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Abstract 

In this study, we aimed to find an optimized approach to improving facial and masked facial 
recognition using machine learning and deep learning techniques. Prior studies only used a single 

machine learning model for classification and did not report optimal parameter values. In contrast, 

we utilized a grid search with hyperparameter tuning and nested cross-validation to achieve better 
results during the verification phase. We performed experiments on a large dataset of facial images 

with and without masks. Our findings showed that the SVM model with hyperparameter tuning had 

the highest accuracy compared to other models, achieving a recognition accuracy of 0.99912. The 
precision values for recognition without masks and with masks were 0.99925 and 0.98417, 

respectively. We tested our approach in real-life scenarios and found that it accurately identified 

masked individuals through facial recognition. Furthermore, our study stands out from others as it 
incorporates hyperparameter tuning and nested cross-validation during the verification phase to 

enhance the model's performance, generalization, and robustness while optimizing data utilization. 

Our optimized approach has potential implications for improving security systems in various 
domains, including public safety and healthcare. 
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1- Introduction 

Due to the recent COVID-19 pandemic, many countries require individuals to wear masks in public spaces to prevent 

the spread of COVID-19. The use of traditional bio-metric-based techniques like fingerprint and facial recognition 

without masks has been prohibited due to the COVID pandemic since these techniques can lead to the transmission of 

the COVID-19 virus among users. Manual inspection of people wearing masks in public spaces is a challenging task [1]. 

As a result, an automated mask detection system must be built. Furthermore, wearing a mask also presents new 

challenges for traditional facial recognition applications, which are typically designed to reveal faces [2]. The existing 

facial recognition systems are not very accurate for masked faces [3]. 

The quick creation of trustworthy facial recognition technology that can recognize any person even when they are 

wearing a face mask is required due to this pandemic ailment [4]. Ejaz et al. [5] reduced the dimensionality and extracted 

features using Principal Component Analysis (PCA). They performed identity identification and estimated the average 

facial characteristics of each identity. While non-masked faces are recognized with an average accuracy of 95%, masked 
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faces are recognized with an average accuracy of 72%. Therefore, compared to non-masked faces, PCA shows poor 

identification rates for images of masked faces. A multi-threading technique was utilized by Maharani et al. [6] to 

construct the masked face recognition approach based on Haarcascade and MobileNet to detect masks and VGG16 and 

Triplet loss FaceNet to identify faces. With modifications to the backbone and loss function, Montero et al. [7] proposed 

a deep model based on ArcFace. They created a masked version of the original face recognition dataset via data 

augmentation, and then they tested ResNet-50 on the recognition of masked faces at a low computational cost. The mask-

usage classification loss and ArcFace loss are then merged to create a new function called multi-task ArcFace 

(MTArcFace). The results of the experiments indicate that the classification of mask usage has an average accuracy of 

99.78%. 

Hariri [8] suggested a deep learning-based approach and a quantization-based strategy to cope with the recognition 

of the masked faces. Additionally, they employed the RMFRD dataset, which enables the selection of deep features from 

the collected regions using the three pre-trained deep VGG-16, AlexNet, and ResNet-50 models. The classification 

process is completed by using Multilayer Perceptron (MLP). According to experimental findings, the average 

recognition accuracy when masked is between 88.90% and 91.30%. The Embedding Un-masking Model (EUM), which 

is built on top of the current face recognition models, was proposed by Boutros et al. [9]. They also suggest a brand-new 

loss function known as the Self-restrained Triplet (SRT), which allowed the EUM to create embeddings that resemble 

those of unmasked faces belonging to the same identities. Golwalkar & Mehendale. [10] construct 128-d encodings to 

recognize masked faces using FaceMaskNet-21 and the deep metric learning technique. In order to achieve more active 

recognition of faces covered by a mask, they additionally incorporated HOG features. The performance received a testing 

accuracy score of 88.92%. WearMask3D is a 3D model-based method that Hong et al. [11] presented for enhancing face 

photos in various positions to their masked face counterparts. They have also shown that practicing with artificially 

generated 3D masks can increase the recognition accuracy of masked faces. Ejaz et al. [12] suggested utilizing a Multi-

Task Cascaded Convolutional Neural Network (MTCNN) to detect the face areas. 

The Google FaceNet embedding model is utilized for the extraction of facial features. Finally, Support Vector 

Machine has carried out the classification operation (SVM). They carried out two scenarios: the first involved using 

masked faces for testing and unmasked faces for training, while the second involved using both masked and unmasked 

faces for both training and testing. For both training and testing, the performance related to both masked and unmasked 

faces is 98.50%. Deng et al. [13] introduced the MFCosface masked face recognition algorithm, which is based on wide 

margin cosine loss and is optimized by including an attention-aware mechanism in the model, to recognize the important 

facial features. For masked face recognition, Li et al. [14] also presented an attention-based method and a cropping-

based technique. The area around the eyes was highlighted in the attention-based portion using the Convolutional Block 

Attention Module (CBAM) with an accuracy of 92.61%. Based on the FaceNet model and the residual inception network 

of the Inception-ResNet-v1 architecture, Moungsouy et al. [15] developed a method for recognizing human faces in both 

mask- and non-mask-wearing situations. The simulated masks on the original face images are augmented for the training 

model. The features derived from the top half of face photos are then computed to demonstrate that the characteristics 

selected for face recognition are correct using heatmaps. The outcome demonstrates a remarkable accuracy of 99.2% in 

a scenario of faces wearing masks. 

Talahua et al. [16] suggested a method for identifying people from images even when they are wearing a face mask. 

To recognize faces, a feedforward multilayer perceptron and feature extractor from the FaceNet model are utilized. 

According to the testing findings, there is an accuracy of 99.65% in determining whether or not a person is wearing a 

mask. For mask detection, mask type classification, mask position classification, and identity recognition, Song et al. 

[17] implemented the Spartan Face Detection and Facial Recognition System into practice. For mask detection, CNN, 

AlexNet, and VGG16 are used. Additionally, they applied SVM and XGBoost for classifiers, which have respective 

accuracy rates of 97.00% and 88.00%, respectively. Kim et al. [18] introduced a new approach called Adaface, which 

took image quality into account as a critical factor for enhancing face recognition accuracy. They had proposed a 

generalized loss function that utilized the feature paradigm to estimate image quality. This approach enabled a smooth 

transition between the ArcFace [19] and CosFace [20] methods, leading to improved accuracy for low-quality images 

while maintaining high accuracy for high-quality images. 

Lu & Zhuang [21] generated a large number of facial images with masks using public face datasets to address the 

problem of training data shortage. They also proposed a new network architecture called the Upper-Lower Network 

(ULN) to efficiently recognize masked faces. The upper branch of ULN, which takes mask-free images as input, was 

pre-trained to provide supervisory information for the lower branch. They further divided the high-order semantic 

features into upper and lower parts, as the occlusion areas of masks usually appear in the lower parts of faces. The 

designed loss function forced the learned features of the lower branch to be similar to those of the upper branch with the 

same mask-free image inputs, but only the upper part of the features were similar to their mask counterparts. Ge et al. 

[22] proposed a Convolutional Visual Self-Attention Network (CVSAN) that incorporated self-attention to enhance the 

convolution operator. They achieved this by connecting a convolutional feature map, which enforced local features, to 

a self-attention feature map that could model long-range dependencies. To train the CVSAN model, they generated a 
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Masked VGGFace2 dataset using a face detection algorithm since there was no publicly available large-scale masked 

face data. Experimental results showed that the CVSAN algorithm significantly improved the performance of masked 

face recognition. 

Wang et al. [23] proposed an improved version of Facenet for face recognition. They had utilized the ConvNeXt-T 

architecture as the backbone of their model and incorporated the ECA (Efficient Channel Attention) mechanism for 

efficient channel attention. This approach enhanced feature extraction for the visible parts of the face, resulting in more 

valuable information without increasing model complexity or reducing dimensionality. They had explored the effects of 

different attention mechanisms and dataset ratios on face mask recognition models and had constructed a large dataset 

of faces wearing masks for efficient model training. Experimental results showed that their model had achieved 99.76% 

accuracy for recognizing real faces wearing masks and a combined accuracy of 99.48% in challenging environments 

with extreme contrast and brightness. Table 1 presents an overview of the present models and their level of accuracy in 

recognizing masked faces. 

Table 1. Provides a summary of the model and accuracy of masked face recognition systems 

Method Model Accuracy Real-world deployment 

Ejaz et al. [5] Viola-Jones algorithm + PCA 0.8350 No 

Maharani et al. [6] VGG16 + FaceNet 1.0000 Yes 

Montero et al. [7] MTArcFace 0.9978 No 

Hariri [8] VGG16 + BoF + MLP 0.9130 No 

Golwalkar et al. [10] FaceMaskNet-21 0.8892 Yes 

Ejaz et al. [12] MTCNN + FaceNet + SVM 0.9850 No 

Moungsouy et al. [15] MTCNN + Inception-ResNet-v1 0.9920 No 

Talahua et al. [16] MobileNetV2 + FaceNet + ANN 0.9965 Yes 

Song et al. [17] MTCNN + FaceNet + SVM/XgBoost 0.9700 Yes 

Kim et al. [18] Adaptive Margin based on Norm + ResNet 0.9751 No 

Lu & Zhuang [21] Upper-lower network + ResNet-18 0.9860 No 

Ge et al. [22] 
The Convolutional 

Visual Self-Attention Network (CVSAN) 
0.9935 No 

Wang et al. [23] ConvNeXt-T + ECA 0.9976 Yes 

From Table 1, in the majority of past experiments, the best model for the face mask recognition system was only 

found using publicly accessible face benchmark datasets. This demonstrates that real-time video deployment of the 

system has not yet occurred. This is a crucial stage in proving the system's effectiveness. Furthermore, the optimal 

hyperparameters for the dataset that yield reduced error metrics cannot be found when a person is recognized using a 

face mask or a classification model. Split validation may result in bias or overfitting the model when the data are typically 

divided into training and testing data for classification. The following research questions were proposed for this study 

based on the literature review: 

RQ1: What technique can be used to find the best hyperparameter? 

RQ2: How should the training and testing data be divided to avoid having an overfit model? 

RQ3: Which classification technique is appropriate for the face verification phase? 

Based on previous research and the research questions, this study intends to provide the following contributions. First, 

grid search is intended to perform hyperparameter tweaking in a methodical manner by automatically going through all 

of the sets of hyperparameter values during the model training phase. The fact that the hyperparameter settings are 

independent is one benefit of grid search. Second, to discover the optimal set of hyperparameters for the selected 

classification model, nested cross-validation is performed. This method aids in evaluating the trained models' ability to 

generalize accurately. This research differs from earlier studies in the face verification phase, which just employed split 

validation to divide the training and testing datasets, which may result in bias or overfitting the model. The nested cross-

validation offers a more trustworthy standard for selecting the best model, despite being computationally time-

consuming. Additionally, the best classifier methods for the face-masked verification phase are compared and 

determined in this study. 

The remainder of this paper is structured as follows: In Section 2, the theoretical background is described. Section 3 

of the proposed method is discussed. Section 4 presents the experimental setup and results. Section 5 then presents a 

discussion. Finally, Section 6 presents the conclusions. 
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2- The Theoretical Background 

2-1- Multi-Task Cascaded Convolutional Networks 

The facial identification method Multi-Task Cascaded Convolutional Networks (MTCNN) uses deep learning to 

locate and identify faces in images and videos. In the field of computer vision, it was first presented by Zhang et al. [24] 

and has since grown to be one of the most popular face identification techniques. A proposal network creates candidate 

face areas; a refined network sharpens the bounding box and facial landmarks; and an output network produces the final 

detection findings. Since the three stages are trained sequentially, the network can adjust its predictions at each level 

based on the results of the previous stage. Compared to conventional face identification algorithms, MTCNN provides 

a number of benefits, including the capacity to manage large-scale variations in facial appearance, the ability to handle 

challenging scenarios such as occlusions and non-frontal faces, as well as its speed and efficiency. MTCNN can also 

recognize faces at various scales, enabling it to handle faces of various sizes in a single image. Additionally, it has been 

utilized as a pre-processing step for various computer vision tasks, including face identification and localization of facial 

landmarks. 

2-2- FaceNet 

Schroff et al. [25] unveiled FaceNet, a system for facial identification based on deep learning. It was one of the first 

systems to recognize faces using a deep neural network, and it has had a significant impact on computer vision. FaceNet 

learns an embedding, which is a convolutional neural network-based representation of a face that may be used for 

comparison and recognition. The network learns to map each face image to a condensed feature vector in a high-

dimensional space after being trained on a sizable dataset of face images. The similarity between facial features can then 

be calculated using this embedding, along with personal identification. FaceNet makes a significant contribution by 

training the network with a triplet loss function. Similar faces should have similar embeddings, whereas dissimilar faces 

should have dissimilar embeddings. This is a constraint that is enforced by the triplet loss function. This enables FaceNet 

to develop discriminative embedding that successfully captures the distinctive features of each face. 

2-3- Hyperparameter Tuning with Grid Search 

Hyperparameter tuning is the process of methodically modifying a machine learning model's hyperparameters to 

maximize its performance on a particular task. In contrast to model parameters, which are parameters that are learned 

during training, hyperparameters are parameters that are established before a model is trained. A range of values for each 

hyperparameter is chosen, the model is trained numerous times with various combinations of hyperparameter values, 

and the best set of hyperparameters is chosen based on performance evaluation on a validation set [26]. Grid search is 

intended to automatically go over each set of hyperparameter values while the model is being trained, allowing for 

systematic hyperparameter tuning [27]. In order to discover the hyperparameter configuration space, grid search is the 

most commonly used method. Grid search can be viewed as a method of exhaustively evaluating every conceivable 

combination of the hyperparameters supplied to the grid configuration [28]. Grid search operates by analyzing the 

Cartesian product of a user-defined, constrained set of values. Grid search alone cannot be used to further utilize the 

high-performing regions. As a result, the technique for manually finding the global optimum is as follows [29]: 

 Start with a large search space and phase scale, then tighten them based on previous observations of successful 

hyperparameter choices. 

 Repeat until the best outcome is attained. 

2-4- Nested Cross-Validation 

Nested cross-validation is a method for assessing how well machine learning models are working. It is a development 

of conventional cross-validation, where an inner loop is used to tune hyperparameters on a validation set and an outer 

loop is used to assess model performance on a test set [30]. Different combinations of hyperparameters are tested in the 

inner loop using a cross-validation method, and the hyperparameters that produce the best results on the validation set 

are chosen for the outer loop. As the validation set is held out from the training process and utilized just for 

hyperparameter tuning, this helps to avoid overfitting the hyperparameters to the training set. Compared to typical cross-

validation, nested cross-validation ensures that the hyperparameters are selected based on their generalization 

performance, providing a more reliable assessment of model performance. The procedure for the nested cross-validation 

is given in Algorithm 1 [31] and Figure 1. 

Algorithm 1 gives an implementation of the nested cross-validation where the following functions are assumed: 

 createCV(data, …) creates a list of pairs (train, test) from the data.  

 createGrid() creates the list of hyperparameter tuples to be tested. Grid search is employed in this paper. 
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 classtrain(train, theta) returns the classifier trained on train data with hyperparameters set to theta. 

 accuracy(model, test) returns the accuracy (or any other quality measure) for the classifier model when run on test 

data. 

Algorithm 1. Nested Cross-Validation 

def nested(data, …) : 

   acc_final = 0.0 

   cv_outer = createCV(data, …) 

   for tr_outer, te_outer in cv_outer: 

      acc_max = 0.0 

      for theta in createGrid(…): 

         acc = 0.0 

         cv_inner = createCV(tr_outer, …) 

         for tr_inner, te_inner in cv_inner: 

            model = classtrain(tr_inner, theta) 

            acc = acc + accuracy(model, te_inner) 

         if acc > acc_max: 

            acc_max = acc 

            theta_max = theta 

      model2 = classtrain(tr_outer, theta_max) 

      acc_fnal = acc_final + accuracy(model2, te_outer) 

return acc_final / len(cv_outer)  

 

Figure 1. The nested cross-validation example. T and V represent for training and validation data 

3- Proposed Methodology 

Figure 2 depicts the proposed technique for recognizing a person wearing a mask. It consists of two main processes: 

1) building a trained FaceNet model to extract the embeddings for the recognize between people wearing and not wearing 

masks. 2) Real-world deployment process. 

3-1- Building a Trained FaceNet Model to Extract the Embeddings for The Recognize Between People Wearing and 

Not Wearing Masks 

This process is divided into five steps, which are described below. 

3-1-1- Face Detection using MTCNN 

In this study, the MTCNN model was utilized to identify faces in an input image. Convolutional neural networks 

(CNNs), which are the basis of MTCNN, are used to create candidate face areas and produce a collection of bounding 

box proposals. It then utilizes two more CNNs to improve these bounding box proposals and categorize whether or not 

each proposal contains a face. To align the face within the bounding box, it uses a third CNN to conduct facial landmark 

detection. 

3-1-2- Using Dlib 68_Face_Landmark to Locate the Mouth Part and then Wearing Mask 

Dlib is a well-liked open-source library for tasks involving face landmark detection in computer vision and machine 

learning. It provides a pre-trained model for detecting 68 facial landmarks on a face, including the mouth. In this study, 

the mouth portion was extracted by Dlib as an ROI (Region of Interest), and the mouth is accessed through points. Then, 

the face mask image needs to be scaled to match ROI [48, 67]. 
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Figure 2. Proposed method for recognizing a person wearing a mask 

3-1-3- Data Augmentation with Keras ImageDataGenerator 

To enhance the size of the training set and decrease overfitting in deep learning models for computer vision 

applications, Keras ImageDataGenerator provides a wide variety of augmentation approaches [32]. This study employs 

horizontal flipping and brightness adjustment for both mask-wearing and without mask-wearing face images. Creating 

a mirror image of an image requires the horizontal flip technique, which includes turning the image horizontally along 

the y-axis. This method is helpful for expanding training data sets since it gives the model access to the same image from 

a new angle. And it can teach the model to recognize things in any orientation. Adjusting the brightness of an image is 

yet another method for improving the quality of captured visuals. In this study, the brightness of an image is adjusted 

between range [0.2,0.8]. By lowering the brightness, glare is reduced and contrast is enhanced, while increasing the 

brightness helps see images in low light. Under cases where images are acquired in a wide range of lighting conditions, 

this method can be helpful. 

3-1-4- Extract the Embeddings by Train FaceNet Model with Inception-Resnet-v1 

The FaceNet model is used to extract the most important features of the face with 128-dimensional embeddings from 

images of the face with and without a mask. Inception-Resnet-v1 [33] is a deep Convolutional Neural Network (CNN) 

architecture that combines Inception blocks with a residual neural network, and it is used to enhance the performance of 

the trained FaceNet model in this study. We then fine-tuned our trained FaceNet model by adjusting the network's 

parameters and pre-trained weights. 

3-1-5- Facial Recognition by Face Matching with Euclidean Distance 

This verification step is consolidated to recognize candidates face by performing the face matching with Euclidean 

distance. Face matching with Euclidean distance is a simple and effective method for comparing the similarity between 

two faces [10]. In order to determine the Euclidean distance between two faces, face embeddings must first be produced 

for each face. To determine if two faces are a match, a threshold is set for the Euclidean distance. In this study, similar 

faces are identified as having a distance between their embeddings that is smaller than a predetermined threshold value 

(0.8). When comparing two faces, if the distance is larger than a certain criterion, the faces are regarded to be distinct. 
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3-2- Real-World Deployment Process 

We collected face image from 50 students in the classroom to create a dataset to test the efficacy of our proposed in 

the masked-facial recognition in real situations. After all deployed images were passed through step 3.1.1 to 3.1.4, in the 

verification step by face matching with Euclidean distance may not generalize well to new faces or environments that 

were not included in the training data, which can limit their applicability in real-world scenarios [19]. The Euclidean 

distance-based methods had the limited generalization ability and achieved lower accuracy rates on new faces. For this 

reason, this study employed in grid search for hyperparameter tuning with nested cross-validation in order to build an 

accurate model to verify facial features in real-world deployment process. A training set and a test set are created from 

the collected data, and nested cross-validation is then used to determine the optimal model hyperparameters. Model 

performance with varying hyperparameters is assessed in the outer loop of cross-validation, and the best hyperparameters 

are chosen for each fold of the outer loop in the inner loop. After averaging the results from each outer loop fold, the 

optimal hyperparameters are determined, and then the model is trained using these hyperparameters on the complete 

training set before being evaluated on the test set. The detail about this process is provided below. 

 Initially, all deployed images should be divided into a 90% training set and a 10% test set. The training set will be 

used for hyperparameter tuning and cross-validation, while the test set will be used for model evaluation. 

 Define the hyperparameter grid to search for a classification model. Using Support Vector Machine (SVM), K-

Nearest Neighbors (KNN), and Deep Neural Network (DNN), this research aimed to determine which method 

performed best on the deployed data. 

 Divide the training set to create the nested cross-outer validation's loop. Common methods for doing so include 

setting a fixed number of folds (k_outer=5). 

 For each combination of hyperparameters. 

o Divide the current outer fold into K inner folds for nested cross-validation. We choose k_inner = 3 for the 

inner loop of cross-validation to perform the grid search within each outer fold. 

o Train the model on the inner folds using the current hyperparameters. 

o Evaluate the performance of the model on the outer fold using the selected hyperparameters. 

 Calculate the average performance across all folds for each combination of hyperparameters. We compute the outer-

loop cross-validation average accuracy score for each hyperparameter combination. Hyperparameters with the 

highest mean accuracy are chosen. 

 Train the model using the selected hyperparameters on the entire training set. 

 Evaluate the performance of the model on the test set and select the best classification model among SVM, KNN, 

and DNN. 

4- Experimental Setup and Results 

4-1- Data Description 

The model was trained to extract embeddings that allow it to determine whether or not people are wearing masks. 

The CASIA-WebFace dataset [34] is a high-quality and diverse set of face images of humans; it contains 494,414 images 

with facial sub-images of roughly 10,000 people, and it was used as part of the data on which our trained FaceNet model 

was built. Our trained model was evaluated using the Labeled Faces in the Wild (LFW) dataset [35]. The LFW dataset 

contains 13,233 photographs of human faces, from which facial sub-images have been extracted in a fashion analogous 

to that used in the CASIA-WebFace dataset. In order to ensure that our masked facial recognition algorithm works as 

intended in the real world, we gathered face images from 50 students in the classroom to use as a test dataset. 

4-2- Ethics Approval 

Permission for the study was obtained from the ethics committee of Walailak University, Thailand (protocol no. 

WUEC-22-058-01).  

4-3- Assessment Matrices 

Performance in recognition was measured in terms of accuracy, precision, and recall in this study. Prediction results 

from the classification problem are summarized in the confusion matrix in Table 2. The count values summarize the 

proportion of correct and wrong predictions for each category. To clarify, {P, N} stands for the positive and negative 

testing data, while {Y, N} stands for the classifier predictions for the positive and negative classes [36]. 

Table 2. Confusion matrix 

 Actual Positive (P) Actual Negative (N) 

Predicted Positive (Y) TP (true positives) FP (false positives) 

Predicted Negative (N) FN (false negatives) TN (true negatives) 



Emerging Science Journal | Vol. 7, No. 4 

Page | 1180 

Number of correct predictions for a positive example is denoted by "true positive" (TP), for negative examples by 

"true negative" (TN), for incorrect predictions for a positive example by "false positive" (FP), and for incorrect 

predictions for a negative example by "false negative" (FN). Equations 1 to 4 below define the assessment measures 

used to evaluate the performance of recognition from the datasets. 

Accuracy: 

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
  (1) 

Precision: 

𝑇𝑃

𝑇𝑃+𝐹𝑃
,  (2) 

Recall: 

𝑇𝑃

𝑇𝑃+𝐹𝑁
,  (3) 

F-measure: 

(1+𝛽2) 𝑅𝑒𝑐𝑎𝑙𝑙  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝛽2
 𝑅𝑒𝑐𝑎𝑙𝑙+ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

,  (4) 

where 𝛽 is a coefficient used to adjust the relative importance of precision versus the recall, which is usually set to 1. 
The F-measure is high when both recall and precision are high, indicating the goodness of a learning algorithm for the 
interest class [37]. 

4-4- Experimental Configuration 

The experimental platform operating system was Windows 10, the GPU was an NVIDIA GeForce RTX 3060 Ti 8GB, 
CUDA Core 4,864, GPU Clock 1665 MHz with 32GB Memory. Python is the language used for development. To train 
models, we use the deep learning tools Keras, Tensorflow, and scikit learn. 

4-5- Experimental Results 

We employed the CASIA-WebFace dataset as part of the training data for our deep learning model, which is typically 
trained on large-scale datasets. Furthermore, the Labeled Faces in the Wild (LFW) dataset was used to test our trained 
model. The process of data preprocessing is; 

 Face detection and mask coverage: In order to extract only face images for CASIA-WebFace, we pre-processed 
them with MTCNN. It is challenging for a model to learn the feature mapping when a face is occluded by a mask 
due to the scarcity of masked-face datasets, which leads to a low recognition rate. To solve this problem, we used 
the CASIA-WebFace dataset to generate masked-face images. We integrate MTCNN with Dlib, which enables us 
to quickly and precisely extract facial features. After applying MTCNN, the Dlib library is utilized to identify 68 
facial landmarks on a person's face, which include the mouth. The specific area of the mouth can be accessed by 
using the coordinates [48, 67]. After that, the mask image must be resized to fit the ROI. One of the mask templates 
is randomly placed over the mouth region to produce a masked-face image (a surgical mask, a KN95 mask, and a 
black mask). The result is shown in Figure 3. 

 

Figure 3. Face detection and mask coverage 

 Data augmentation: Our goals for data augmentation are to increase the size and diversity of the raw datasets and 
decrease overfitting problems, as the quality and variety of the training dataset are vital to improving the 
performance and ability of the model to generalize. Because of this, we used Keras ImageDataGenerator's horizontal 
flip and brightness adjustment features, which yielded an adjusted brightness of between 0.2 and 0.8. Figure 4 
depicts some examples of ImageDataGenerator-processed augmented images. There are a total of 612948 images, 
306474 of which are unmasked and 306474 of which are masked. 
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Figure 4. Example of augmented images 

The FaceNet model is used to extract the most essential elements of face images, and it returns a vector of 128 

features. The image is fed into the network, processed by the neural network, and output with an embedding of each face 

[16] indicated by 𝑓(𝑥) 𝜖 𝑅𝑑. The goal of this technique is to move one person's image (𝑥𝑖
𝑎) closer to all other images of 

that person (𝑥𝑖
𝑝

) and farther from any other images of people (𝑥𝑖
𝑛). The calculation of the loss (𝐿) is demonstrated by 

Equation 5, which includes the use of a margin (𝛼) between positive and negative pairs. 

𝐿 =  ∑ [‖(𝑥𝑖
𝑎) − 𝑓(𝑥𝑖

𝑝
)‖

2

2
− ‖𝑓(𝑥𝑖

𝑎) − 𝑓(𝑥𝑖
𝑛)‖2

2 +  𝛼]𝑁
𝑖 ,  (5) 

The input is a 112×112 pixel image, and the output is a 128-elements “face embedding” vector containing information 

on the face in the image. The Inception-ResNet V.1 architecture is the backbone of our trained FaceNet model. Finding 

an optimal set of training settings and initial weights is the subsequent stage. As a loss function, we employ the Adam 

optimizer with a learning rate of 0.0005 and the categorical cross-entropy. The batch size is 128, and there are 50 epochs 

in all, with an average epoch period of about 48.5 minutes. 

As test data, the LFW datasets are employed. From the LFW dataset, we randomly selected 1000 images from various 

classes. Use face masks in certain images. Face embeddings were calculated using our trained FaceNet model. Face 

encodings from a subset of the LFW dataset are compared to the encodings of all images in the training dataset using 

the Euclidean distance. According to the results of this study, comparable faces are those whose embedding distance is 

less than a specified threshold value (0.8). It has been determined that two faces are considered to be different if the 

distance between them exceeds a predetermined threshold. On LFW datasets, our trained FaceNet model achieves an 

accuracy of 0.99817. Table 3 provides a concise summary of the FaceNet model efficiency and parameter tuning. 

Table 3. FaceNet model efficiency and parameter tuning 

Parameter Detail Accuracy 

Learning rate 0.0005 

0.99817 (randomly selected 1000 images with mask from LWF dataset) 

Epochs 50 

Batch size 128 

Optimizer Adam 

Loss function Categorical cross-entropy 

4-6- Real-World Experiment 

To ensure our method works as intended for masked facial recognition in the real world, we gathered face images 

from 50 students in the classroom to use as a dataset. For creating the training and testing dataset for the verification 

phase model, MTCNN is used for face detection on 50 student images without masks. The Dlib library is used to extract 

68 facial landmarks, including the mouth, from a face in order to create the masked-face image dataset. Finally, a 

masked-face image is created by randomly placing one of the mask templates over the mouth area and resizing the mask 

image to fit the ROI. Accordingly, after running the face detection procedure, we will get 50 images of students without 

masks and another 50 of the same students wearing masks. The result is shown in Figure 5. As part of the data 

augmentation step, we applied horizontal flip and brightness adjustments to all images. As a result, following data 

augmentation, we have 500 total images, 250 without masks and 250 with masks. 
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Figure 5. Example of face detection, mask coverage, and some images from student image augmentation 

One of the major drawbacks of using Euclidean distance for face matching in the verification step is that it is sensitive 

to the feature set used to represent the face; if the features are not comprehensive or discriminative enough, the Euclidean 

distance may fail to accurately distinguish between faces, resulting in poor recognition performance that can negatively 

affect the accuracy and reliability of real-world face recognition applications. After that, all images were embedded using 

our pre-trained FaceNet model, which provides a 128-element feature vector. Therefore, in the verification step, once 

the feature vector has been obtained, any machine learning classification model can be applied. In this case, we compared 

the performance of SVM, KNN, and DNN models using a grid search with hyperparameter tuning and nested cross-

validation. This approach differs from other research studies that only use a single machine learning model for 

classification and typically do not report the best parameter values. The dataset contains 500 images, which were split 

into a 90% training set and a 10% test set. The training set was utilized for conducting hyperparameter tuning and cross-

validation, while the test set was reserved for evaluating the final model. To perform nested cross-validation with grid 

search, the training set is divided into outer and inner folds. The outer fold is used for evaluating the model's performance, 

while the inner folds are used for hyperparameter tuning through grid search. The model is trained on the inner folds 

using selected hyperparameters and evaluated on the outer fold to obtain the mean accuracy for each set of 

hyperparameters. The hyperparameters with the highest mean accuracy are then chosen to train the model on the entire 

training set. Finally, the performance of SVM, KNN, and DNN models is compared on the test set to select the best-

performing model. According to Table 4, the optimal parameters for the SVM, KNN, and DNN models have been 

identified, and their corresponding accuracy, precision, and recall metrics have been reported in Table 5. Based on the 

results, it can be concluded that the SVM model outperformed the other models in terms of recognition accuracy of 

0.99912. The SVM model was optimized using a polynomial kernel, a C value of 1000.0, a gamma value of 0.1, and a 

maximum iteration of 40. 

Table 4. The optimal parameter for SVM, KNN, and DNN 

Classifier Optimal parameter Detail 

SVM 

Kernel function Polynomial 

Regularization parameter (“C”) 1000.0 

Gamma 0.1 

Max_iter 40 

KNN 

Leaf_size 5 

n_neighbors 3 

Weights Uniform 

Metric Minkowski 

DNN 

No. of neurons in the initial layer 128 

No. of neurons in a hidden layer with built-in ReLu 115 

No. of neurons in a hidden layer with built-in ReLu 110 

No. of neurons in a hidden layer with built-in ReLu 80 

No. of neurons in the output layer with a Softmax 50 

Epochs 150 

Batch sizes 20 

Optimizer rmsprop 

Loss function Categorical cross-entropy 
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Table 5. The optimal parameter for SVM, KNN, and DNN 

Classifier Class Accuracy Precision Recall F-measure 

SVM 
Without mask 

0.99912 
0.99925 0.99893 0.99941 

With mask 0.98417 0.97934 0.98411 

KNN 
Without mask 

0.98491 
0.98141 0.98381 0.98479 

With mask 0.95990 0.93723 0.95201 

DNN 
Without mask 

0.99544 
0.99305 0.98883 0.99331 

With mask 0.98041 0.97415 0.98164 

5- Discussion 

Proposed solutions from the research questions and discussion of facial and masked facial recognition are outlined 

below: 

RQ1: What technique can be used to find best hyperparameter? 

In this study, the use of a grid search has proven useful. Grid search is a computationally expensive approach for 

hyperparameter tuning as it produces a model for each set of provided hyperparameters and then assesses each model. 

Despite this, it is still widely used because it determines the optimal approach to adjusting the hyperparameters based on 

the training set. It is acceptable for the training phase to take longer because it is conducted offline before testing, which 

allows the network to test every potential combination and find the best-performing one. This finding is consistent with 

the studies conducted by Saad et al. [28] and Khamparia & Singh [38]. We opted to use grid search to ensure the best 

possible accuracy during the testing phase rather than reduce complexity and training time. This precision is essential 

for recognizing individuals wearing masks. We chose grid search because of its simplicity, higher accuracy, and greater 

reliability, as well as its ability to work in high-dimensional spaces. 

RQ2: How should the training and testing data be divided to avoid having an overfit model? 

We applied nested cross-validation in our work. It is a beneficial technique for model selection and hyperparameter 

tuning because it helps to avoid overfitting and provides an unbiased estimate of model performance [39]. In nested 

cross-validation, the data is divided into multiple folds, with each fold being used as a separate validation set for the 

other folds. This process is repeated multiple times, with different folds being used as validation sets each time, and the 

average performance across all iterations is used as the final estimate of model performance. For our work, we decided 

to combine grid search with hyperparameter tuning and nested cross-validation. The reason for this is that the utilization 

of these techniques can enhance the model's stability against data variations and prevent overfitting. Despite the fact that 

grid search with hyperparameter tuning can be time-consuming, the implementation of nested cross-validation can 

effectively reduce the computational burden by optimizing the data usage during hyperparameter tuning. The 

combination of grid search with hyperparameter tuning and nested cross-validation yielded an accuracy of 0.99912 for 

recognition, whereas using 10-fold cross-validation without grid search resulted in an accuracy of 0.98394. This clearly 

indicates that the use of grid search with hyperparameter tuning and nested cross-validation can significantly enhance 

the model's performance, generalization, and robustness while effectively optimizing the utilization of data. 

RQ3: Which classification technique is appropriate for face verification phase? 

In this study, three classifiers, namely SVM, KNN, and DNN, were evaluated for their performance in face mask 

recognition. The findings demonstrated that SVM exhibited the most optimal results. SVM is an efficient algorithm for 

classification tasks, specifically face recognition, as it maps data points to a high-dimensional space and identifies the 

most suitable hyperplane that divides them into different classes. Due to its capability to classify images using extracted 

features, SVM is an appropriate choice for face mask recognition. Moreover, SVM's performance can be significantly 

influenced by its various hyperparameters, such as kernel type, regularization parameter, and gamma value. Thus, grid 

search can be employed to adjust these hyperparameters to improve the performance of the SVM algorithm in face mask 

recognition. Grid search aims to experiment with diverse combinations of hyperparameters and select the most effective 

one, resulting in enhanced accuracy and robustness of the model. 

We have presented a comparison of existing face recognition systems in terms of their accuracy in recognizing faces 

when they are wearing masks. The comparison Table 6 includes information on the datasets used, the number of images 

in each dataset, and the face recognition techniques used. Each system used a different approach to accurately recognize 

faces from images. This comparison helps to assess the performance of various face recognition systems in dealing with 

the challenge of face masks. 
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Table 6. A comparison of current methods based on the accuracy of face-masked recognition 

Method Technique Accuracy Dataset 
No. of image in 

dataset 

Real-world 

deployment 

Image or video capture 

distance (Meters) 

Ejaz et al. [5] Viola-Jones algorithm + PCA 0.8350 ORL database +user dataset 500 No No 

Maharani et al. [6] VGG16 + FaceNet 1.0000 User dataset 600 Yes 1.0-1.5 

Montero et al. [7] MTArcFace 0.9978 MS1MV2 Not specified No No 

Hariri [8] VGG16 + BoF + MLP 0.9130 RMFRD and SMFRD 5000 and 50000 No No 

Golwalkar et al. [10] FaceMaskNet-21 0.8892 User dataset 2000 Yes Not specified 

Ejaz et al. [12] MTCNN + FaceNet + SVM 0.9850 
AR Face Database + IIIT-
Delhi Disguise Version 1 

Face Database +User dataset 

Not specified No No 

Moungsouy et al. [15] MTCNN + Inception-ResNet-v1 0.9920 CASIA and LWF 494,414 and 13,233 No No 

Talahua et al. [16] MobileNetV2 + FaceNet + ANN 0.9965 User dataset 13,359 Yes Not specified 

Song et al. [17] MTCNN + FaceNet + SVM/XgBoost 0.9700 CASIA and Masked Face Net 14,646 Yes Not specified 

Kim et al. [18] 
Adaptive Margin based on Norm + 

ResNet 
0.9751 

MS1MV2, MS1MV3, 

WebFace4M and LFW 

More than 1 

million images 
No No 

Lu & Zhuang [21] Upper-lower network + ResNet-18 0.9860 
Randomly select from search 

engines 
200 No No 

Ge et al. [22] 
The Convolutional 

Visual Self-Attention Network 

(CVSAN) 

0.9935 VGGFace2 and LWF 
More than 3 

million images 
No No 

Wang et al. [23] ConvNeXt-T + ECA 0.9976 CASIA + LWF + User dataset 494,414 and 13,233 Yes Not specified 

Proposed method FaceNet + optimized SVM 0.99912 
CASIA + LWF + User 

dataset 
612,948 and 1,000 Yes 1.0 

We used grid search with nested cross-validation to find the best hyperparameters in the verification step, which 

resulted in a recognition accuracy of 0.99912. Furthermore, we used a camera to collect data for recognition. The 

recognition results are shown in Figure 6, and it can be seen that if the person with the camera is in the database, the 

student ID and a label of "Mask" or "No Mask" are placed on the green bounding box. Table 6 shows that only five 

techniques have been employed in real-world scenarios. Although Maharani et al. [6] achieved an accuracy of 1.0000, 

they did not specify the optimal hyperparameters used. Additionally, their study employed a small number of user 

datasets. Golwalkar et al. [10] presented the FaceMaskNet-21 model using a user dataset of 2000 images, which achieved 

an accuracy of only 0.8892. This performance is lower than our proposed method. Talahua et al. [16] introduced a model 

used MobileNetV2 + FaceNet + ANN that was trained on a dataset of 13,359 images and achieved an impressive 

accuracy of 0.9965. This outperformed our own method. However, their approach splits the data into 80% for training 

and 20% for testing, which can lead to bias or overfitting. Our method, on the other hand, uses nested cross-validation 

to divide the data for training and testing, avoiding these potential issues.  

Song et al. [17] did not specify how their training and testing data was divided, and they did not mention the 

hyperparameters used in the SVM and XgBoost classifiers. This approach differs from our proposed method, which 

identifies optimized hyperparameters using grid search. Wang et al. [23] introduced the ConvNeXt-T + ECA model, 

which achieved an accuracy of 0.9976. However, they did not disclose their approach to dividing the training and testing 

data, nor did they specify the hyperparameters employed in the verification phase. This could result in model bias or 

overfitting, and inaccurate verification results when new images of individuals are introduced. This is unlike our 

proposed method, which employs nested cross-validation with hyperparameter tuning. This helps to prevent the 

hyperparameters from being overfitted to the training sets, and guarantees that they are chosen based on their 

generalization performance, resulting in a more dependable model evaluation. 
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Figure 6. Example of real-world result 

6- Conclusion 

Although COVID-19 cases have slightly decreased, it is still crucial to wear face masks, emphasizing the need for 

developing face recognition systems capable of identifying masked faces. However, previous methods have only utilized 

publicly available benchmark datasets to create face mask recognition models, which have not been adequately evaluated 

in real-time video settings. Additionally, identifying the optimal hyperparameters for face mask recognition models is 

challenging since standard classification models struggle to recognize people wearing masks. To tackle these issues, our 

study proposes an approach that incorporates grid search with hyperparameter tuning and nested cross-validation during 

the verification phase. Unlike previous studies that only used single machine learning models for classification and did 

not report optimal parameter values, our approach is innovative. Our results show that the SVM model with 

hyperparameter tuning outperforms other models, achieving a recognition accuracy of 0.99912. Importantly, our work 

is relevant in real-life masked-face recognition scenarios, verifying the system's capacity to identify the masked person's 

identity through facial recognition. 

The main limitation of our proposed method is the computation time. Although using a grid search with 

hyperparameter tuning and nested cross-validation can significantly improve the recognition performance, it still takes 

longer to process compared to using the traditional classifier without grid search or nested cross-validation. Therefore, 

this is a motivation for future work to apply the method proposed by Fayed et al. [40] to speed up the grid search for 

optimal parameter selection for SVM. Other optimization hyperparameter methods, such as Bayesian optimization 

hyperparameters, can also be used. In addition, we will develop our proposed method into an application for the 

attendance management system, which will be managed by the Center for Educational Services at Walailak University. 
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