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Abstract 

In various disciplines, discerning dependencies between variables remains a crucial undertaking. 

While correlation measures like Pearson, Spearman, and Kendall provide insight into the degree of 

two-variable relationships, they fall short of revealing the intricate structure of dependencies 

between these variables. The Clayton copula, known for its flexible attributes, becomes instrumental 

in unveiling this dependency structure. This paper aims to advance knowledge by providing an 

explicit formula for creating Wald confidence intervals (CIs) for the dependence parameter in a 
bivariate Clayton copula, along with a mathematical derivation of the observed Fisher information. 

In comparison, we also propose likelihood CIs, whose performance we examine in simulation 

studies using both coverage probability and average length of CIs as performance indicators. Our 
findings reveal that in scenarios characterized by small sample sizes, likelihood-based CIs, despite 

their slightly more complex computational requirements, outperform Wald CIs, yielding a coverage 

probability more proximate to the nominal confidence level of 0.95. However, in situations 
involving large samples and a dependence parameter distant from zero, both Wald and likelihood-

based CIs demonstrate comparable utility. For real-world data applications, the daily closing prices 

of two cryptocurrencies are analyzed using the proposed CIs. 
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1- Introduction 

In recent years, the advent of big data has resulted in an increase in research on both individual variables and the joint 

distributions of multiple variables. Applying the Copula model to real-world data has proven useful for numerous 

researchers in a variety of disciplines. Notably, Di Clemente and Romano [1] have outlined a number of statistical 

procedures for calibrating copula functions to financial market data, providing methods for identifying the function that 

most closely corresponds to the available financial data. Simultaneously, Stulajter [2] demonstrated that, in the context 

of portfolio design, copula functions permit the separation of modeling dependence aspects and modeling marginal 

distributions of financial assets. 

Naifar [3] employed a copula to investigate the intricate structure of dependency between credit default swaps and 

jump risk, whereas Darabi & Baghban [4] applied a copula for portfolio optimization. Further, in the specialized field of 

hydrological analysis, specifically drought research, Abdi et al. [5], Evkaya et al. [6], and Fan et al. [7] utilized copulas 

to explore the relationships between various variables. Zhang [8] delved into the relationship between crude oil prices, 

petroleum prices, and tanker freight rates in 2018 through copula theory. Meanwhile, Bhatti & Do [9] researched the 

evolution of copula models and their applications in energy, fuel cells, forestry, and environmental sciences. In the sphere 
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of agricultural insurance, Rusyda et al. [10] used a copula to simulate the dependency structure between crop yield and 

multicrop pricing in Indonesia. Despite these significant strides, the description and prediction of the characteristics of 

these multivariate distributions remain formidable tasks due to their inherent complexity. 

Indeed, Pearson's correlation, due to its computational ease and interpretability, has been widely used not just in 

statistics but in the natural and social sciences [11]. However, this measurement only evaluates the linear relationship 

between two variables. This issue can be mitigated with the application of copula [12]. Copula offers a powerful 

alternative for modeling and estimating multivariate distributions. Grounded in Sklar’s theorem from 1959 [13], a copula 

is a function that merges univariate marginals to create a multivariate distribution. It provides a broad class of marginal 

distributions and a variety of dependence structures [14], and these components can be modeled separately [15], which 

explains its appeal in multiple disciplines. Copulas can be categorized into three major classes: elliptical, extreme-value, 

and Archimedean [16]. Elliptical copulas are comprised of copulas with elliptical distributions; extreme-value copulas 

correspond to multivariate extreme-value distributions; and Archimedean copulas are derived from the generator 

function. The Archimedean class, particularly the Clayton copula, is especially attractive due to its simple construction, 

mathematical tractability [17], and stochastic properties of its elements [18]. Its capacity for managing strong left-tail 

dependence [17] has found important applications in economics and finance [11]. It also comes into play in shared frailty 

models; indeed, these models predate the general theories of copula [19]. 

Estimation procedures for the dependence parameter of the copula can be divided into three kinds of inference 

approaches: parametric, semi-parametric, and nonparametric. Parametric approaches include maximum likelihood 

estimators (MLE) and inference functions for margins (IFM) [20], with IFM offering a highly efficient alternative to 

MLE estimation [21]. The semi-parametric method utilizes a nonparametric approach, such as empirical distribution 

functions or their scaled versions, to estimate univariate marginal distributions before applying the maximization of the 

contribution to the log-likelihood function for the estimation of the copula parameter [22]. Various studies have 

compared the robustness of the estimation method under differing scenarios, such as univariate margin misspecification 

[23] and the performance of point estimation [21, 24, 25]. 

However, discourse on the confidence interval (CI) for the dependence parameter of the copula, which plays a pivotal 

role in statistical inference and multivariate modeling, remains scarce. Genest et al. [22] and Kojadinovic & Yan [24] 

proposed a variance estimator for the semiparametric estimator. Hofert et al. [26] pointed out that obtaining the expected 

Fisher information in terms of the score function for constructing Wald CIs becomes challenging in high-dimensional 

situations with known margins. To circumvent this problem, the likelihood-based confidence interval approach has been 

considered, but both approaches come with complicated and intractable formulas. Moreover, the construction of 

confidence intervals, such as the asymptotic CIs based on the second derivative of the likelihood function [26], typically 

depends on numerical approaches rather than direct calculations. Although this might be more convenient in practice, 

the results only provide approximate values. Therefore, this paper aims to offer a formula to construct CIs for the 

dependence parameter of a bivariate Clayton copula using the Wald method. Additionally, the results will be compared 

with likelihood-based CIs. Both of these approaches leverage the likelihood function, a valuable tool for objective 

reasoning with data, especially when handling uncertainty due to the limited information contained within the data. 

The remainder of this paper is structured as follows: the first section defines the bivariate copula and introduces the 

Clayton copula. Section 3 presents two CIs for the dependence parameter of the bivariate Clayton copula. Section 4 

focuses on Monte Carlo simulation studies, while Section 5 applies these studies to real-world datasets. Section 6 

discusses the findings of this study with the previous studies, and the final section summarizes the conclusions drawn 

from the paper. 

2- Background 

Let 𝑋1 and 𝑋2 be two real-value random variables on a common probability space (Ω, ℱ, Ρ) with distribution functions 

𝐹1(𝑥1) = 𝑃(𝑋1 ≤ 𝑥1) and 𝐹2(𝑥2) = 𝑃(𝑋2 ≤ 𝑥2), respectively, and a joint distribution function 𝐹(𝑥1, 𝑥2) =
𝑃(𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2). Then, if the marginal distributions of the marginals are known, the quantile transformation or the 

probability integral transformation will apply to transform a random variable with distribution function F into a standard 

uniform random variable. Meanwhile, the marginals are unknown, and the empirical distribution function is suggested 

for the transformation [22]. 

A copula is a multivariate distribution function with standard uniform univariate margins, or 𝑈(0,1). The first concept 

regarding copula theory was stated by Abe Sklar in 1959, called Sklar’s theorem. The theorem states that for a bivariate 

distribution function 𝐹 with margins 𝐹1 and 𝐹2, there exists a copula 𝐶 such that 

𝐹(𝑥1, 𝑥2) = 𝐶{𝐹1(𝑥1), 𝐹2(𝑥2)} = 𝐶{𝑢, 𝑣},   

where 𝑥1, 𝑥2 ∈ ℝ. In the case where 𝐹1 and 𝐹2 are continuous, copula 𝐶 is uniquely defined on [0,1]2. This explains 

why the majority of statistical applications of copula involve the modeling of continuous random vectors, that is, random 

vectors with continuous marginal distribution functions [16]. 
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Archimedean copula is a popular class that is not computed using Sklar’s theorem but depends on the generator 

function. In general, the bivariate form of the Archimedean copula is 

𝐶(𝑢, 𝑣) = 𝜑−1(𝜑(𝑢) + 𝜑(𝑣)),  (1) 

where 0 ≤ 𝑢 ≤ 1, 0 ≤ 𝑣 ≤ 1, and 𝜑 is a generator function. A function 𝐶 of the form in (1) is an Archimedean copula 

if and only if its generator is a convex decreasing function from (0,1) to (0, ∞) such that 𝜑(1) = 0 [15].  

Clayton, or the Mardia-Takahasi-Clayton-Cook-Johnson copula, is an Archimedean family member. The first indirect 

application of joint-life models resulted from Clayton's study of bivariate life tables of fathers and offspring [27]. As 

shown in Figure 1, the Clayton copula captures positive lower-tail dependence but less association in upper-tail 

dependence [28]. The Clayton copula generator function is 𝜑(𝑡) = (1 + 𝑡)−
1

𝑡  where 𝑡 ≥ 0, and its inverse is 𝜑−1(𝑡) =
𝑡−𝜃 − 1. This function is present in Laplace transformation (LT) families that implement the required properties of the 

Archimedean generator. The resulting bivariate Clayton copula function with a dependence parameter (𝜃) is defined as 

𝐶(𝑢, 𝑣) = (𝑢−𝜃 + 𝑣−𝜃 − 1)
−

1

𝜃,  (2) 

where 0 ≤ 𝑢, 𝑣 < 1 and 0 ≤ 𝜃 < ∞. In addition, the Clayton copula density function can be expressed as 

𝑐(𝑢, 𝑣) =
𝜕𝐶(𝑢,𝑣)

𝜕𝑢𝜕𝑣
= (𝜃 + 1)(𝑢𝑣)−𝜃−1(𝑢−𝜃 + 𝑣−𝜃 − 1)

−2−
1

𝜃.  (3) 

 

Figure 1. Scatter plot of 2,000 random samples from Clayton copula at θ = 2 

The LT families can be parameterized such that the dependence of the copula increases as the value of the dependence 
parameter (𝜃) increases, as depicted in Figure 2. 
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Figure 2. Scatter plot of 1,000 random samples from Clayton copula at θ = 0.5, 2, and 8 

Copula 𝐶(𝑢, 𝑣) is invariant with respect to the one-to-one transformation of the marginal variables 𝑋1 and 𝑋2. In this 

respect, it is analogous to the invariance of Kendall’s Tau rank correlation coefficient, a well-known measure of 

dependence [11, 14], defined as: 

τ(𝑋1, 𝑋2) = 4 ∫ 𝐶(𝑢, 𝑣)𝑑𝐶(𝑢, 𝑣)
[0,1]2 − 1 =

θ

θ+2
.   

A number of publications, such as Genest et al. [22] and Kojadinovic & Yan [24], have focused on the semiparametric 

inference of dependence parameters in copula. Hofert et al. [26] demonstrated the procedure for constructing CIs for the 

copula parameter under known margins. Consider the observed Fisher information, which is defined in Hofert’s study 

as: 

𝐽(𝜃; 𝒖1, ⋯ , 𝒖𝑛) = ∑ −
𝑑2

𝑑𝜃
𝑙(𝜃; 𝒖𝑖).𝑛

𝑖=1    

Under regularity conditions, the Fisher information satisfies: 

𝐼(𝜃) = 𝐽(𝜃; 𝑼) = 𝔼 {∑ −
𝑑2

𝑑𝜃
𝑙(𝜃; 𝑼)𝑛

𝑖=1 }.   

From this and definition of the Fisher information, the following choices for 𝐼(𝜃)̂ are: 

𝐼(𝜃̂𝑛) = 𝔼{𝑠𝜃̂𝑛
(𝑼)𝑠𝜃̂𝑛

(𝑼)𝑇} and 

 

𝐼(2)(𝜃̂𝑛) =
1

𝑛
∑ −

𝑑2

𝑑𝜃
𝑙(𝜃; 𝒖)𝑛

𝑖=1   

and the score function for the Clayton Family is: 

𝑠𝜃(𝑼) = ∑
𝑘

𝜃𝑘+1

𝑑−1
𝑘=0 − ∑ log 𝑢(𝑗)𝑑

𝑗=1 +
1

𝜃2 log{1 + 𝑡𝜃(𝒖)} − (𝑑 + 1 𝜃⁄ )
𝑡𝜃(𝒖)

1+𝑡𝜃(𝒖)
,   

where 𝑡𝜃(𝒖) = 𝜑−1(𝑢1) + ⋯ + 𝜑−1(𝑢𝑑). 

The observed Fisher information of Clayton copula is computed by: 

𝐼(2)(𝜃̂𝑛) =
1

𝑛
∑ −𝑛

𝑖=1 {− ∑ (
𝑘

𝜃𝑘+1
)

2

+
2

𝜃2 [
𝑡𝜃

′ (𝒖)

1+𝑡𝜃(𝒖)
−

1

𝜃
ln{1 + 𝑡𝜃(𝒖)}] + (𝑑 + 1 𝜃⁄ ) [{

𝑡𝜃
′ (𝒖)

1+𝑡𝜃(𝒖)
}

2

−
∑ (ln 𝑢𝑗)

2
𝑢𝑗

−𝜃𝑑
𝑗=1

1+𝑡𝜃(𝒖)
]𝑑−1

𝑘=0 },  

where 𝑡𝜃
′ (𝒖) = ∑ (ln 𝑢𝑗)𝑢𝑗

−𝜃𝑑
𝑗=1 . From the aforementioned theoretical background, Wald CIs can be constructed and will 

be presented in the next section. 

3- Confidence Intervals 

In this section, the key findings will be presented, including a mathematical proof of Wald and likelihood-based 

intervals. By definition, a 100(1 − 𝛼)% confidence interval for 𝜃 will satisfy the following property: 

𝑃[𝜃𝐿(𝑇𝑛) ≤ 𝜃 ≤ 𝜃𝑈(𝑇𝑛)] = 1 − 𝛼,  
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where 1 − 𝛼 is a confidence coefficient, the statistics 𝜃𝐿(𝑇𝑛) and 𝜃𝑈(𝑇𝑛) are the limits of the CI, and 𝜃𝐿(𝑇𝑛) ≤ 𝜃𝑈(𝑇𝑛) 

[29]. For the case of bivariate Clayton copulas, it is started with likelihood functions, which 𝑋1 and 𝑋2 are continuous 

random variables with respective densities 𝑓1 and 𝑓2, and distribution functions 𝐹1 and 𝐹2. Let 𝑢 = 𝐹1(𝑥1) and 𝑣 =
 𝐹2(𝑥2), then the likelihood function of the Clayton copula is 

𝐿(θ; 𝑥1, 𝑥2) = 𝑐(𝑢, 𝑣) ∏ 𝑓𝑖(𝑥𝑖)
2
𝑖=1 = (𝜃 + 1)(𝑢𝑣)−𝜃−1(𝑢−𝜃 + 𝑣−𝜃 − 1)

−2− 
1

𝜃 ∏ 𝑓𝑖(𝑥𝑖)
2
𝑖=1 .  (4) 

In cases where marginal distributions 𝐹1 and 𝐹2 are unknown, they are replaced by rescaled versions of their empirical 

distribution, 𝐹𝑛,𝑗(𝑥) =
1

𝑛+1
∑ 1(𝑋𝑖𝑗 ≤ 𝑥)𝑛

𝑖=1  [16]. The log-likelihood function will have a form of 

𝑙(θ) = ∑ log  𝑐(𝑢(𝑗), 𝑣(𝑗))𝑛
𝑗=1 + ∑ ∑ log 𝑓𝑖 (𝑥𝑖

(𝑗)
)𝑛

𝑗=1
2
𝑖=1 = log(θ + 1) + ∑ (−θ − 1) log(𝑢(𝑗)𝑣(𝑗))𝑛

𝑗=1 +

∑ (−2 −
1

θ
) log (𝑢(𝑗)−θ

+ 𝑣(𝑗)−θ
− 1)𝑛

𝑗=1 + ∑ ∑ log 𝑓𝑖 (𝑥𝑖
(𝑗)

)𝑛
𝑗=1

2
𝑖=1   , 

(5) 

where 𝑖 = 1,2 or the number of random variables and 𝑗 = 1,2, … , 𝑛 or the number of observations. 

3-1- Wald Confidence Intervals 

Wald intervals, which may also be referred to as MLE-based symmetric confidence intervals, are the most well-

known intervals [30, 31]. This interval is determined using the Wald statistic for testing the null hypothesis 𝐻0: 𝜃 = 𝜃0 

against the alternative hypothesis 𝐻1: 𝜃 = 𝜃1, where 𝜃1is a specified value. Under the null hypothesis, the following are 

the two test statistics, both of which have asymptotically normal asymptotic distributions: 

√𝐼(𝜃̂𝑀𝐿 )(𝜃̂𝑀𝐿 − 𝜃)~
𝑎

𝑁(0,1)  and  √𝐽(𝜃̂𝑀𝐿 )(𝜃̂𝑀𝐿 − 𝜃)~
𝑎

𝑁(0,1), 

where 𝐼(𝜃̂𝑀𝐿) and 𝐽(𝜃̂𝑀𝐿) are the observed Fisher information (FI) and expected FI. The observed FI is the second 

derivative of the log-likelihood. Here, the FI formula is derived: 

𝐼(𝜃) =
𝜕𝑙(𝜃)

𝜕2𝜃
  

=
𝜕

𝜕2𝜃
(log(𝜃 + 1) + log 𝑢−𝜃−1 + log 𝑣−𝜃−1 + (−2 −

1

𝜃
) log(𝑢−𝜃 + 𝑣−𝜃 − 1)) +

𝜕

𝜕2𝜃
∑ ∑ log 𝑓𝑖 (𝑥𝑖

(𝑗)
)𝑛

𝑗=1
2
𝑖=1   

=
𝜕

𝜕𝜃
(

𝜕

𝜕𝜃
log(𝜃 + 1) + log 𝑢−𝜃−1 + log 𝑣−𝜃−1 + log(𝑢−𝜃 + 𝑣−𝜃 − 1)

−2−
1

𝜃)  

=
𝜕

𝜕𝜃
(

1

1+𝜃
− log 𝑢 − log 𝑣 + [

1

𝜃2 log(𝑢−𝜃 + 𝑣−𝜃 − 1) +
(−2−

1

𝜃
)(−𝑢−𝜃 log 𝑢−𝑣−𝜃 log 𝑣)

𝑢−𝜃+𝑣−𝜃−1
])  

=
𝜕

𝜕𝜃
(

1

1+𝜃
) +

𝜕

𝜕𝜃
(− log 𝑢 − log 𝑣) +

𝜕

𝜕𝜃
(

1

𝜃2 log(𝑢−𝜃 + 𝑣−𝜃 − 1) −
(−2−

1

𝜃
)(−𝑢−𝜃 log 𝑢−𝑣−𝜃 log 𝑣)

𝑢−𝜃+𝑣−𝜃−1
)  

= −
1

(𝜃+1)2 +
𝜕

𝜕𝜃
(

1

𝜃2 log(𝑢−𝜃 + 𝑣−𝜃 − 1) −
(−2−

1

𝜃
)(−𝑢−𝜃 log 𝑢−𝑣−𝜃 log 𝑣)

(𝑢−𝜃+𝑣−𝜃−1)
)  

= −
1

(𝜃+1)2 + [
1

(𝑢−𝜃+𝑣−𝜃−1)
2 (− (−2 −

1

𝜃
) (−𝑢−𝜃 log 𝑢 −𝑣−𝜃 log 𝑣)

2
+ (𝑢−𝜃 + 𝑣−𝜃 − 1) (

−𝑢−𝜃 log 𝑢−𝑣−𝜃 log 𝑣

𝜃2 +

(−2 −
1

𝜃
) (𝑢−𝜃log2𝑢+𝑣−𝜃log2𝑣)))] −

𝜕

𝜕𝜃
(

1

𝜃2 log(𝑢−𝜃 + 𝑣−𝜃 − 1))  

= −
1

(1+𝜃)2 + [
1

(𝑢−𝜃+𝑣−𝜃−1)
2 (− (−2 −

1

𝜃
) (−𝑢−𝜃 log 𝑢 −𝑣−𝜃 log 𝑣)

2
+ (𝑢−𝜃 + 𝑣−𝜃 − 1) (

−𝑢−𝜃 log 𝑢−𝑣−𝜃 log 𝑣

𝜃2 +

(−2 −
1

𝜃
) (𝑢−𝜃log2𝑢+𝑣−𝜃log2𝑣)))] +

−𝑢−𝜃 log 𝑢−𝑣−𝜃 log 𝑣

𝜃2(𝑢−𝜃+𝑣−𝜃−1)
−

2log(𝑢−𝜃+𝑣−𝜃+1)

𝜃3   

resulting in: 

𝐼(θ) = − ∑ (− (𝑣(𝑗)θ
− 𝑢(𝑗)θ

(𝑣(𝑗)θ
− 1))

2

(θ3 + 2(θ + 1)2 log (𝑢(𝑗)−θ
+ 𝑣(𝑗)−θ

− 1)) +𝑛
𝑗=1

θ2(θ + 1)2(2θ + 1)𝑢(𝑗)θ
𝑣(𝑗)θ

(𝑣(𝑗)θ
− 1) log(𝑢(𝑗))

2
+ θ2(θ + 1)2(2θ + 1) (𝑢(𝑗)θ

−

1) 𝑢(𝑗)θ
𝑣(𝑗)θ

log(𝑣(𝑗))
2

+ 2θ(θ + 1)2𝑢(𝑗)θ
log(𝑣(𝑗)) (𝑢(𝑗)θ

(𝑣(𝑗)θ
− 1) − 𝑣(𝑗)θ

) + 2θ(θ +

(6) 
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1)2𝑣(𝑗)θ
log(𝑢(𝑗)) (𝑢(𝑗)θ

(𝑣(𝑗)θ
− 1) + θ(2θ + 1)𝑢(𝑗)θ

log(𝑣(𝑗)) − 𝑣(𝑗)θ
))/ (θ3(θ + 1)2 (𝑣(𝑗)θ

−

𝑢(𝑗)θ
(𝑣(𝑗)θ

− 1))
2

)).  

Consequently, a (1 − 𝛼)100% Wald CI for 𝜃 that is evaluated at (𝜃̂𝑀𝐿 ) will be 

𝜃̂𝑀𝐿  ± 𝑧
1−

α

2
√𝐼−1(𝜃̂𝑀𝐿 ),  (7) 

where 𝜃̂𝑀𝐿 = arg max ∑ log 𝑐(𝑢(𝑗), 𝑣(𝑗))𝑛
𝑗=1   is the maximum likelihood estimators which satisfies the asymptotic 

properties [15] and 𝐼−1(𝜃̂𝑀𝐿  ) =  1/𝐼(𝜃̂𝑀𝐿 ). In this paper, the maximum likelihood estimates were obtained from R 

package bbmle version 1.0.25. Although the FI formula in Equation 6 appears complex, the Wald CI shown in Equation 

7 provides an explicit formula rather than an approximation, as do numerical methods. 

3-2- Likelihood-based Confidence Intervals 

Fisher [32] proposed the likelihood CI, which can be derived from the likelihood function without requiring the 

likelihood function's derivatives. A likelihood-based CI of 𝜃 will be 

{𝜃|
𝐿(𝜃)

max 𝐿(𝜃)
≥ 𝑐} = {𝜃|

𝐿(𝜃)

𝐿(𝜃̂𝑀𝐿)
≥ 𝑐}.   

The constant 𝑐 can be found from the Wilk’s likelihood ratio statistic which is defined as 

𝑊 = −2 log
𝐿(𝜃)

𝐿(𝜃̂𝑀𝐿)
~𝜒1

2.   

Thus, a (1 − 𝛼)100% likelihood-based CI of 𝜃 using the likelihood-based method will be 

{𝜃|
𝐿(𝜃)

𝐿(𝜃̂𝑀𝐿)
≥ exp (−

1

2
𝜒1,(1−𝛼)

2 )} , (8) 

where 𝜒1,(1−𝛼)
2  is the (1 − 𝛼)th quantile of the chi-squared distribution with degree freedom of one. In other words, let 

𝑔(𝜃) =
𝐿(𝜃)

𝐿(𝜃̂𝑀𝐿)
=

exp(𝑙(𝜃))

exp(𝑙(𝜃̂𝑀𝐿))
,   

where 𝑙(𝜃)is presented in Equation 5. The (1 − 𝛼)100% CI is (𝜃𝐿 , 𝜃𝑈), where 𝜃𝐿 = 𝑔−1(𝑐), 𝜃𝑈 = 𝑔−1(𝑐), 𝜃𝐿 < 𝜃𝑈 , 

and 𝑐 = exp (−
1

2
𝜒1, (1−𝛼)

2 ). To find 𝜃𝐿 and 𝜃𝑈, a numerical method can be used for solving equations 𝜃𝐿 = 𝑔−1(𝑐) and 

𝜃𝑈 = 𝑔−1(𝑐). In this paper, function approxfun in R package stats version 4.2.3 was utilized to find the solutions. Figure 

3 shows examples of functions 𝑔(𝜃) with lower and upper limits of CIs when 1,000 random samples are from Clayton 

copula at 𝜃 = 0.5, 2, and 8. Note that the log-likelihood function can be approximated by the quadratic function as 

follows: 

log
𝐿(𝜃)

𝐿(𝜃̂)
≈ −

1

2
𝐼(θ̂)(𝜃 − θ̂)

2
.  (9) 

 

Figure 3. Likelihood-based confidence intervals when θ = 0.5 (left), 2 (middle), and 8 (right) and n = 1,000 

Observations from Figure 3 also indicate that the symmetry of the likelihood ratio functions is not guaranteed, even 

when operating with large sample sizes (𝑛 = 1,000). It becomes evident that the symmetry of these functions is not solely 

contingent on the sample size but is also significantly influenced by the dependence parameter. 

4- Monte Carlo Simulation Studies 

For the Monte Carlo simulation studies, Clayton sample data is generated using the rcopula function from R package 

copula version 1.1-2. The data sets display a range of characteristics, with the Clayton dependence parameter (𝜃) set to 
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values of 0.22, 0.5, 0.86, 2, 4.67, and 18. These correspond to 𝜏 values of 0.1, 0.2, 0.3, 0.5, 0.7, and 0.9. Furthermore, 

the sample sizes (𝑛) tested in this study include 10, 20, 30, 50, 100, and 500, representing small to large sample sizes. In 

order to evaluate the reliability and precision of the CIs, the coverage probability (CP) and average length (AL) are 

estimated via 1,000 Monte Carlo simulation repetitions. CP represents the proportion of times, among the 1,000 

repetitions, when the true parameter falls within the computed CI. The AL is determined by averaging the lengths of the 

CIs computed across all repetitions, and the formula is defined as: 

𝐴𝐿 =
∑ (𝑈𝑖−𝐿𝑖)1000

𝑖=1

1000
   

This application of Monte Carlo simulations enables a comprehensive analysis of how CIs behave under varying 

dependence parameters and sample sizes. This method provides an in-depth overview of the effects these variables have 

on the CP and AL, thereby demonstrating the effectiveness of interval estimation for the dependence parameter in 

bivariate Clayton copulas. The most efficient CI technique yielded a CP near or greater than 0.95 and the shortest AL. 

Figure 4 illustrates the Monte Carlo simulations process. 

 

Figure 4. Monte Carlo simulation flowchart 

In Figure 5, the performance is examined through the CPs, and it is found that when 𝜃 is greater than 0.86, the Wald 

CI performs as well as the likelihood-based CI for most sample sizes (𝑛 = 20, 30, 50, 100 and 500); the CPs are all close 
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to 0.95. When θ has a low value, such as 0.22 or 0.5, and the sample size is small (less than 30), the likelihood-based CI 

outperforms the Wald CI. Figure 6 used the same information as Figure 5, but highlights the impact of varying values 

of the dependence parameters by using dependence as the x-axis and maintaining a fixed sample size. This visualization 

reveals that when the sample size is exceptionally small (𝑛 = 10), the CP is significantly below the stated confidence. 

Moreover, as the degree of dependence increases, the Wald CI becomes increasingly closer to the nominal coverage 

probability of 0.95. In contrast, the likelihood CIs appear to maintain robustness across all simulated scenarios. 

Regardless of the degree of dependence, likelihood CIs consistently perform well, emphasizing their superiority. 

 

Figure 5. Plots of coverage probabilities of Wald and likelihood intervals obtained under the bivariate Clayton using sample 

sizes as the x-axis 

 

 

Figure 6. Plots of coverage probabilities of Wald and likelihood intervals obtained under the bivariate Clayton using 

dependence parameters as the x-axis 
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In addition to the criterion of CPs, the average length (AL) serves as another metric to assess the performance of CIs. 

Given equivalent CPs, a CI boasting a shorter AL is typically more desirable. As summarized in Table 1, an increase in 

sample size accompanied by a fixed 𝜃 value results in a decreasing range of ALs. For example, with 𝜃 = 2 and a sample 

size of 30, the AL of the likelihood-based CI diminishes from 1.9254 to 0.4621 as the sample size escalates to 500. 

Further, given a fixed sample size, larger theta values correspond with increased AL values across all intervals. For 

instance, at a sample size of 50, the ALs of the Wald CI for 𝜃 values of 0.5, 2, and 18 are 0.8048, 1.4817, and 8.5612, 

respectively. Generally, the Wald CI exhibits a slightly shorter AL in comparison to the likelihood-based CI, but its CP 

can be far from 0.95 in some cases. 

Table 1. The average length of Wald and likelihood intervals under the bivariate Clayton 

𝜽 Method 
Sample Size 

10 20 30 50 100 500 

0.22 
Wald 1.1606 0.8033 0.7006 0.5812 0.4428 0.2205 

LL 1.3253 0.9002 0.7510 0.6071 0.4483 0.2199 

0.5 
Wald 1.5219 1.1974 1.0002 0.8048 0.5926 0.2632 

LL 1.6619 1.2264 1.0020 0.8052 0.5889 0.2629 

0.86 
Wald 2.1780 1.5421 1.2621 1.0089 0.6923 0.3083 

LL 2.2075 1.5527 1.2674 0.9963 0.6914 0.3082 

2 
Wald 3.5333 2.4055 1.9396 1.4817 1.0466 0.4611 

LL 3.4478 2.4060 1.9254 1.4785 1.0438 0.4621 

4.67 
Wald 6.2976 4.3656 3.4705 2.6413 1.8772 0.8259 

LL 6.2377 4.3348 3.4703 2.6251 1.8645 0.8292 

18 
Wald 20.4983 14.1017 11.0606 8.5612 6.0535 2.6755 

LL 20.1457 14.0274 10.9592 8.5646 6.0476 2.6856 

LL: Likelihood-based confidence interval 

5- Application 

The effective implementation of CI calculations is illustrated using the daily closing prices of two prominent 

cryptocurrencies, Bitcoin (BTC) and Litecoin (LTC), throughout 2021. Data for these 365 observations, presented in 

Figure 7, was sourced from the Coin Metrices, accessible online at https://charts.coinmetrics.io/network-data/. An 

understanding of the dependence between BTC and LTC is critical for several reasons. Investors and market analysts 

can benefit from knowing the correlation between these two assets for portfolio diversification and risk management 

purposes. This is essential in the rapidly changing and often volatile cryptocurrency market, where risk-return trade-offs 

are stark. 

 

Figure 7. Scatter plot of 365 observations of BTC and LTC per USD-denominated closing price in log-scale in 2021 
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However, simply relying on Pearson’s correlation may not provide a comprehensive understanding of their 

interrelationship. Pearson’s correlation assumes a linear relationship and a similar scale among variables, which might 

not be the case in real-world scenarios, such as with the price movements of cryptocurrencies, which can be non-linear. 

Here, the marginal distributions of BTC and LTC are unknown, so the empirical distribution is applied to rescale the 

observations into a standard uniform. The plot of transformed observations is shown in Figure 8. 

 

 

Figure 8. Scatter plot of 365 transformed observations of BTC and LTC per USD-denominated closing price in log-scale in 

2021 

In this particular case, the maximum likelihood estimate of 𝜃 (𝜃̂𝑀𝐿) comes out to be 2.45, accompanied by an 

estimated variance of 0.0266, derived from the observed Fisher information. Applying both the Wald and likelihood-

based methods, the resulting 95% CIs for the dependence parameter fall within (2.1335, 2.7730) and (2.1415, 2.7812) 

respectively. As seen in these outcomes, the interval length of the Wald method is marginally shorter, at 0.6395, 

compared to the likelihood-based method, which stands at 0.6397. The closest scenario in simulation studies is the case 

with 𝜃 = 2 and a sample size of 500 which gives the AL of 0.4611 for the Wald CI and 0.4621 for the likelihood CI. This 

reinforces the conclusion drawn from the simulation study about the Wald method providing a slightly more concise 

interval. 

6- Discussion 

Confidence intervals serve as a fundamental statistical tool, offering a range of plausible values for true parameters. 

Within the scope of Archimedean copulas, Hofert et al. [26] introduced a method for constructing CIs for the dependence 

parameter when marginals are known. Their work hinged on the properties of maximum likelihood estimators and the 

score function, leading to the derivation of CIs in a general form that could be applied to any member of the Archimedean 

copulas. However, the inherent complexity of the general form made it difficult to use practically, thus making an explicit 

formula desirable. Furthermore, the likelihood CIs remained unexplored in the literature. 

Our research significantly contributes to this field by focusing on CI of the dependence parameter of the bivariate 

Clayton copula, an Archimedean copula. In contrast to the previous approach, the observed FI of the bivariate Clayton 

copula has been mathematically derived in an explicit, therefore calculable form and is available here. 

In discussing the results of the simulation studies, it is observed that Wald CIs tend to underperform compared to 

their likelihood-based counterparts, particularly in scenarios involving small sample sizes and low dependence 

parameter values. This discrepancy can be attributed to the fact that Wald CIs are formulated based on a normal 

distribution approximation, with the Wald statistic being a quadratic approximation of the likelihood ratio statistics, 

as detailed in Equation 9. Consider Figure 9, which highlights that with a sample size of 10, the shape of the likelihood 

ratio significantly deviates from the quadratic approximation, particularly at 𝜃 values that greatly differ from the 

MLE. On the contrary, with a sample size of 500, the likelihood ratio and quadratic function lines converge closely. 

Therefore, researchers, prior to the selection of Wald CIs, should take a preliminary s tep to examine the contours of 

both the likelihood ratio and quadratic functions. Without such information, likelihood CIs are recommended over 

Wald CIs. 
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Figure 9. Poor (left) and good (right) quadratic approximation (dotted) of the likelihood function (solid) 

7- Conclusion 

This study aimed to construct an observed FI formula, which is used for the Wald CI for the dependence parameter 

of a bivariate Clayton copula. This research’s contribution lies in offering an explicit formula for a CI for Clayton copula 

parameter, a widely-used approach despite the lack of a clear formula for a CI until now. Using Monte Carlo simulations, 

the performance of the Wald CI was compared to that of the likelihood-based CI based on the criteria of coverage 

probability and average CI length. In situations with a small sample size, likelihood-based CIs outperform Wald CIs by 

providing a coverage probability that is closer to the nominal confidence level of 0.95. Nonetheless, for large samples 

and when the dependence parameter, 𝜃, is not close to zero, both the Wald and likelihood-based confidence intervals are 

recommended equally. 

As a continuation of this research, future studies could explore higher-dimensional Clayton dependency structures. 

This would allow the estimation of the dependence parameter for Clayton copula across multiple variables 

simultaneously. In turn, it could broaden the understanding of various types of dependencies among various variables, 

contributing further to the field of copula studies. 
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