀ 𝑡 = 1 … 𝑇  (4) 

The function 𝑔𝑗
𝑡(𝑟) gives the expected number of active contracts (i.e. contracts on which work has started) of type 𝑗 

at time instance 𝑡. In this function, the outer summation operators sums over the total number of available services that 

can be contracted by customers, and the second summation operator sums over all possible time instances 𝑠, until 𝑡, at 
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which time a contract can be signed. With respect to the inner summation, i.e. ∑ 𝑑𝑖
𝑠𝑝𝑖𝑗

𝑠𝑣(𝑟)𝑡
𝑣=max (𝑡−𝜇𝑖𝑗+1,𝑠) , the quantity 

𝑑𝑖
𝑠𝑝𝑖𝑗

𝑠𝑣(𝑟) is the expected number of services for customer type 𝑖 that are contracted at time instance 𝑠, are of type 𝑗, and 

will actually start at time instance 𝑣. Summing over all possible start instances 𝑣 in the inner sum, then, gives the 

expected number of signed contracts of type 𝑗 that are active at time instance 𝑡. More specifically, at time 𝑡 there are two 

types of service contracts on which illicit service provider’s personnel is working: 

• The contracts signed before time instance 𝑡 which are scheduled to start exactly at time instance 𝑡.  

• The contracts that were signed and started before time instance 𝑡 and have not yet been completed because of the 

expected length of those contracts, for a specific service type. This implies that these assignments must have started 

at time instance 𝑡 − 𝜇𝑖𝑗 + 1. The inner summation, however, starts from max (𝑡 − 𝜇𝑖𝑗 + 1, 𝑠) to take into account 

start instances which are smaller than 𝑠. 

The following constraint states a natural assumption, which is that providing a service at a later time period will cost 
less than providing it at an earlier time period: 

𝑟𝑖𝑗
𝑠𝑡 ≥ 𝑟𝑖𝑗

𝑠(𝑡+1)
 ∀ 𝑠, 𝑡 ≥ 𝑠 = 1 … 𝑇, ∀ 𝑖 = 1 … 𝑁, ∀ 𝑗 = 1 … 𝑀  (5) 

The following constraint states the fact that prices must be non-negative numbers: 

𝑟𝑖𝑗
𝑠𝑡 ≥ 0 ∀𝑠, 𝑡 = 1 … 𝑇, ∀ 𝑖 = 1 … 𝑁, ∀ 𝑗 = 1 … 𝑀  (6) 

The following equation defines the utility of a customer from customer class 𝑖, for a service of type 𝑗, whose contract 

is signed at time instance 𝑠 and which will start at time instance 𝑡: 

𝑈(𝑟𝑖𝑗
𝑠𝑡) = 𝑣𝑖𝑗 − 𝜁𝑖𝑗 ∗ 𝑟𝑖𝑗

𝑠𝑡 − 𝛽𝑖𝑗 ∗ (𝑡 − 𝑠) ∀ 𝑠, 𝑡 = 1 … 𝑇, ∀ 𝑖 = 1 … 𝑁, ∀ 𝑗 = 1 … 𝑀.  (7) 

Finally, the following critical equation provides the probability model for the choices made by customers with respect 

to the service types offered by an illicit service provider: 

𝑝𝑖𝑗
𝑠𝑡(𝑟) =

𝑒
𝜃 ⋃ (𝑟𝑖𝑗

𝑠𝑡)𝑠𝑡
𝑖𝑗

𝑒
𝜃𝑈𝑖0

 𝑠
+∑ ∑ 𝑒

𝜃 ⋃ (𝑟𝑖𝑗′
𝑠𝑡′)𝑠𝑡′

𝑖𝑗′𝑀
𝑗′=1

𝑇
𝑡′=𝑠

 ∀ 𝑠, 𝑡 = 1 … 𝑇, ∀ 𝑖 = 1 … 𝑁, ∀𝑗 = 1 … 𝑀.  (8) 

These probabilities are modelled according to the well-known Logit function, which are commonly used in discrete 

choice models [33]. The generic form of the Logit discrete choice model is the following [33], where 𝑃𝑗𝑞  is the probability 

that individual 𝑞 makes choice 𝑖 among 𝑁 available alternatives [35]: 

𝑃𝑗𝑞=
𝑒

𝑉𝑗𝑞

∑ 𝑒
𝑉𝑗𝑞𝑁

𝑖=1

 (9) 

This expression pertains to the well-known multinomial Logit model. More detailed definitions and properties of this 

function can be found in Train (2009) [33] and McFadden [35]. 

In the equation for 𝑝𝑖𝑗
𝑠𝑡(𝑟), a special “service” with subscript 0 appears in the denominator outside from the double 

sum, in the term 𝑒𝜃𝑈𝑖0
 𝑠

. This “service” corresponds to the competition from other illicit service providers, from which 

customers derive some utility. Without this “competition term”, the price optimization model produces unboundedly 

large (infinite) prices that, a result of profit maximization in monopolistic and competitive markets, as observed in 

Wardell et al. (2008) [30]. 

7- Modeling Target Organizations’ Costs/Benefits 

Quantifying cost/benefits of cybersecurity attacks/defense respectively entails breaking down the complexity of cost 

estimates to manageable categories that emphasize different aspects of an organization’s nature, size, business objectives 

and outreach. In Deloitte (2016) [26], a framework with 14 cyberattack impact factors was proposed. Based on our 

literature survey we concluded that these 14 factors reflect the majority of cost categories in relation to cyberattacks, and 

which also reflect the benefits of investing in cybersecurity. We rationalize the latter by the fact that, as a reasonable 

assumption of our model, the severity of inflicted or potential cyberattack related damages is closely related to how much 

one should invest in corresponding defense measures [36]. However, this may not be always the case. 

7-1- Targeted Organization’s Costs 

7-1-1- Proactive Costs 

We consider in detail the costs of implementing proactive security measures for an organization (i.e., in measures 
implemented prior to the occurrence of a security incident). We assessed several categories of costs which we briefly 
repeat below, along with specific cost estimates which are of interest to the model we describe in this paper. 
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• Real-time monitoring of an organization’s ICT infrastructure. Real-time monitoring can be implemented either by 

the organization's specialized IT security personnel and an in-house Security Information and Event Management 

(SIEM) system or by outsourcing to a managed security service provider. 

• Education of all personnel in ICT security and the establishment of a detailed and clear security policy that each 

member of the personnel should comply with. 

• Appointing a DPO (this, along with the corresponding salary plus bonus costs, is obligatory, under specific 

conditions, by the GDPR in Europe) or a CSO. 

• Train technical personnel according to ISO standards and provide incentives for obtaining certification in security 

protection. 

• Obtaining an ICT security related ISO certification. This step usually necessitates thorough penetration testing 

procedures to assess the level of security of an organisation’s infrastructure and guarantee that it complies with the 

ICT security related standards, such as the ISO/IEC 27001. 

• Initiation of an internal or outsourced public bug bounty or vulnerability reward program. For example, as an 

element of proactive costs, for about 500€ per year, one can start a responsible vulnerability disclosure program at 

the Vulnerability Lab (https://www.vulnerability-lab.com/) and take advantage of Vulnerability Lab’s 

infrastructure and expertise of its members that participate in vulnerability disclosure programs. 

• Employ secure software development and testing methodologies. 

• Conduct proactive penetration testing and security drills regularly, utilizing either an internal red team or 

outsourcing the task to security consultants.  

With respect to the last item, which account for a significant fraction of the total proactive costs due to its technical 

complexity, costs are usually agreed after discussions between the penetration testing provider and the infrastructure 

owner, but have been reported to usually not be very high, as indicated in the following tables from two different 

penetration testing service providers: 

A) ServerScan (https://www.serverscan.com/Penetration-Testing):  

Price quotations from the site: 

• Base Price: Up to 32 IP Addresses (internal + external) - $6,500 

• Additional IP Addresses (per 32) - $1,200 

• Internal Penetration Test - Included in Base Price 

• First Web Application - $2,200 

• Additional Web Applications - $1,200 

B) HighBit Security (https://www.highbitsecurity.com/penetrationtesting-cost.php): 

Price quotations from the site follow in the Table 3: 

Table 3. Price quotations 

Type Description 
Starting Price, 

USD 

External 

Network 

Base price is for an external penetration test addressing security vulnerabilities at the network layer* and also including 

host configuration* vulnerabilities, up to 32 IP addresses. A non-credentialed Web Application Test may be substituted 

if network testing is not needed. 

$5,900 

Internal 

Network 

Base engagement price is for an internal penetration test (on internal network), addressing security vulnerabilities at 

the network layer* and also including host configuration* vulnerabilities, up to 32 IP addresses. A non-credentialed 

Web Application Test may be substituted if network testing is not needed. 

$6,900 

Web 

Application 

Price is for a single non-credentialed* web application penetration test, in conjunction with an external or internal 

network penetration test. 
$1,900 

Wireless 
Price is for a wireless penetration test, in conjunction with an internal network penetration test, for one wireless access 

point and associated client devices. 
$4,900 

Social 

Engineering 

Price is for a remote social engineering test, including two separate electronic attack vectors with spear phishing email 

directed at human targets within the organisation, in conjunction with an external network penetration test*. 
$4,900 

* Network Layer testing includes firewall configuration testing, such as stateful analysis tests and common firewall bypass testing, IPS evasion, DNS attacks including zone 

transfer testing, switching, and routing issues and other network related testing. 

https://www.vulnerability-lab.com/
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C) Security check services offered by a research institute to an education institute in Greece as part of the 

requirements of GDPR compliance: 

Further to these cost sources, we cite the following vulnerability analysis project tackled by members of the authors 

of this paper with extensive expertise in information security auditing among other ICT security sectors. The project was 

commissioned by a Greek higher education institute and the goal was to analyze [37], security-wise, a web service of 

the educational institute directed to its students and instructors [38]. This analysis was part of the actions of the 

educational institute towards GDPR compliance. 

The vulnerability analysis work included the following tasks/checks: Information (e.g., log and audit files) collection, 

O/S (Windows) vulnerability assessment, Attacks on the communication channels, Attacks related to the O/S 

(Windows), Attacks related to the service’s DBMS (e.g., SQL injection attacks), Attacks related DDoS vulnerabilities, 

robustness against unauthorized transactions with services and applications of the educational institute, robustness 

against unauthorized access to sensitive data (e.g., students’ emails or grades), robustness against efforts to corrupt, 

modify, or leak information and data [39, 40]. The offer included all the above tests as well as the write-up of a report 

on the findings and suggestions for remedial actions. The work duration was estimated at 10 days for two security 

experts, and the price was 1.300 euros + 24% VAT. The offer was accepted by the educational institute, and the 

vulnerability assessment was successfully conducted. 

The above cases, A, B, and C are not expected to cover all possible elements of an extensive penetration and 

vulnerability testing of an organization that has multiple servers, services, and databases of varying sensitivity and 

security needs. These cases, nevertheless, may serve as a guide in determining costs related to proactive security 

measures an organization may take to secure itself against cyberattacks. We also observe that prices are comparable with 

no significant differences between the different providers. The proactive costs will be denoted by PC_ORG, i.e., 

Proactive Costs of the Organization. 

7-1-2- Remedial costs – Third Party and Law Enforcement Agencies Liabilities 

Any effort for accurately quantifying costs incurred to organizations from cyberattacks requires a methodological, 

fine-grained approach since there are numerous contributing factors to these costs with varying weight and importance 

for different industry and activity sectors as well as organizations annual revenues and sizes. To this end, we have decided 

to apply a costs model that captures the most important contributing factors as well as the differences in their importance 

depending on the victim organization’s profile and business characteristics. This is the model proposed by Deloitte 

(2016) [26]. We consider this a most appropriate model for our purposes after reviewing and studying the relevant 

literature. Below, we review briefly the 14 factors and explain their significance in the proposed model that we describe 

in this paper. The total cost incurred by these factors will be denoted by RC_ORG, i.e., Remedial Costs of the 

Organization. 

• Technical Investigation: this cost factor estimates the technical investigation costs (including forensics analysis), 

by expert teams, after a breach incident occurs. This cost factor includes digital forensics, vulnerability, and 

malware analysis, as well as network and data repository scans to identify and assess extend of damages and 

information leaks. 

• Customer Breach Notification: this cost factor refers to the costs involved in informing individuals who are affected 

by the incident (e.g., customers whose personal data were stolen).  

• Post-breach Customer Protection: these are costs for subscribing to premium services that will help reduce the risk 

of malicious people capitalizing on the stolen information/data. 

• Regulatory Compliance: this cost category aggregates fines or compensation fees that the victim organization 

should pay to the state or its clientele for negligence in complying with data and privacy protection regulations 

such as the GDPR in Europe. 

• Public Relations: these costs refer to the efforts towards handling communications or brand management activities 

after a security through a massive public relations campaign. 

• Attorney Fees and Litigation: these costs include various legal advisory fees and settlement costs, as well as costs 

incurred through the organization’s legal actions to defend its position. 

• Cybersecurity Improvements: these costs include the proactive costs, i.e., the costs for strengthening and securing 

the victim organization’s infrastructure before an incident occurs, as well as the costs that resulted from damages 

inflicted by the attack.  
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• Insurance Premium Increases: as a result of the incident, insurance companies normally will increase the cost of 

the insurance coverage, depending on the severity of the incident and the size of compensations paid by the 

insurance company on behalf of the victim organization. 

• Increased Cost to Raise Debt: this cost category refers to the fact that the victim organization will face higher 

interest rates (as well as a lower credibility rating) for new or older loans it received from financial institutions due 

to higher stakes involved. 

• Impact of operational disruption or destruction: a security breach incidence may cause severe business disruption 

while investigations last or the victim organization’s infrastructure remains non-operable. These costs include 

repairing equipment and recovering customer data, diverting operations to leased backup infrastructures (e.g., 

cloud platforms) etc. Assessing these costs is a complex process since they depend on the type of businesses 

conducted by the victim organization, its size, its revenues as well as its clientele’s volume. 

• Lost Value of Customer Relationships: this cost type refers to the “customer value” lost for the victim company 

due to a security breach incident. It is, usually, difficult to estimate this value but, often, economists and marketing 

specialists work by assigning a “value” to each customer that quantifies, in some sense, the cost and effort invested 

by the organization to gain and, subsequently, retain the customer. 

Value of Lost Contract Revenue: these costs represent lost revenues due to the incident, including loss of opportunities 

for new contracts or delayed payments of active contracts on which the company stopped working due to the business 

disruption caused by the incidence. These costs can, usually, be estimated through a Discounted Cash Flow (DCF) 

analysis. As a starting point, one can estimate the Net Present Value (NPV) of Cash Flows (CF) generated over 𝑇 

consecutive years, if the cash was to be invested using interest rate 𝑟, based on the following formula: 

NPV = ∑
𝐶𝐹𝑡

(1+𝑟)𝑡
𝑇
𝑡=1   (10) 

where 𝑟 is defined to be the effective annual rate to match the cash flows. The effective annual rate can be calculated 

using the following formula: 

ER = 𝑟 = [1 + (
𝐴𝑃𝑅

𝑛
)]

𝑛

− 1 (11) 

In this formula, APR is the Annual Percentage Rate defined for 𝑛 periods per year (usually for a period of 𝑛 = 12 

months). APR is often quoted as the period rate multiplied by the number of periods. A detailed description of the DCF 

methodology can be found, e.g., Algarni & Malaiya (2014) [24]. In simple terms, the delayed (in our case due to a 

cyberattack incident) payments have “less value”, due to money depreciation, than the payments that are delivered on 

time. 

• Devaluation of Trade name: these costs are related to the loss of value of the victim organization’s trade name in 

its business sector. In order to arrive at an estimate of the trade name of a victim organization, Deloitte [26] 

discusses the relief-from-royalty method which is commonly used to value IP (Intellectual Property) assets such 

as trade names. This valuation is based on analysing the fees that another organization would have to pay in order 

to license the organization’s trade name i.e., currently known royalty transactions. We can, also, propose the 

deployment for this cost category another technique which may arrive at more exact estimates of trade name 

devaluation not from industrial relationships but from a stock market value perspective. We refer to the event-

driven analysis based on a technique that investigates the effects (e.g., stock market value fluctuations) of the 

disclosure of cyberattacks against organizations [28]. This method relies on the following two axes: 

o Observing how an organization’s stock market value fluctuates when a vulnerability or attack affecting the 

organization is publicised. 

o Determining how the disclosure affects the stock market value of the victim organization. 

• Loss of Intellectual Property (IP): these costs refer to the leak of industry secrets or copyrighted intellectual 

property as a result of a cyberattack. This leak may lead to loss of market advantage or, even, to direct financial 

losses due to competition. 

The report of Deloitte (2016) [26] also includes two scenarios for the application of this 14-factor impact model. 

Scenario A concerns a US health insurance company and Scenario B concerns a US technology manufacturing company. 

For illustrative purposes, in Figure 2 and 3 we show an example as it is provided and discussed in detail in Deloitte 

(2016) [26]. 
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About the company: 

$60 billion annual revenue; 

50,000 employees; 

23.5 million members across the US (60% subscribed through employer contracts); 

Uses a patient care application which provides medical alerts and allows health practitioners across its provider network 

to access patient records and insurance coverage information; 

Holds open enrollment (the annual period when people can enroll in health insurance plans) November through January; 

Regulated by both state and federal authorities; 

Plans to raise $1 billion in debt capital to acquire a health system; 

Pays $7 million annual premium or a $100 million cyber insurance policy. 

Figure 2. An example company profile [26] 

 

Figure 3. Estimates of costs for the 14 cost factors of the model due to a cyberattack [26] 

We remark here that the required model data, such as the cost values for the 14 factors of the model, may be hard or 

even impossible to find from individual victim companies. This is caused by the fear of further exposure to bad publicity 

following a cyberattack, especially if the attack resulted in a privacy breach of customers or stolen customer data. In 

contrast, data such as the company profile and revenues that appear in Figure are easy to locate for individual companies. 

With respect to data and information that are related to the 14 factors of the model, one must speculate based on suitable 

modeling frameworks, such as the one discussed in this paper, based on publicly available information and data gathered 

by specialized tools, such as the ones being developed within the scope of other research efforts. 

With respect to our discussion in the introduction, it is information sources in non-textual, human-friendly formats, 

such as the information appearing in Figure 1, that can be converted into machine-readable format using advanced AI 

techniques that go beyond the scope of this paper. Data appearing in such human-readable sources can then provide 

values for the parameters and variables of the proposed theoretical model. 
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7-2- Target Organization’s Benefits 

With respect to the organization benefits from investing in cybersecurity, we take a simple (but reasonable) approach 

and equate them, as a basis for our estimates, to the costs incurred by a security breach incidents, defined as the aggregate 

of the separate costs in the 14 categories discussed in Section 7-1-2. In other words, the target organization’s benefits 

from investing in cybersecurity are equal to, at least, the costs that the organization will avoid from becoming a victim 

of an attack as a result of not investing in cybersecurity proactive measures, i.e. the remedial costs cited in Section 7-1-

2, minus the proactive costs invested in strengthening the organization’s robustness against cyberattacks, related to the 

items discussed in Section 7-1-1. 

Based on the discussion above, let us denote by PC_ORG the cybersecurity investment costs of an organization and 

by RC_ORG the damage costs of a potential cyberattack. Then the net profit of the organization that results from 

investing in cybersecurity, which is denoted by NET_PROFIT_ORG, is given by NET_PROFIT_ORG = RC_ORG – 

PC_ORG, assuming (which is not unreasonable) that RC_ORG > PC_ORG (it is expected to be many times larger). In 

other words, the net financial benefit for the organization is given by subtracting the expenses involved in cybersecurity 

investment from the damages that could be inflicted on the organization due to cyberattack that it may avoid because of 

the cybersecurity investment.  

Observe, that if the organization invests in cybersecurity defense and the attacker does not attack (e.g. in case the 

organization is not an attractive target) then RC_ORG = 0. However, the organization does not know it since the game 

model allows only simultaneous decisions of the players. In this case, NET_PROFIT_ORG = 0 – PC_ORG = – PC_ORG, 

which is negative reflecting the futility of the investment. If, on the other hand, the organization decides to invest and 

the attacker attacks, then the net profit can be considerable and certainly equal to benefits minus expenses, i.e., 

NET_PROFIT_ORG = RC_ORG – PC_ORG. This line of thinking is explained in more detail below. 

8- Modeling Illicit Service Provider’s Costs/Benefits 

With respect to modeling the total illicit service provider’s costs and benefits, we deploy a simple model that is 

described in Kshetri (2006) [41], suitably adapted to the purposes of our work. 

The model consists in deciding whether an illicit service provider deems beneficial to proceed in committing an illicit 

act or avoids doing so. To this end, the model leads to a decision to proceed if the following inequality holds true: 

𝑀𝑏 + 𝑃𝑏 > 𝑂𝑐𝑝 + 𝑂𝑐𝑚𝑃𝑎𝑃𝑐 .  (12) 

The left-hand side of the inequality represents the benefits, and the right-hand side represents the costs.  

Based on this mode, we can consider the net profit value as the difference between the left-hand side and the right-

hand side: 

NET PROFIT = (𝑀𝑏 + 𝑃𝑏) − (𝑂𝑐𝑝 + 𝑂𝑐𝑚𝑃𝑎𝑃𝑐) (13) 

The variables and parameters of the model have the following meanings: 

• 𝑀𝑏: represents the monetary benefits of committing a crime or providing an illicit service 

• 𝑃𝑏: represents the “psychological” or other immaterial benefits (e.g. fame, spread of achievements etc.) of 

committing a crime or providing an illicit service 

• 𝑂𝑐𝑝: represents the “psychological” costs of committing a crime or providing an illicit service 

• 𝑂𝑐𝑚: represents the monetary opportunity costs of conviction for committing a crime or providing an illicit service 

• 𝑃𝑎: represents the probability of arrest as a result of committing a crime or providing an illicit service 

• 𝑃𝑐: represents the probability of conviction as a result of committing a crime or providing an illicit service 

In the following two subsections we explain in more detail the above parameters. 

8-1- Illicit Service Provider’s/User’s Benefits 

In this section we will discuss in more detail the benefits parameters of the model, i.e. the parameters 𝑀𝑏 and 𝑃𝑏 . 

𝑀𝑏, in the case of an illicit service developer but not user, who acts upon a contract engagement, is straightforward 

to define and estimate since it corresponds to monetary rewards out of illicit service development, use and/or selling. In 

our proposal, 𝑀𝑏 can be estimated (at least on average), through the Capacity and Value Based Pricing (CVBP) model 

described in Section 7. More specifically, we can assume that: 
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𝑀𝑏 = ∑ ∑ [∑ (∑ 𝑑𝑖
𝑠𝑁

𝑖=1 𝑝𝑖𝑗
𝑠𝑡(𝑟)𝑟𝑖𝑗

𝑠𝑡 − 𝑔𝑗
𝑡(𝑟) ∑ 𝑎𝑗𝑘

𝑅
𝑘=1 𝑝𝑘

𝑡 )𝑡
𝑠=1 ]𝑇

𝑡=1
𝑀
𝑗=1   (14) 

with the illicit service prices vector 𝑟 replaced by the vector that maximize the right-hand side of the above equation. 

This vector is computed, as we discussed in Section 7, by solving the following optimization problem, over the service 

price vector 𝑟: 

𝑚𝑎𝑥𝑟 ∑ ∑ [∑ (∑ 𝑑𝑖
𝑠𝑁

𝑖=1 𝑝𝑖𝑗
𝑠𝑡(𝑟)𝑟𝑖𝑗

𝑠𝑡 − 𝑔𝑗
𝑡(𝑟) ∑ 𝑎𝑗𝑘

𝑅
𝑘=1 𝑝𝑘

𝑡 )𝑡
𝑠=1 ]𝑇

𝑡=1
𝑀
𝑗=1   (15) 

When we have an illicit service user, 𝑀𝑏 reflects the monetary benefits from ordering and using an attack. For 

instance, 𝑀𝑏 may be the total amount of money obtained from hacked accounts, hacked credit cards or ransom. In this 

case, we will denote these profits by 𝑀𝑏
′ , to differentiate it from the value 𝑀𝑏 defined by the maximization problem 

above. In this case, of course, the illicit service user must take into account the contract cost which is reflected in the 

price asked by the service developer according to the prices vector, for the various service, that results from the 

optimization problem for the developer, as explained above. 

With respect to 𝑃𝑏 , this represents the intangible (non-monetary) gains for the illicit service developer and/or user. 

These gains stem, mainly, from reputation and self-esteem aspects inherent in hacking/illicit service development. Also, 

as discussed in Kshetri (2006) [41], in this benefits category we also have government-backed cyberwarfare, that is 

collaboration of governments with illicit service providers or hackers. These benefits are intangible since they are usually 

related to benefits such as defacing countries, incapacitating a country’s ICT infrastructure and gaining political 

dominance. However, in order to be in position to combine the two benefits, i.e. 𝑀𝑏 and 𝑃𝑏 , in the sum, 𝑀𝑏 + 𝑃𝑏  must 

be represent a monetary value. Thus, 𝑃𝑏  must be converted into a monetary value, since 𝑀𝑏 already represents such a 

value. Let us assume a generic monetary conversion function 𝑓(𝑥) such that 𝑃𝑏 = 𝑓(𝑀𝑏), depending on the case in hand 

in an effort to quantify the intuitive idea that “good reputation brings revenues”. For concreteness, we propose the 

definition 

𝑃𝑏 = 𝑘𝑀𝑏 + 𝑙  (16) 

for two constant values (to be determined when handling a real analysis case) 𝑘, 𝑙 > 0, i.e. we propose a simple linear 

relation between 𝑀𝑏 and 𝑃𝑏 . The assumption is that, usually, high revenue businesses have also a correspondingly high 

reputation. Thus, 𝑃𝑏  and 𝑀𝑏 can be assumed, as a first approximation, to satisfy this linear relationship. 

8-2- Illicit Service Provider’s Costs 

In this section we turn our attention to the costs parameters of the model, i.e. the parameters 𝑂𝑐𝑝, 𝑂𝑐𝑚, 𝑃𝑎  and 𝑃𝑐.  

The parameter 𝑂𝑐𝑝 represents the “psychological” or ethical costs of committing a crime or providing an illicit service. 

Although it may appear that such costs are zero, constant or even negligible, research results (see [12]) indicate that the 

feeling of guilt is not equally strong across hackers with different social and cultural backgrounds. Therefore, we include 

this cost category in the proposed model although one may simply set it to 0 if the situation in hand considers scenarios 

of highly unethical and ruthless hackers. Again, which cost must be converted into a monetary equivalent in order to be 

comparable with other quantities in the model. 

𝑂𝑐𝑚 represents the monetary opportunity costs of conviction for committing a crime or providing an illicit service. 

This cost is, simply, fines or punishment incurred on the hacker if the hacker is caught and judged guilty in court. Also, 

this cost includes loss of income or revenue as a result of imprisonment. 

𝑃𝑎 represents the probability of arrest as a result of committing a crime or providing an illicit service. This parameter 

captures the readiness, alertness and efficiency of the police services of a country or federation of countries (e.g. Europol) 

in conducting a successful forensics investigation after a cybercrime is committed. This probability of arrest refers, 

specifically, to the effectiveness of police services of countries and reflects how intensely they prosecute cybercrime and 

the rate at which they resolve cyberattack incidents. This probability can be estimated easily from police files as the 

fraction of cybersecurity incidents who have been officially reported and has resulted in the arrest of the perpetrators. 

Finally, 𝑃𝑐 represents the probability of conviction, after the arrest, as a result of committing a crime or providing an 

illicit service. This reflects the readiness of the judicial system and legislation, as well as its capacity, in carrying out all 

the necessary legal actions in order to prove, beyond doubt, the guilt of arrested cybercriminals. Obviously, the 

probabilities 𝑃𝑐 and 𝑃𝑎 need not be correlated. It may well be the case, for instance, that the police are highly efficient in 

arresting cybercriminals that the judicial system, due to ignorance of deep knowledge of cybercrime and its complexities, 

let alone the lack of appropriate legislation and expert judges, is unable to prove guilt. Again, the probability 𝑃𝑐 can be 

estimated by the trial records kept by legal institutions of countries. 
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9- The Complete Model and its Applications 

Let us recall, the decision model for the defender and attacker in the form of a strategic game: 

Table 4. Price quotations 

 Invest in attack Do not invest in attack 

Invest in defense (𝑎, −𝛽) (−𝑏, 0) 

Do not invest in defense (−𝑐, 𝛾) (0,0) 

The payoffs related to the defender are while the costs related to the attacker are 𝑎, 𝑏, 𝑐 while the payoffs related to 

the attacker are 𝛽, 𝛾. 

Based on our discussion in Sections 6 and 8, we can proceed to set the payoffs related to the defender as shown below: 

• 𝑎 = RC_ORG – PC_ORG 

• 𝑏 = PC_ORG 

• 𝑐 = RC_ORG 

With respect to the attacker, we differentiate between three classes of attackers: Illicit service developer. Illicit service 

user, and illicit service developer and user. We then work on the payoffs as follows: 

Illicit service developer: 

• 𝛽 = 𝑂𝑐𝑝 + 𝑂𝑐𝑚𝑃𝑎𝑃𝑐  

• 𝛾 = 𝑃𝑏 + 𝑀𝑏 

The rationale behind setting 𝛽 = 𝑂𝑐𝑝 + 𝑂𝑐𝑚𝑃𝑎𝑃𝑐 , the “hacker’s” total losses according to the model by Armin et al. 

[12] which we discussed in Section 8-, is that most often the illicit service developer is the one who is found, as the one 

behind a cyberattack during a forensics investigation, even if the real originator of the cyberattack launch was someone 

else (e.g. a governmental agency of a country). 

The choice 𝛾 = 𝑃𝑏 + 𝑀𝑏  reflects the aggregate benefits of the developer which consist of the direct monetary rewards 

out of developing and selling the illicit service as well as the intangible rewards in recognition, fame and, possibly, 

attraction of more orders for developing illicit services. 

Illicit service user: 

• 𝛽 = 0  

• 𝛾 = 𝑃𝑏 + 𝑀𝑏
′ − 𝑀𝑏 , assuming that 𝑃𝑏 + 𝑀𝑏

′ > 𝑀𝑏 

In this category, we have the illicit service users who do not develop the services themselves due to lack of expertise 

or due to the need to avoid direct exposure as a result of the forensics investigation of a cyberattack. 

The rationale behind setting 𝛽 = 0 is that an illicit service user is not exposed (or, at least, tries hard to avoid it) so 

much as the illicit service developer whose tracks can be found using a forensics investigation of a cyberattack incident. 

For instance, it is known that countries are among the top illicit service users, however rarely a government of a country 

has been exposed as being behind a cyberattack incident. 

The rationale behind 𝛾 = 𝑃𝑏 + 𝑀𝑏
′ − 𝑀𝑏 , assuming that 𝑃𝑏 + 𝑀𝑏

′ > 𝑀𝑏 , is that the illicit service user’s net benefits 

are the intangible benefits, in monetary value, reflected by 𝑃𝑏 , plus the monetary benefits as a result of the attack minus 

the expenses for obtaining the illicit services, as reflected by the parameter 𝑀𝑏which is equal to the price demanded by 

the illicit service developer for the service. The assumption 𝑃𝑏 + 𝑀𝑏
′ > 𝑀𝑏  is required so that the net profit for the service 

user is positive (i.e. ordering the service leads to winnings and not losses). 

Illicit service developer and user: 

• 𝛽 = 𝑂𝑐𝑝 + 𝑂𝑐𝑚𝑃𝑎𝑃𝑐   

• 𝛾 = 𝑃𝑏 + 𝑀𝑏
′ − 𝑀𝑏

′′, assuming that 𝑃𝑏 + 𝑀𝑏
′ > 𝑀𝑏

′′ (see below for an explanation of 𝑀𝑏
′′) 

In this category, we have the illicit service developers who, themselves, develop and launch the attack for their own 

benefit, not acting upon receiving an order from another party. Setting 𝛽 = 𝑂𝑐𝑝 + 𝑂𝑐𝑚𝑃𝑎𝑃𝑐 , follows the rationale of the 

case of an illicit service developer (first of the three cases, above). However, with respect to the choice for 𝛾, we have 

introduced the parameter 𝑀𝑏
′′ beyond 𝑀𝑏

′  which represents the monetary rewards from using the attack, as in the second 

case above. The parameter 𝑀𝑏
′′, however, represents the monetary profits lost if the resources deployed by the illicit 

service provider for developing and using the attack were invested for work on external contracts. Thus, we set 𝛾 =
𝑃𝑏 + 𝑀𝑏

′ − 𝑀𝑏
′′ as the net profit for the illicit service developer and user. 
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Summing up the discussion above, we derive the following three game types (in strategic form) for the three examined 

cases: 

Table 5. Applying the decision model – the case of illicit service developer 

 Invest in attack Do not invest in attack 

Invest in defense (RC_ORG – PC_ORG,−(𝑂𝑐𝑝 + 𝑂𝑐𝑚𝑃𝑎𝑃𝑐)) (–PC_ORG,0) 

Do not invest in defense (– RC_ORG, 𝑃𝑏 + 𝑀𝑏) (0,0) 

Table 6. Applying the decision model – the case of illicit service user 

 Invest in attack Do not invest in attack 

Invest in defense (RC_ORG – PC_ORG,−(𝑂𝑐𝑝 + 𝑂𝑐𝑚𝑃𝑎𝑃𝑐)) (–PC_ORG,0) 

Do not invest in defense (– RC_ORG, 𝑃𝑏 + 𝑀𝑏
′ − 𝑀𝑏

′′) (0,0) 

Table 7. Applying the decision model – the case of illicit service developer and user 

 Invest in attack Do not invest in attack 

Invest in defense (RC_ORG – PC_ORG,0) (–PC_ORG,0) 

Do not invest in defense (– RC_ORG, 𝑃𝑏 + 𝑀𝑏
′ − 𝑀𝑏) (0,0) 

Based on these payoff values, one can derive the probability estimates for the decisions that will be taken by the two 

players, within the context of the NE in mixed strategies (or decisions, in our context, by the defender and the attacker). 

The corresponding probabilities of the equilibria points are computed based on the expressions provided in Section 5. 

10- Concluding Remarks and Future Work 

In this paper, we reported on the work performed within the SAINT project related to the correlation of the financial 

aspects of cybercrime, both the attackers and defenders, as a decision game based on a multiparameter costs/benefits 

model. Our work focuses on modeling the interplay among various financial and business-related parameters and 

indicators related to cybercrime and how they affect defense or attack investments and decisions. 

To this end, we propose the following two parallel directions in the context of this paper, which we hope will be 

pursued as future work: 

• Utilizing advanced Artificial Intelligence (AI) methods to process human-readable information sources as they 

currently exist, such as text or multimedia formats, and evolving on the World Wide Web (WWW). In addition, 

for non-text data, advanced AI methods are currently used in image analysis and for the understanding of 

histograms and pie charts (including their labels and the numerical data) that appear in picture formats in articles 

on the Web. For example, the 0-day exploit prices given by Zerodium are provided in picture format, not text. 

Natural Language Processing (NLP) techniques can be deployed for syntactic and semantic analysis of the text that 

appears in articles to develop applications that can locate pricing information, cyberattack-related cost figures, etc. 

However, more advanced techniques, which go beyond the scope of this paper, are required in order for a machine 

to read important quantitative/qualitative surveys. Several works [23, 26, 42] present methods to transform relevant 

financial data into standardized text formats. We have deployed such techniques at a primitive level in the SNA 

and the Clearnet Web Crawler, but they are capable of covering only a very small portion of the available existing 

resources on the web. 

Transformation, first, of human-readable information sources into machine-readable format and structure, much like 

the Web 3.0 Semantic Web vision and the ambitious ontological frameworks under development for various areas of the 

discourse of human knowledge. This is a different and maybe more daunting approach as it requires much preparatory 

work to enable machines to "understand" secondary sources of information, such as the numerous security reports 

published by leading security consulting companies in their own standardized formats. Another way to achieve the 

machine readability goal is to develop a standardization body to initiate a discussion with the security consultancy and 

survey industry concerning defining a standard survey format, including questionnaires and reports, at least for the 

numerical data of interest to automated processing tools. However, the cost of this transformation effort can be amortized 

over the resulting benefits that the automated analysis of the transformed data will produce. These costs can be reduced 

if such transformation efforts are sustained by voluntary contributions through crowdsourcing or following the model of 

voluntary and massive participation of Wikipedia. Crowdsourcing has gained considerable popularity over the last few 

years and has been adopted by numerous leading companies, often outside the field of cybersecurity. For instance, we 

have the following efforts [25, 43] going on based on the Ontology concept [44] and various semantic modeling 

frameworks (e.g., First Order Logic [44]). Examples include the following: 
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• Common Sense Semantic Network (ConceptNet) – see https://www.opasquet.fr/omcsnet/ 

• Freebase (entities and mutual relations) – see https://www.opasquet.fr/omcsnet/ 

• Google's Knowledge Graph and Facebook's Entity Graph 

• Microsoft's Satori, a semantic knowledge repository to assist Bing's (Microsoft's Internet Search Engine) 

searchers with more than a billion objects digested over 3.5-year years. Satori is a self-learning system running 

daily, thus learning more, adding 28,000 DVDs of content daily. 

• Yahoo's Knowledge Graph, Spark, a semantic search assistance tool. 

• Linked. In's Economic Graph. 

• DBpedia, a machine-readable version of Wikipedia. Text information available in Wikipedia in human language 

is transformed to be structured and semantically annotated to be amenable to automated processing (the 

ongoing WikiData project). 

• Carnegie Mellon University's "Read the Web" project (see http://rtw.ml.cmu.edu/rtw/). 

• The visionary project of the Gigantic Global Graph (Web of machine-readable, Open Data, see 

https://en.wikipedia.org/wiki/Giant_Global_Graph). This ambitious project is expected to implement Sir Tim 

Berners-Lee's vision of the Web as a Gigantic Global Repository (Graph) of Data and Knowledge. 

Naturally, emerging AI platforms such as ChatGPT should, also, be considered as information gathering sources from 

natural language sources. The provided Application Programming Interfaces (APIs) can be deployed to feed natural 

language based information into structured and more formal information formats suitable for automated analysis. 

Monitoring all these data and information sources can provide estimates for our model’s parameters and variables 

based on the impact of security breach incidents on victim organizations, both monetary and non-monetary damages, the 

prices of illicit services and their determination, illicit service providers’ revenues, the cost of cyber defense, and the 

identification of key factors that lead to the decision to invest in cybersecurity measures or not [45-49]. 

Modeling these elements, along with their interactions, proved to be a difficult task. The main reason was the lack of 

primary source information, i.e., information directly from illicit service providers and victim organizations. Having 

sufficient and accurate information is essential to target the financial aspects of cybercrime and defense. Publicly 

available information is enormous but scattered, unorganized, and contradictory because it is reported by many entities 

of varying cybersecurity competence, technical expertise, and knowledge breadth concerning ICT security. In addition, 

this information is often reported in a format, e.g., picture diagrams and graphs, as well as lengthy text in a natural 

language (mostly English), that is not easy to process through automated. This is precisely one of the 

significant obstacles and, at the same time, challenges for our research goal, i.e., the lack of standardized reporting 

formats, which considerably hinders empirical research. 

The contradictory nature of available secondary information, being voluminous but not directly exploitable, in 

conjunction with the scarcity of primary information, prompted us to pursue our goals along two parallel but dependent 

lines of approach. The first approach, presented in the present paper, is mostly theoretical and creates the framework in 

which the second approach operates. The model that we proposed combines a number of parameters that explain how 

illicit service providers may price their products in order to maximize profits, taking into account existing constraints 

and conditions related to their capacity as well as their motivations. We also described a game-theoretical model that, 

based on the parameter and variable values of the theoretical model, explains when it is cost-beneficial to invest in 

cybersecurity measures and when it is profit-beneficial to develop and/or launch a cyberattack. To the best of our 

knowledge, no similar approach has been presented that encompasses, in a fine-grained set of variables and parameters, 

the main financial aspects of cybercrime along with the characteristics and interests of all principal stakeholders. To this 

end, the introduced theoretical model can inspire further research into the financial aspects of cybercrime, explaining the 

observed behavior of stakeholders and identifying the elements that influence their decision. 

With respect to the second approach, we complemented our theoretical model with a less fine-grained but directly 

applicable and practical model. This approach deploys an econometric analysis model based on information that 

automated tools are able to gather from one of the available indicator sources, such as the HackerOne bug bounty 

platform. HackerOne was chosen from among all the information sources (considered as cybercrime indicators) we 

considered because it has the unique feature of linking vulnerability exposition with pricing. The conclusion of this 

empirical approach is that in bug bounty markets such as HackerOne or (as we conjecture) the Deep Web, illicit service 

providers appear to have more market power in that they can raise relatively easily their revenues by, simply, raising 

their prices for bug bounty. In this case, the customers (organizations) appear to still be willing to pay these higher prices 

without reducing, significantly, their demands for bugs and vulnerabilities that concern them. This is a very attractive 

feature of these markets that, we conjecture, results in gathering increasing numbers of illicit service providers, which 

https://www.opasquet.fr/omcsnet/#_blank
https://www.opasquet.fr/omcsnet/#_blank
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may, also, be willing to reduce their activities in illegal markets and become active in legal revenue activities such as 

offering their services, in return of monetary rewards, to legal vulnerability-related services such as bug bounty. This, 

however, needs further investigation using more bug bounty information stemming not only from HackerOne but other 

similar markets too, which were not possible to investigate within the scope of this paper and the SAINT project. 

In summary, the connection between big data, public information sources/repositories, and cybercrime is. 

Cybercriminals leverage advanced technologies and analyze large datasets to carry out cyberattacks. On the other hand, 

big data can assist IT security professionals in detecting anomalies and unauthorized activities, thereby enhancing 

cybersecurity [50, 51]. Our work aimed precisely at this direction. 

Future work should concentrate, we feel, on developing more robust and empirically validated models to better 

understand the financial dynamics of cybercrime and cybersecurity. This includes acquiring and incorporating actual 

transactional data from the Dark Web, which necessitates overcoming significant ethical and logistical hurdles. 

Furthermore, future studies should automate transforming human-readable data on cybersecurity into machine-readable 

formats to enhance the scope and scale of data analysis using advanced AI techniques. Researchers should also explore 

the standardization of reporting formats to enable a more unified approach to empirical research in cybersecurity. While 

the proposed models offer valuable insights, they have limitations. The assumptions and simplifications inherent in the 

theoretical approach of the CVBP model and the game theory framework may not capture the full complexity and 

variance of real-world cybercrime economics. Hence, iterative improvements to the model that incorporate real-world 

behavioral data and feedback loops could enhance its predictive power. 

Furthermore, the research is currently hampered by scattered and unorganized secondary data, which could lead to 

biased or incomplete conclusions. Ensuring ethical considerations, especially when dealing with illegal activities, is also 

a critical limitation that must be addressed, as is the need for more transparent reporting of potential conflicts of interest. 

Therefore, future work should advance model sophistication, enhance data collection and analysis methods, resolve 

ethical and legal challenges, and strive for transparency and replicability in cybersecurity economic research. 

Finally, looking ahead to the immediate future, we plan to continue our efforts to explore ways to enhance the 

applicability of the proposed theoretical model. This involves gaining access to primary information sources and 

supplementing the practical model with data from additional indicator sources based on data gathered by automated 

tools. 
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