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Abstract 

In recent years, the accurate identification of chili maturity stages has become essential for 

optimizing cultivation processes. Conventional methodologies, primarily reliant on manual 
assessments or rudimentary detection systems, often fall short of reflecting the plant’s natural 

environment, leading to inefficiencies and prolonged harvest periods. Such methods may be 

imprecise and time-consuming. With the rise of computer vision and pattern recognition 
technologies, new opportunities in image recognition have emerged, offering solutions to these 

challenges. This research proposes an affordable solution for object detection and classification, 

specifically through version 5 of the You Only Look Once (YOLOv5) model, to determine the 
location and maturity state of rocoto chili peppers cultivated in Ecuador. To enhance the model’s 

efficacy, we introduce a novel dataset comprising images of chili peppers in their authentic states, 

spanning both immature and mature stages, all while preserving their natural settings and potential 
environmental impediments. This methodology ensures that the dataset closely replicates real-world 

conditions encountered by a detection system. Upon testing the model with this dataset, it achieved 
an accuracy of 99.99% for the classification task and an 84% accuracy rate for the detection of the 

crops. These promising outcomes highlight the model’s potential, indicating a game-changing 

technique for chili small-scale farmers, especially in Ecuador, with prospects for broader 
applications in agriculture. 
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1- Introduction 

Agriculture has played a pivotal role in fostering the growth and development of societies by supplying the necessary 

food to maintain and expand populations [1]. Nonetheless, as the human population expands, this activity confronts a 

series of new issues and hurdles [2]. The growing demand for increased production places significant strain on farmers 

to achieve higher yield quotas, with numerous factors that may undermine this objective [3]. From a broader macro-level 

perspective, technologies such as remote sensing and intelligent computing are employed to estimate the planted area of 

a region and classify different crops. Moreover, these technologies facilitate detecting and mapping agricultural field 

boundaries [4]. On a micro level, crop inspection, detection, and classification are integral parts of the farming process 

[5]. Classifying the maturity state of crops enables farmers to assess the freshness of the crops they are packing and 

distribute their products without risking spoilage or reduced prices [6]. Detecting a crop's presence while verifying its 

maturity state is typically lengthy and repetitive but could be expedited by utilizing emerging technologies like Machine 
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Learning (ML) and Deep Learning (DL). These models also have the potential to identify crop abnormalities, including 

diseases and pests [7, 8]. However, the efficient detection of fruit and vegetable species and their respective states from 

images presents several challenges to be addressed [9]. 

Artificial Intelligence (AI) models have emerged as indispensable tools for farmers, facilitating the detection and 

classification of crops and providing solutions to many challenges [6]. When properly calibrated, AI models equipped 

with computer vision have the potential to minimize identification errors and boost productivity during harvest [10]. 

These models can be integrated into robotic machinery, which can operate autonomously or under remote control [11]. 

Such technology proves particularly advantageous in vast farms with a diverse array of plant species, as it can accurately 

pinpoint crops and distinguish between fruits and leaves, a task particularly daunting in crops like chili peppers due to 

their similar morphology [12].  

When it comes to fruit crops, a diverse array of classification techniques has been employed [8]. Machine Learning, 

Deep Learning, and Computer Vision applied to pattern recognition have gained widespread acceptance due to their 

commendable performance in image recognition [13]. Particularly noteworthy are the recent advancements in deep 

learning and Convolutional Neural Networks (CNN), which have spearheaded the development of rapid models capable 

of versatile detections and classifications [8]. A compelling illustration of their efficacy can be found in Badeka et al. 

[14], where various CNN models underwent rigorous testing for grape detection. You Only Look Once (YOLO) is of 

particular significance, which warrants special attention [15]. Renowned for its superior performance and adaptability, 

it has been applied across diverse crops, including apples [16, 17], strawberries [18], and chili peppers [19], highlighting 

the transformative potential of AI in reshaping agricultural practices. 

In contrast to traditional machine learning algorithms, deep learning excels in extracting insights from unstructured 

or unlabeled data. This remarkable capability simplifies crucial tasks such as crop health monitoring [20], disease 

identification [21], weed detection [22], and yield estimation [23], traditionally recognized for requiring extensive human 

expertise and labor. An illustrative example is the capacity of deep learning models to analyze drone or satellite images 

of farmland, facilitating the early detection of plant diseases or infestations [24]. This convergence of advanced 

technologies and agricultural practices holds promise for revolutionizing the landscape of crop management. 

Our research focuses on the agricultural landscape of Ecuador, with a particular emphasis on chili pepper cultivation. 

Using a deep-learning model, we propose an affordable, straightforward solution for classifying and detecting green and 

red crops. Ecuador, situated on the Equator in Latin America, boasts diverse climates and topographies, fostering a 

unique ecosystem conducive to the growth of various crops. Chili peppers, in particular, hold a significant position in 

short-cycle horticulture [25]. Ecuadorian farmers, especially those cultivating these pepper varieties, play a pivotal role 

in meeting their substantial demand. It's noteworthy that prior studies on chili peppers have often utilized datasets aimed 

at eliminating background noise or distractions to achieve higher accuracy. However, this approach may not be 

applicable in real-world scenarios where farms may present various natural conditions and obstacles, such as leaves, 

flowers, or other crops. Therefore, this convergence of technology and agriculture heralds a new era of heightened 

efficiency and accuracy in chili bell pepper production [26]. 

In the following subsection, we concisely review the recent advancements in machine learning and deep learning 

techniques used for crop classification, detection, and disease detection. We encompass a variety of fruits and vegetables, 

with particular attention given to chili peppers. 

1-1- Related Work 

Recent advancements in machine learning have significantly enhanced various agricultural tasks, primarily due to the 

adaptability provided by automatic feature extraction. For example, the study presented in Ekawaty et al. [27] addresses 

an analysis of the detection of cocoa. This study utilized a K-MEANS model and, based on the image capture distances, 

achieved accuracies of 93.3% at a distance of 50 cm, 64% at 100 cm, and 63% at 150 cm. In another study [28], the K-

Nearest Neighbors (KNN) method was employed, using both Euclidean and Manhattan distance calculation algorithms 

to identify two types of features: color and shape. This method was used to classify five classes of chilies: cayenne 

pepper, green chili, big green chili, big red chili, and curly chili. The evaluation was conducted with 300 images. The 

classification method output yielded precision, recall, and accuracy values of 1.0. 

Numerous studies have utilized deep learning algorithms to tackle various challenges in crop detection, classification, 

maturity estimation, and disease detection. For instance, Badeka et al. [14] applied YOLOv7-Tiny to estimate the 

maturity of grapes in 5 different stages, achieving an accuracy of 83.5%. This research utilized a dataset comprising 100 

images captured weekly from the same fruit cluster. Another study presented in Pang & Chen [29] employed an 

alternative version to the traditional YOLOv5 model, named MS-YOLOv5, to detect the ripeness of strawberries, 

achieving an accuracy of 95.6%. This model replaces a layer of CNN inside YOLOv5 to enhance the classification of 

ripe and unripe strawberries. This approach was chosen due to the low precision achieved with the traditional model. A 

different case studied the same problem using cherry tomatoes [30]. This study utilized YOLOv7 to detect the maturity 

in clusters of the fruit, attaining an accuracy of 86.9%. They improved their results by modifying the loss function and 

testing it with their specific dataset.  
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Furthermore, while Han et al. [31] implemented YOLOv5 to estimate the maturity stage of tomatoes, achieving an 

accuracy of 92.77% on two classes, Yang et al. [32] utilized a MobileNet model adapted to the YOLOv5 algorithm to 

classify the growth period of tomatoes in three stages, obtaining an accuracy of 98%. On the other hand, Sun et al. [33] 

implemented another version of YOLO called YOLOv5-PRE, which is suitable for environments with significant 

background noise. They aimed to detect apple crops, and due to their distinct form and size, compared to branches and 

leaves in the background, they achieved an accuracy of 94.03%. Regarding apple diseases, the study of Alharbi and Arif 

[34] implemented CNN to detect and classify three different fungal diseases, such as apple scab, apple blotch, and apple 

rot, organized in groups of 800 pictures of each disease while also classifying healthy apples and achieving an accuracy 

of 99.17%. Many crops have garnered interest in training models for detection and classification, including lemons [35, 

36], mushrooms [37, 38], and papaya [39, 40]. 

Regarding chili peppers, several machine-learning models have been tested. In the studies by Patil & Lad [19, 41], 

the authors employed ML-based classification techniques for disease detection in chili plant leaves. They utilized support 

vector machines and the k-nearest neighbor algorithm (KNN), showcasing varying efficiencies in disease detection and 

classification tasks on chili leaves. Both studies used RGB-format images to identify and classify five distinct chili leaf 

diseases. The Gray-Level Co-occurrence Matrix (GLCM) feature extraction technique was incorporated to enhance 

detection accuracy.  

In the context of Sevilla et al. [38], the evaluation involved 704 images of the affected leaf dataset. The results revealed 

an accuracy of 83.33% with Support Vector Machines (SVM) and an impressive 93.00% with KNN. In Patil & Lad [41], 

the authors achieved an accuracy of 94.04% with SVM and 87.04% with KNN. The analysis encompassed testing 2500 

samples. The review presented in Aminuddin et al. [42] explored the application of SVM and Random Forest (RF) as 

classifiers for discerning five distinct types of chili disease symptoms. These symptoms included spots, mottled mosaics, 

wrinkles, yellowed chili leaves, and folded veins. The study reported an overall accuracy of approximately 91% when 

employing these two techniques. Notably, the images in this research required feature extraction using deep learning 

techniques. 

In the study by Tan et al. [43], an experiment was conducted to detect and classify diseases in chili plants, exploring 

the application of the RF algorithm [44]. The primary objective was to distinguish between healthy plants and four 

distinct classes of chili diseases, achieving an accuracy rate of 95%. The dataset, sourced from Kaggle, consists of 50 

images per class, meticulously categorized into five classes. Another study on chili plant disease identification was 

undertaken by Islam et al. [22]. The study focused on distinguishing between weeds and crops through the utilization of 

RF, SVM, and KNN algorithms, yielding respective accuracy results of 96%, 94%, and 63%. 

In advancing studies that utilized neural networks to implement deep learning, the study by Cruz-Domínguez et al. 

[45] introduced an innovative framework employing Artificial Neural Networks (ANNs) for classifying dried chili 

peppers (Capsicum annuum L.) based on their size and color. Utilizing 8-bit grayscale-image histograms for chili 

characterization, the system boasts an accuracy rate of 82.13%. This approach effectively mitigates the identification 

and classification challenges dehydrators and end customers face. The employed dataset comprises 850 isolated chili 

pepper samples. The capabilities of using CNNs are underscored in the study by Aldabbagh et al. [46], which explores 

the effectiveness of a deep learning algorithm in classifying images that portray distinct growth stages of chili plants. 

Despite utilizing a relatively small dataset of 256 photos, the Residual Network (ResNet)-101 and ResNet-50 models 

from the Faster Regions with Convolutional Neural Network-Mask (R-CNN) framework proved successful in discerning 

the age of chili plants. Notably, the Mask R-CNN ResNet-50 model achieved an impressive accuracy of 96%, albeit 

slightly outperformed by the Mask R-CNN ResNet-101 model. The dataset consisted of images captured from four chili 

plants, with each plant being photographed from both side and top views. 

Expanding upon the potential of deep learning in chili farming, the study in Saad et al. [47] employs the R-CNN, 

a sophisticated deep learning model comprising approximately 177 layers. The model was trained on a diverse dataset 

comprising 500 multi-angle images of chili plants. The model achieved an Average Precision (AP) of 0.36 for chili 

detection and an even higher AP of 0.50 for chili flower detection. Thus, the Mean Average Precision (mAP) of the 

developed object detector is 43%. The relatively low mAP can be attributed to mislabeling objects in the training 

images.  

The training dataset includes some chilies and chili flowers that are not entirely labeled. Given that AP calculations 

involve the overlap of detection, also known as Intersection over Union (IoU) of object detection ground truth, the 

inadequate labeling of ground truth contributes to the low mAP. Further reinforcing the utility of CNNs, the research in  

Purwaningsih et al. [48] implemented a CNN-based method, attaining a promising accuracy of 97.14% with the training 

data. Even when exposed to test data, the model exhibited robust performance, yielding an accuracy score of 80% when 
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dealing with RGB input images. This model was explicitly used to categorize pictures of chilies into two groups: feasible 

and unfeasible for cultivation. The dataset comprised 80 images of individual red chili peppers against a white 

background.  

In the realm of deep learning pre-trained models, particularly the YOLO model and its variants, several studies 

provide valuable insights into the growth stages of chili crops and facilitate the classification of different chili types. The 

study in Ram et al. [49] developed a red chili detection system using the YOLOv5 deep learning model compared with 

other object detection models, such as Faster R-CNN, Region-based Fully Conventional Networks (RFCN), and 

RetinaNet. The objective was to accurately identify ripened red chilies in real-world images. A customized dataset was 

created, consisting of pictures of red chilies from plants and individual chilies, totaling 1078 images. The system 

achieved 95% accuracy with YOLOv5.  

Another study presented in Yin et al. [50] utilized YOLOv5 to distinguish between chili fruits and their leaves based 

on two characteristics: shape and color. A set of 391 images was generated to assess the model’s ability to detect objects 

of various shapes and sizes. The YOLO and Mask R-CNN algorithms effectively solved object detection problems, 

achieving 78.2% and 95% precision, respectively. A 2D camera was used to capture 201 images of chilies in their plants 

under varying light intensity, viewing direction, and color (green, red, and brownish). 

Furthermore, Mayalekshmi et al. [51] detected chili leaf diseases from images collected under actual field 

conditions using an RGB camera. The collected dataset consisted of 210 images. The YOLOv5 model correctly 

detected leaf spot and leaf curl classes with 40% and 57% accuracy, respectively. Overall, the model predicted the 

diseases with an accuracy of 75.64%. A more comprehensive set of classes using YOLOv5 was presented in 

Abubeker et al. [12], where an automated sorting system based on computer vision accurately identifies and 

classifies chilies based on attributes such as size, shape, color, and texture. The dataset for this research consists of 

images of bird-eye chilies in different positions and backgrounds. The chilies were then picked up by a robot 

manipulator and sorted by ripeness [52]. The system achieved a mAP of 0.94 and an average accuracy of 0.90 across 

a total of 1558 images. 

In a separate study Ibrahim et al. [53], a YOLOv5 model was tested for detection and classification accuracy above 

88%. The datasets, comprising 300 images from various categories such as green, red, and rotten chilies, were collected 

from 2D mobile device cameras. The chili fruits were photographed against a pure white background at various angles 

to provide sharp contrast and eliminate potential distractions. Zainudin et al. [54] applied YOLOv5 to identify chili’s 

form and classification based on its color, using 56 sample images of chilies in single images and multiple colors. The 

precision for red chili was 93%, while for green chili, it was 73% in tested individual chilies. The second part of this 

study combined chili colors into the same image. The precision regarding classification in this case for red chili was 

89%, while for green chili, it was 88%. In the case of chili prediction in a plant, the precision for red chili was 84%, 

while for green chili, it was 80%. Due to challenges in locating actual farms for experimentation, this study employed 

an artificial chili dataset with a white background to reduce noise and obstacles. 

Regarding other versions of YOLO, the study of Tan et al. [55] utilized YOLOv4-tiny with 85% precision and 

YOLOv4 + Mosaic + Convolutional Block Attention Module (CBAM) with data augmentation to achieve 100% 

precision. A total of 500 images of peppers in a natural light environment were collected with an industrial Hikvision 

camera, and different pepper plants were photographed from various angles during the collection process.  

Another study conducted by Hespeler et al. [56] collected RGB and thermal images of chili peppers in an environment 

of multiple amounts of debris, pepper overlapping, and ambient lighting, obtaining a mAP of 0.97 using YOLOv3. 

Further extending the applicability of the YOLO algorithm, the study in Manan et al. [57] utilized the YOLO Darknet 

detector to identify chili and its leaves within chili plant images. This contributes to robotic vision and growth 

monitoring, improving productivity and quality. The algorithm was applied to an augmented dataset of 1866 images of 

bird’s eye chili and its leaves. 

Compared with other transfer learning models such as YOLO Tiny, Faster R-CNN, and EfficientDet, the YOLOv4 

Darknet model emerged as the most accurate, achieving a mAP of 75.69%. Finally, Sudianto et al. [58] utilized a dataset 

containing 100 photos with 50 pictures of “quality A” chilies and 50 photos of “quality B” chilies to train a YOLOv3 

model. The accuracy obtained at iteration 9000 yielded an average accuracy of 75.6%. This model was trained using 

individual red chili peppers on a white background. 

To summarize, Table 1 presents a concise description of the research focused on chili peppers and plants using YOLO, 

along with the contribution of this paper. 
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Table 1. State of the art YOLO models applied to chili plants 

Author Year Problem Definition Targeted Crop Dataset Model Results 

Ram et al. [49] 2023 Crop detection Red Chili peppers Individual chilies and plants YOLOv5 Detection Accuracy: 95% 

Yin et al. [50] 2023 
Crop detection and 

classification 

Ghost pepper and 

cili padi 
Pictures of chilies in plants YOLOv5 

Detection Precision: 78.2% 

Classification Precision: 90% 

Mayalekshmi et al. [51] 2023 Leaf disease Red chili leaf RGB Images from chili field YOLOv5 Detection Accuracy: 75.64% 

Abubeker et al. [52] 2023 
Crop detection and 

classification 
Bird eye chili Pictures from chili farm YOLOv5 

Detection Accuracy: 

Red Chili: 92.79% 

Green Chili: 93.46% 

Classification Accuracy: 90% 

Ibrahim et al. [53] 2023 
Crop detection and 

classification 

Green, red and 

rotten chili 
Chili plant pictures YOLOv5 

Detection Precision: 90% 

Classification Precision: 88% 

Tan et al. [55] 2023 Crop Detection Chili pepper Chili plant pictures YOLOv4 Detection Precision: 85% 

Zainudin et al. [54] 2022 
Crop detection and 

classification 

Red and green 

chili 

Pictures of artificial chilies and 

plants 
YOLOv5 

Detection Precision: 

Red Chili: 84% 

Green Chili: 80% 

Classification Precision: 90% 

Hespeler et al [56] 2021 Crop detection Red chili RGB and Thermal Images YOLOv3 Detection mAP: 97% 

Manan A. et al. [57] 2020 Crop and leaf detection Bird’s eye chili Images of leaves and chili crops YOLOv4 Detection mAP: 75.69% 

Sudianto et al. [58] 2020 
Crop quality 

classification 
Chili pepper Individuals Chili peppers YOLOv3 Classification Accuracy: 75.6% 

Proposal 2024 
Crop Detection and 

Classification 

Red and Green 

Chili Pepper 

Pictures of chili plants in 

natural environment like rocoto 

red and green chili 

YOLOv5 
Detection Accuracy: 84.4% 

Classification Accuracy: 99.9% 

1-2- Main Contribution 

As evidenced by the current state of the art, numerous studies have been conducted on classifying and detecting chili 

peppers. This project, however, introduces unique contributions to detecting the maturity stage of the “rocoto” chili 

pepper cultivated in Ecuador. 

 Previous studies predominantly utilized images of individual chilies or plants under ideal lighting conditions, with 

white backgrounds or clearly visible chilies without obstacles. In contrast, this work introduces a novel dataset 

divided into two primary categories: red-chili and green-chili. The uniqueness of this dataset lies in its high-fidelity 

representation of chilies in their natural environment. Rather than isolating the chili peppers, images captured the 

entire plant during various stages, from planting to harvesting. This includes the presence of potentially 

confounding elements such as other plants (roses), leaves, and other parts of the plant. By intentionally avoiding 

special lighting conditions and preserving the plant's natural state, the dataset provides a more challenging yet 

realistic environment for model training. 

 Multiple training sessions were conducted under varying hyper-parameters and model sizes to optimize the results 

for our dataset. The presented methodology employed both the original dataset and an augmented version. 

Additionally, various tests were conducted with different sizes of the YOLO model and varying hyperparameters 

to better understand how each value influences the results. 

 The study identified a model using YOLOv5 in its nano size, with finely tuned training hyperparameters of epochs, 

optimizer, and batch size. This model achieved a classification accuracy of 99.9% and a detection accuracy of 84%. 

When tested in a real scenario, the model demonstrated high accuracy and precision, even considering other plants' 

presence and the crops' obstruction by leaves. The high accuracy achieved, given the images present in the dataset, 

underscores the robustness and effectiveness of the model. 

1-3- Outline 

This work is organized as follows: Section 2 presents the methodology used. Section 3 details the results obtained 

from the model using the given dataset, including experimental, validation, and testing outcomes. Section 4 presents the 

Discussion. Finally, the conclusions are presented in Section 5. 

2- Research Methodology 

This section details the methodology adopted for this study, providing a comprehensive explanation of the processes 

and approaches implemented. The overall methodology pipeline, as illustrated in Figure 1, visually represents the steps 

and techniques employed throughout this research. 
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Figure 1. Proposed Architecture for Chili Crop Detection and Maturity Classification Using a YOLOv5-Based Image Analysis 

2-1- Data Acquisition 

In Ecuador, chili plants exhibit a wide range of species and are primarily found in hotter regions. The chili varieties 

present in Ecuador include pancha, chipotle, ancho, peruvian chili, cherry, rocoto, habanero, yellow banana, dandelion, 

and rooster’s foot. For training, validating, and testing the YOLOv5 model, a dataset was compiled using images of 

rocoto chili plants from a small orchard. This location was chosen due to the vast array of chili colors available primarily 

green and red. Figure 2 showcases a sample from the curated database, illustrating the various scenarios in which chili 

peppers are found. The dataset comprises 1203 images, captured with a 20MP cellphone camera at a resolution of 

1920×1080 pixels. 

 

Figure 2. Developed Database Characteristics and Sample Images 

The dataset images depict chilies in their natural state, captured from various angles and positions. They were 

photographed in natural light and background conditions, without being harvested, providing a wide range of scenarios. 

These conditions facilitated the training of the model and its testing against most of the challenges it would encounter in 

a real-world application. These challenges include leaf obstructions, varying environmental lighting, and plants bearing 

many fruits in red and green stages. 
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2-2- Data Labelling, Preprocessing and Augmentation 

Once all pictures of the dataset were collected, they were uploaded to Roboflow for labeling and classification into 

subsets for training, validation, and testing. Each photo was manually labeled using Roboflow's tool to encompass each 

chili in the images with bounding boxes corresponding to their respective classes. Because our native language is 

Spanish, the classes assigned to each chili correspond to its names in that language. Once all crops were assigned a 

bounding box, they were converted to a resolution of 640×640 pixels to reduce training time and to adapt them to the 

YOLOv5 requirements. Then, two versions of the dataset were generated. The first version consists of only the original 

pictures labeled and assigned to training, validation, and testing. A second version was later compiled to include data 

augmentation consisting of rotated versions of the original pictures, resulting in a total of 2881 images. The distribution 

of both datasets, as well as the labels used for this study, are detailed in Table 2. 

Table 2. Dataset information 

Category Images 

Training (70%) 841 images (without augmentation) 2519 images (with augmentation) 

Validation (20%) 243 images 

Testing (10%) 119 images 

Labels Meaning 

aji-rojo Red chili 

aji-verde Green chili 

2-3- Model Architecture 

This work utilizes the standard YOLOv5 network architecture delineated in Figure 3. It is structured into three primary 

segments: the backbone, the neck, and the head. 

 

Figure 3. Architecture Developed for Chili Plant [59] 

Within this structure, YOLOv5 integrates the cross-stage partial network (CSPNet) [60] with Darknet, resulting in 

the creation of the CSPDarknet backbone. Initially, the data is processed by CSPDarknet for feature extraction. This is 

followed by the path aggregation network (PANet), which merges the data before the YOLO layer generates the detection 

results. Incorporating PANet [61] is a strategic bottleneck in YOLOv5, enhancing data throughput. It includes a novel 

feature pyramid network (FPN) topology strengthened by an advanced bottom-up pathway, which enhances low-level 

feature propagation. Through this, PANet not only enhances the precise localization signals in the lower layers but also 

improves object location accuracy. Lastly, the head of YOLOv5, specifically the YOLO layer, generates feature maps 

in three distinct sizes (18×18, 36×36, and 72×72), enabling multi-scale [62] prediction. This versatility empowers the 

model to effectively handle objects of varying sizes, from small to large.  
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In the present study, although the pictures were taken using a 20MP and had a resolution of 1920x1080 pixels, the 

images were resized to adjust to the standard 640x640 resolution input for YOLOv5. We aimed to test all sizes of the 

YOLOv5 model (nano, small, medium, large, and extra-large). However, due to hardware limitations encountered during 

training, we ran out of GPU memory with the large and extra-large models. Additionally, the medium-sized model did 

not provide any difference in results obtained compared to the two smaller models and took too much time to train, 

rendering it unsuitable for the requirement. 

2-4- Training 

A testing environment was implemented once the datasets were defined and correctly labeled. Initially, we conducted 

preliminary training tests on a medium-high-end computer. However, we encountered issues such as prolonged training 

times, overheating of hardware components, and errors during the training process, which hindered accurate results. 

Subsequently, the training environment was transitioned to a Google Colab virtual machine with enhanced computational 

resources. A comparison of the hardware utilized in this study is presented in Table 3. 

Table 3. Training Environments 

Environment Component Capacity 

Computer with AMD Ryzen 7-5800H CPU  
RAM 16 GB 

GPU RTX 3050 4 GB VRAM 

Google Colab Pro Environment 
RAM 12.7 GB 

GPU T4 GPU 15 GB VRAM 

In pursuit of optimal accuracy in the detection and classification of both green and red chili peppers, a variety of 

training variations were implemented. The specific parameters utilized during the training phase are outlined in Table 4. 

Table 4. Training Parameters 

Parameter Value 

Dataset 
Without Augmentation – 1203 images 

With Augmentation – 2881 images 

Model Size 

YOLOv5 Nano – 1.9 M parameters 

YOLOv5 Small – 7.2 M parameters 

YOLOv5 Medium – 21.2 M Parameters (Training time too long) 

YOLOv5 Large – 46.5 M Parameters (Out of GPU memory) 

VOLOv5 Extra Large – 86.7 M Parameters (Out of GPU memory) 

Epochs 

25 

50 

75 

100 

Optimizer 

Stochastic Gradient Descent (SGD) 

Adaptive Moment Estimation (Adam) 

Adaptive Moment Estimation with Weight Decay (AdamW) 

Batch Size 

16 

32 

64 

128 

Starting Weights YOLOv5 Default 

Number of Classes 2 

Learning Rate Automatically adjusted by model 

The relevant metrics for detection and classification were obtained for each trained variation and will be presented in 

the following section. 

3- Experiments and Results 

In this section, we present the results of the various trained variations. We utilize metrics such as recall, precision, 

accuracy, and the F1 score to ensure a fair comparison among the obtained results. It is important to note that this study 

aims to train a model for two tasks: detecting a chili pepper of either of the pre-defined classes within an image of a chili 

plant and classifying it into the green and red variants. 
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The metrics used are mathematically described in Equations 1 to 4 provided by Aishwarya et al. [63], where TP, FP, 

TN, and FN represent true positives, false positives, true negatives, and false negatives, respectively. This measurement 

helps ascertain the proportion of positive identifications that were indeed correct. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
  (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
  (2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
  (3) 

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙)
  (4) 

For the detection task, we present all four metrics for the detection task as it is where the model faced the most 

challenges. The dataset nature caused difficulties as the chili peppers were often partially obstructed by the plant, flowers, 

background, other chili peppers, and especially the leaves. The leaves have a strong resemblance to the peppers, making 

it harder for the model to differentiate between the two. Regarding classification, all models achieved accuracy scores 

between 99% and 100%, resulting in all other metrics also scoring 100%. 

3-1- Validation Results 

In the process of optimizing the model during training, a validation dataset comprising 243 images was utilized. Table 

5 presents each trained variation along with its corresponding metrics and highlights the best model identified. 

Table 5. Validation Results 

Dataset Variation - Model's default values given by Ultralytics 

Dataset Class Detection Matrix Precision Recall Accuracy F1 Score 
Classification 

Accuracy 

Without 

Augmentation 

Red 0.73 0.22 76.84% 73.00% 
75.50% 

74.87% 100.00% 

Green 0.27 0.78 74.29% 78.00% 76.10% 100.00% 

With 

Augmentation 

Red 0.8 0.21 79.21% 80.00% 
79.50% 

79.60% 100.00% 

Green 0.2 0.79 79.80% 79.00% 79.40% 100.00% 

Best Result: Dataset with Augmentation 

Model Class Detection Matrix Precision Recall Accuracy F1 Score 
Classification 

Accuracy 

YOLOv5 nano 
Red 0.82 0.2 80.39% 82.00% 

81.00% 
81.19% 100.00% 

Green 0.18 0.8 81.63% 80.00% 80.81% 100.00% 

YOLOv5 small 
Red 0.8 0.21 79.21% 80.00% 

79.50% 
79.60% 100.00% 

Green 0.2 0.79 79.80% 79.00% 79.40% 100.00% 

Best Result: YOLOv5 nano 

Epochs Class Detection Matrix Precision Recall Accuracy F1 Score 
Classification 

Accuracy 

25 
Red 0.79 0.25 75.96% 79.00% 

77.00% 
77.45% 100.00% 

Green 0.21 0.75 78.13% 75.00% 76.53% 100.00% 

50 
Red 0.83 0.2 80.58% 83.00% 

81.50% 
81.77% 100.00% 

Green 0.17 0.8 82.47% 80.00% 81.22% 100.00% 

75 
Red 0.83 0.17 83.00% 83.00% 

83.00% 
83.00% 100.00% 

Green 0.17 0.83 83.00% 83.00% 83.00% 100.00% 

100 
Red 0.82 0.19 81.19% 82.00% 

81.41% 
81.59% 100.00% 

Green 0.18 0.8 81.63% 80.81% 81.22% 99.00% 

Best Result: 75 Epochs 

Optimizer Class Detection Matrix Precision Recall Accuracy F1 Score 
Classification 

Accuracy 

SGD 
Red 0.83 0.17 83.00% 83.00% 

83.00% 
83.00% 100.00% 

Green 0.17 0.83 83.00% 83.00% 83.00% 100.00% 

ADAM 
Red 0.78 0.31 71.56% 78.00% 

73.50% 
74.64% 100.00% 

Green 0.22 0.69 75.82% 69.00% 72.25% 100.00% 

ADAMW 
Red 0.82 0.18 82.00% 82.00% 

81.91% 
82.00% 100.00% 

Green 0.18 0.81 81.82% 81.82% 81.82% 99.00% 
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Best Result: SGD Optimizer 

Batch Size Class Detection Matrix Precision Recall Accuracy F1 Score 
Classification 

Accuracy 

16 
Red 0.82 0.2 80.39% 82.00% 

81.00% 
81.19% 100.00% 

Green 0.18 0.8 81.63% 80.00% 80.81% 100.00% 

32 
Red 0.82 0.18 82.00% 82.00% 

81.91% 
82.00% 100.00% 

Green 0.18 0.81 81.82% 81.82% 81.82% 99.00% 

64 
Red 0.83 0.17 83.00% 83.00% 

83.00% 
83.00% 100.00% 

Green 0.17 0.83 83.00% 83.00% 83.00% 100.00% 

128 
Red 0.81 0.18 81.82% 81.00% 

81.50% 
81.41% 100.00% 

Green 0.19 0.82 81.19% 82.00% 81.59% 100.00% 

Best Result: Batch size 64 

Selected Model: YOLOv5 nano, 75 epochs, SGD optimizer, 64 Batch Size 

Through various parameter combinations, as shown in Table 5, this paper unveils a model that effectively minimizes 

errors during the validation phase. This model comprises a YOLOv5 nano trained with the data-augmented dataset in 75 

epochs, optimized using SGD, with a batch size of 64.  

Notably, this model not only performed well on the validation dataset but also exhibited proficiency in accurately 

distinguishing between red and green chilies when tested on a separate dataset, distinct from the one used for training. 

3-2- Testing Results 

Utilizing the model discovered during the training and validation phases, an example of the model in action is shown 

in Figure 4. This illustration highlights the model’s capability to identify and locate objects (chili peppers) within the 

plant. It achieves this by enclosing the chili in a bounding rectangle and providing a corresponding color label. 

Subsequently, in Figure 5, we progress to the next prediction phase. Here, the system not only furnishes the user with 

the precise location and classification of the chili fruit but also offers a trust threshold, thereby enhancing the depth of 

information provided. 

 

Figure 4. Sample of location and classification of chili peppers during the testing phase 
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Figure 5. Prediction accuracy of green chili peppers (shown as aji-verde) is distinguishable from red species (labeled as aji-rojo 

As observed, when presented with previously unseen images, the model effectively detects and classifies chili peppers 

despite encountering obstacles such as leaves owing to using a sophisticated dataset for training and validation.  

However, the model encounters specific challenges stemming from the close resemblance between green chili fruits 

and the plant’s leaves and stems. This leads to occasional difficulty in achieving 100% precise recognition in real-world 

scenarios. Furthermore, detecting red chilies may face hurdles, particularly when confronted with similarly colored 

objects like red roses in the background. These challenges contribute to an overall detection precision of 85.57% for red 

chilies and 83,33% for green chilies. Other contributing factors to these limitations include the positioning of chili fruits, 

image distortions, and the physical attributes of the leaves. As part of our result analysis, we present the confusion matrix 

for depicted in Figure 6 for a testing run consisting of 119 pictures. 

 

Figure 6. Confusion matrix of the testing results 
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It is important to note that, in this case, the matrix addresses the detection task, as the classification accuracy for both 

classes is 99.99%. 

The confusion matrix provides crucial metrics such as TP, FP, TN, and FN. In this context, an analysis of these 

evaluation parameters through the confusion matrix reveals the outcomes within both the testing and validation datasets, 

as presented in Table 6. The model demonstrates commendable balance in the testing set, achieving an average of 84% 

for recall, precision, and F1 score for the detection task, with 84.4% accuracy. On the other hand, the results for the 

classification task demonstrate exceptional performance, with recall, precision, accuracy, and the F1 score all-surpassing 

99%; these results emphasize the model's versatility and suitability, demonstrating its proficiency in both datasets while 

also highlighting the potential for improvement, particularly in enhancing recall and precision for testing scenarios. 

Table 6. Validation and Testing Results 

Metrics 
Validation Testing 

Detection Classification Detection Classification 

Precision 83% 100% Red: 85.57% | Green: 83.33% 99.9% 

Recall 83% 100% Red: 83% | Green: 85.86% 99.9% 

Accuracy 83% 100% 84.42% 99.9% 

F1score 83% 100% Red: 84.26% | Green: 84.58% 99.9% 

Figure 7 illustrates the plots of various metrics obtained using the testing dataset, including the Recall Confidence 

Curve, the F1 Confidence Curve, the Precision Confidence Curve, and the Precision-Recall Curve. 

 

Figure 7. a) F1 Confidence Curve, b) Precision Confidence Curve, c) Precision Recall Curve, and d) Recall-Confidence 

Curve for testing results 
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4- Discussion 

 This study focuses on detecting and classifying chili peppers cultivated in Ecuador. To achieve this, we created 

a novel dataset under real-world conditions and explored various combinations to optimize results. The selected 

model was trained with 2881 images, employing a YOLO V5n model over 75 epochs with a batch size of 64. 

Notably, the most favorable outcomes were achieved using the YOLOv5 nano with 1.9 trainable parameters. 

This compact size allows easy implementation on small hardware while maintaining commendable performance 

and swift inference times, owing to the task's simplicity. Although tests were conducted with larger models, like 

the YOLOv5 medium, no significant improvements in metrics were observed. This could be attributed to the 

increased complexity introduced by a higher number of parameters, making it challenging to extract pertinent 

features for a relatively straightforward task. Consequently, this compromises the model’s ability to produce 

accurate results. 

 In the state of the art, three studies offer points of comparison with the approach proposed in this work, focusing 

on detection and classification [50, 52, 54], as presented in Table 7. The works by Yin et al. [50] and Abubeker et 

al. [52] utilize images where the chili peppers are unobstructed by leaves or branches. In Abubeker et al. [52], their 

model operates within an automated machine tasked with harvesting chilies, resulting in peppers positioned outside 

the plant, facilitating easier identification. Conversely, Zainudin et al. [54] developed a dataset within a controlled 

environment using an artificial plant, with images captured against a white background. Previous detection studies 

involving chili plants typically create datasets within obstacle-free environments [50]. In contrast, the dataset we 

used to train the network encompasses various obstacles and lacks lighting control. Despite these challenges, the 

model achieves a detection accuracy of 84.4% and a classification accuracy of 99.9%. 

Table 7. Comparison with Others Research 

Research Detection Classification 

Yin et al. [50] Precision: 78.2% Precision: 90% 

Abubeker et al. [52] 
Red Chili Accuracy: 92.79% 

Green Chili Accuracy: 93.46% 
Accuracy: 90% 

Shah et al. [54] 
Red Chili Precision: 84% 

Green Chili Precision: 80% 
Precision: 90% 

Proposal 
Red Precision: 85.57% 

Green Precision: 83.33% 
Precision 99.9% 

 In future research, we propose to comprehensively explore various methods to optimize the YOLO model's specific 

characteristics. This exploration involves a detailed analysis of feature enhancement techniques, including the use 

of pre-trained models, the addition of additional convolutional layers, hyperparameter tuning, the use of data 

augmentation techniques, and the expansion of normalization layers. Additionally, it is suggested that a complete 

comparison with other well-known object detectors, such as Faster RCNN and Single Shot Multibox Detector 

(SSD), be performed to obtain a more complete perspective of the model's performance. This comparison will 

provide a deeper understanding of each approach's relative strengths and weaknesses, generating valuable 

information that will support model selection and improvement in future research. 

5- Conclusion 

This study presents a comparative analysis of training a YOLOv5 model under different dataset conditions, sizes, and 

parameter configurations, particularly optimizing hyperparameters for detecting and classifying red and green rocoto 

chili peppers cultivated in Ecuador. The main objective of this research is to develop a model capable of identifying 

plants in their natural state without requiring any special treatment of the plant or pepper. This aspect provides a valuable 

tool for small-scale farmers, as they can classify and detect peppers without removing them from the plant, enabling 

field use without additional adaptations. Remarkably, the model’s performance in the classification task consistently 

surpasses a 99.9% accuracy threshold. This level of accuracy illustrates the model's capability to accurately differentiate 

between red and green chiles, even in challenging natural settings characterized by limited visibility or adverse lighting 

conditions. Furthermore, the model has demonstrated its efficacy in detecting chili peppers on plants regardless of 

obstacles, with an accuracy rate exceeding 84%. 

It is fundamental to highlight that these results are attained without requiring plant manipulation during the 

classification process. Image noise, including leaves, branches, and other plants, represents an additional challenge for 

the model. Nonetheless, the results demonstrate the model's remarkable capability to accurately identify red and green 

chili peppers despite these interferences, with short inference times and without the need for expensive hardware. 

Consequently, this study establishes a promising precedent for future plant detection and classification research 

employing artificial intelligence. 
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