
 Available online at www.ijournalse.org 

Emerging Science Journal 
(ISSN: 2610-9182) 

Vol. 7, No. 5, October, 2023 

 

 

Page | 1501 

 

IRS-BAG-Integrated Radius-SMOTE Algorithm with Bagging 

Ensemble Learning Model for Imbalanced Data Set Classification 

 

Lilis Yuningsih 1, Gede Angga Pradipta 2* , Dadang Hermawan 3, Putu Desiana 

Wulaning Ayu 2 , Dandy Pramana Hostiadi 2, Roy Rudolf Huizen 2  

1 Department of Information System, Faculty Computer and Informatics, Institut Teknologi dan Bisnis STIKOM Bali, Denpasar 80234, Indonesia. 

2 Post Graduate Department of Information System, Faculty Computer and Informatics, Institut Teknologi dan Bisnis STIKOM Bali, 

Denpasar 80234, Indonesia. 

3 Department of Digital Bussines, Faculty Bussines and Vocation, Institut Teknologi dan Bisnis STIKOM Bali Denpasar 80234, Indonesia. 

 

 

Abstract 

Imbalanced learning problems are a challenge faced by classifiers when data samples have an 

unbalanced distribution among classes. The Synthetic Minority Over-Sampling Technique 
(SMOTE) is one of the most well-known data pre-processing methods. Problems that arise when 

oversampling with SMOTE are the phenomenon of noise, small disjunct samples, and overfitting 

due to a high imbalance ratio in a dataset. A high level of imbalance ratio and low variance 
conditions cause the results of synthetic data generation to be collected in narrow areas and 

conflicting regions among classes and make them susceptible to overfitting during the learning 

process by machine learning methods. Therefore, this research proposes a combination between 
Radius-SMOTE and Bagging Algorithm called the IRS-BAG Model. For each sub-sample generated 

by bootstrapping, oversampling was done using Radius SMOTE. Oversampling on the sub-sample 

was likely to overcome overfitting problems that might occur. Experiments were carried out by 
comparing the performance of the IRS-BAG model with various previous oversampling methods 

using the imbalanced public dataset. The experiment results using three different classifiers proved 
that all classifiers had gained a notable improvement when combined with the proposed IRS-BAG 

model compared with the previous state-of-the-art oversampling methods. 
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1- Introduction 

Unequal class distributions in any dataset are technically called imbalances. However, a dataset is considered 

imbalanced when there is a significant difference in the disproportion between the numbers of examples in each class. 

In other words, in a class imbalance problem, one or more classes (i.e., the minority class) have very few cases, while 

another class (i.e., the majority class) has many cases. Hence, one or more classes may be underrepresented in the dataset. 

In machine learning models, this imbalanced data set condition causes the classifier to recognize data more easily in the 

majority class, and it is difficult to recognize the minority class because the amount of training data is small [1]. 

Therefore, additional steps are needed to overcome this condition at the data level, algorithmic level, and ensemble 

learning. Algorithm-level (internal) approaches create or modify existing algorithms to take into account the significance 

of positive examples [2-4]. Ensemble learning combines several classifiers into one and improves accuracy compared to 

using a single classifier. However, ensemble learning techniques alone cannot solve the class imbalance problem. Thus, 

to deal with the problem in question, ensemble learning algorithms need to be specifically adapted. It is usually done by 
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combining an ensemble learning strategy with any methods presented in the previous chapters to deal with the class 

imbalance, such as data-level preprocessing methods or cost-sensitive learning. 

Several studies have applied ensemble learning methods to improve performance in terms of accuracy. Petinrin et al. 

[5] performed bioactive molecule prediction using the Majority Voting method. The research conducted several 

experiments involving combinations of single classifiers to determine the highest accuracy, such as SVM, Naïve Bayes, 

Decision Tree, KNN, and Random Forest. The voting method used was Majority Voting with equal weight among all 

classifiers. The results showed a combination of SVM, DT, KNN, and RF with an accuracy of 97.1%. Similar to the 

research by Smith and Martinez [6], where each classifier had the same weight in calculating Majority Voting results. 

This research compared the results between filtering methods (biased filter and adaptive filter) + single classifier and 

Majority Voting for a dataset from the UCI machine learning repository with imbalanced dataset characteristics. In the 

Majority Voting model, the dataset was divided into smaller sub-data, and each was assigned a classifier to predict the 

class label of the data. The classification methods used were Multilayer Perceptron dengan Back Propagation (MLP), 

Decision Tree (C4.5), Locally Weighted Learning (LWL), 5-Nearest Neighbors (5-NN), Nearest Neighbor with 

Generalization (NNge), Naïve Bayes, Ripple Down Rule Learner (RIDOR), Random Forest (RandForest), and RIPPER. 

The testing results showed that the Majority Voting method improved accuracy more than the data filtering method. In 

addition, the Majority Voting method was more effective in computing training data than data filtering. 

Onan et al. [7] used Multi-objective Differential Evolution to weigh each classifier. Weighting was done by measuring 

the results of class prediction (a single classifier) towards an instance. The F1 measure, precision, and recall parameters 

on each classifier were used as a reference to determine the weight of each classifier toward the final voting decision. 

Testing was conducted on public data sentiment analysis and showed results where MODE-Based Weighted Voting 

obtained higher accuracy than other Stacking and Weighted Voting methods. The use of weights based on F1 measure 

values was also carried out by Bashir et al. [8] by utilizing the Majority Voting method combined with Bagging 

(BagMOOV) to predict and analyze heart disease. The classification methods used in this research were Naive Bayes, 

Linear Regression, Quadratic Discriminant Analysis, Instance-Based Learner, and SVM, and weighting was done using 

Multi-Objective Optimization. The F1 measure value was used as an objective function to measure the weight of each 

classifier in producing the final decision in predicting a class of data. This proposed model produced an accuracy value 

of 84.16%, a sensitivity of 93.26%, a specificity of 96.70%, and an F-measure of 82.15%. 

Furthermore, handling the imbalanced data problem requires data-level processing. Data-level processing is a 

mechanism to address the problem of imbalanced learning using sampling methods. Training instances are modified in 

such a way as to produce a more balanced class distribution that allows classifiers to perform similarly to standard 

classification. One of the most frequently used data oversampling methods in the data-level approach is the Synthetic 

Minority Oversampling Technique (SMOTE) method. The SMOTE method proposed by Chawla et al. [9] was an 

algorithm that performed oversampling of the minority class by taking several random samples from that class and 

creating synthetic data along the interpolation line from the sample data to the nearest minority data point with as many 

neighbors as k. The amount of synthetic data could be determined with a predetermined sampling rate parameter. The 

advantage of the SMOTE oversampling method compared to the random oversampling method was its ability to produce 

synthetic data that did not cause overfitting in the classifier. Even though SMOTE achieved a better distribution of 

synthetic data than random oversampling, when used on data distribution with a reasonably high level of variance, 

SMOTE could obtain not as good results as they should be or might even be counterproductive in many cases, especially 

at very high imbalance ratios, causing overfitting and conflict region between class labels. It was because SMOTE 

presents several drawbacks related to blind oversampling, where the generation of new (minority) positive samples only 

considered proximity and did not observe the surrounding area of the new synthetic data to be generated. 

However, in the last two decades, the development of the SMOTE method has evolved to improve some of the 

weaknesses of the initial SMOTE method. Research conducted by Fernández et al. [10] revealed many challenges and 

deficiencies in the SMOTE method, namely the presence of overlapping, small disjuncts, and noise when creating new 

synthetic data. The conditions above made it difficult for the classifier to find a decision boundary and added complexity 

to finding the optimal solution. Research conducted by Fernandez et al. [10] summarized that modifications to the 

development of the SMOTE method were generally divided into several approaches, namely the initial sample, 

integrating with undersampling, type of interpolation, operation with dimensionality changes, adaptive generation, 

relabeling, and filtering noise. One approach to modifying the SMOTE method was to consider the feasibility of the 

initial sample from the synthetic data generation process. Incorrect samples would make the distribution of data more 

complicated after the oversampling process was complete [11–13]. Based on the SMOTE method, research by 

Bunkhumpornpat et al. [12] proposed a model named Safe-Level SMOTE. This method ensured that each data point 

was in the safe category before the oversampling process was carried out using SMOTE. 

Each synthetic data point would be placed close to the safe-level area so that all new data would be created only in 

safe-level regions. Research conducted by Maciejewski & Stefanowski [14] tries to fix some of the weaknesses in Safe 

Level SMOTE. Modifying how to calculate the safe level ratio for majority-class neighbors was done by considering the 

value of the local neighborhood in selecting sample data. The selection of initial sample data by grouping data based on 
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local characteristics and adding cleaning steps with the Roughset method has been carried out by Borowska & Stepaniuk 

[15]. This research also used modified versatile SMOTE, which put data in three processing modes: no-safe, high-

complexity, and low-complexity. The k-farthest neighbors approach to determining the neighbors of the selected sample 

data was proposed by Gosain & Sardana [16]. This concept contrasts with most SMOTE development methods, which 

seek the closest distance value from the data neighbor. This research assumed that using the farthest neighbors would 

make the decision area in the minority class wider to facilitate the learning process. The Diversity and Separable Metrics 

in Over-Sampling Technique (DSMOTE) model was proposed by Mahmoudi et al. [17]. The main idea of this research 

was to use diversity and separable measure information to determine sample data points in the minority class. The 

measurement of the diversity level combined the Euclidean distance value and the geometric mean value of the sample 

data [18]. In addition, the type of SMOTE modification was carried out based on the amount of synthetic data generation 

based on the difficulty level of the sample data to be studied by the classifier. 

This approach was pioneered by research conducted by He et al. [19], who proposed the ADYSN (Adaptive Synthetic 

Sampling Approach) method. Making synthetic data based on the difficulty level of the sample data to be studied. The 

more the Nearest Neighbors of the sample data were determined to be the majority class, the more new synthetic data 

were created in that area to strengthen minority data. Research [20] proposed the SMOTE-D method. This method 

performs the dynamic creation of new synthetic data for each sample in the minority class. The amount of synthetic data 

depends on the distance of the sample data to the k-Nearest Neighbors (k=5). The farther the sample data was from the 

nearest neighbors, the more synthetic data would be generated. Data distribution calculation using the standard deviation 

of the sample data distance to each k-Nearest Neighbors. According to research [13], misclassified data was prone to 

occur in the borderline area between classes. Then the BORDERLINE-SMOTE method was proposed, which detected 

the minority class sample points that fall into the DANGER category because they were in the borderline area. Synthetic 

data was made only in the border area so that the classifier was expected could improve the ability to determine the 

decision boundary between classes in the dataset. The next approach was to combine SMOTE with various noise 

detection algorithms, such as Local Outlier Factor (LOF) [21], Rough Set Theory [15, 22–25], and Iterative-Partitioning 

Filter (IPF) [26]. Outlier detection was carried out in the same way to ensure that the sample data selected in the 

oversampling process was quality data and not in the noise category. 

Considering noise or outlier removal in datasets that have the risk of reducing the meaning of the data, especially in 

data on real-world problem cases, such as medical diagnoses, Pradipta et al. [27] proposed a modified SMOTE algorithm 

called R-SMOTE. After oversampling, the overlapping region problem in the dataset was the main focus to solve in this 

R-SMOTE algorithm. Overlapping regions occurred because of interpolation between the minority sample points and 

the nearest minority data points in different class regions. The higher the level of overlap, the more difficult it was for 

the classifier to find the boundary line for each label in the dataset. R-SMOTE did not remove the majority of the data, 

which was classified as noise, but focused more on avoiding the occurrence of interpolation towards the noise data point. 

A new synthetic sample was created with a safe radius boundary, namely the boundary with the closest majority data. 

Each piece of data was interpolated in one direction and to all areas within that radius. The R-SMOTE method had been 

applied to medical case data, namely the umbilical cord [28, 29] and electroencephalography [30].  

However, the R-SMOTE method still has weaknesses, namely on datasets with an amount of noise and small disjunct 

spread over several data distribution areas. This condition causes a decrease in the performance level of the machine 

learning algorithm. Small disjunct is a condition where noise forms a set of small clusters scattered in the dataset. In 

addition, in R-SMOTE, overfit conditions may occur when the synthetic data generated is extensive and relatively close 

to one another. The small safety radius distance causes this closeness in one data generation cycle. In addition, when 

directly applied to imbalanced datasets, ensemble learning methods do not solve the underlying problem in the classifiers 

themselves with skewed class distributions. For this reason, they need to be combined with other techniques to tackle 

class imbalance problems. Based on this problem, the main contribution of this research was to create a synthetic data 

formation model by dividing the primary dataset into several parts or called Bag. The proposed model was a combination 

of two approaches: data-level processing and ensemble learning. The R-SMOTE method was modified by working on 

sub-datasets so that each classifier would be supplied with training data based on the oversampling results in each sub-

dataset. This modification process combined the R-SMOTE method into the Bagging algorithm. With the sub-dataset 

that has been oversampled using R-SMOTE, each base classifier would easier understand the data characteristics even 

though there were some noises and small disjuncts in the dataset. The majority voting method was applied to each base 

classifier formed on each oversampled subset data. 

2- Integrated Radius-SMOTE with Bagging Algorithm (IRS-BAG) 

The proposed IRS-BAG model was a development model of the SMOTE [9] and Radius-SMOTE [27] methods to 

overcome and withstand imbalanced data conditions and the existence of noise data. In the SMOTE or Radius-SMOTE 

algorithms, the process of creating synthetic data was carried out on the entire dataset as a whole. This concept was still 

very susceptible to overfitting when learning was carried out by the classifier. In data samples between the minority and 

majority instances that were very close together, the Radius-SMOTE method would accumulate new data in a smaller 

area where this caused a higher overfit risk. Figure 1. illustrates the differences in the data distribution resulting from 

oversampling using the SMOTE, Radius-SMOTE, and IRS-BAG SMOTE methods. From the illustration, the IRS-BAG 
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model oversamples the new sub-data sample created from the bootstrapping process. Synthetic data did not seem to 

overlap with other regions, and the data distribution did not accumulate in very small areas. It was indeed able to improve 

the performance of the classification process by each base classifier. Figure 2 shows the workflow of the process IRS-

Bag Model. The first step in the IRS-BAG method was dividing the original dataset into several sub-data using the 

bootstrapping technique, which was part of the bagging method. This process produced several sub-sample datasets 

where the data inside was part of the primary dataset. The next process was oversampling the minority data contained in 

each sub-sample dataset.  

The Radius-SMOTE method was one of the development methods from SMOTE, which focused on improving the 

distribution of synthetic data to minimize overlapping regions between classes and reduce the creation of new data noise. 

The condition of overlapping regions and the existence of noise data greatly defected the ability of the base classifier to 

determine patterns and decision boundaries for each class in the learning process. The Radius-SMOTE method 

essentially limited the area where synthetic data was generated by using a safe radius parameter taken from the distance 

from the minority sample point to the nearest majority data point. Furthermore, each sub-sample dataset resulting from 

oversampling was used as input in the learning process of each base classifier. In this research, the number of 

performance evaluations was carried out on four base classifiers, namely Support Vector Machine (SVM), K-Nearest 

Neighbors (KNN), and Decision Tree (C.45). The decision-making for the final class output was carried out by the 

averaging voting method where the weight value for decision making was the same between each. The final class would 

be the output class with the highest voting value. 

 

Figure 1. Illustration of sample distribution on Oversampling SMOTE, Radius SMOTE, and IRS-BAG SMOTE Algorithms 

 

Figure 2. Workflow of IRS-BAG SMOTE Algorithm 
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The detailed algorithm flows are shown with the pseudocode in Table 1. In general, the stages of this algorithm 

consisted of bootstrapping, oversampling Radius-SMOTE, and final label voting. In the bootstrapping process for each 

instance in the training dataset S determined the number of data subsets J to be formed. In each training data subset 𝑆𝑡 

filled the data with random sample replacement taken from dataset S according to the bootstrap size n. The following 

process created synthetic data using the Radius-SMOTE method on each 𝑆𝑡 sub-dataset. In each minority data, 

𝑃𝑠𝑢𝑏𝑛𝑢𝑚  in the sub-dataset calculated the Euclidian distance to all minority data and classified it based on the number of 

nearest neighbors set. If the classification result of the 𝑃𝑠𝑢𝑏𝑛𝑢𝑚 was minority data, it was categorized into 𝑃𝑠𝑢𝑏𝑆𝐴𝐹𝐸 . 

Conversely, if the result was a majority category, it was stored in 𝑃𝑠𝑢𝑏𝐷𝐴𝑁𝐺𝐸𝑅 . Data sampling was taken randomly for 

Radius-SMOTE oversampling on the safe data category stored in 𝑃𝑠𝑢𝑏𝑆𝐴𝐹𝐸 . After the sample data was determined, 

calculated its distance to all the data in the train data subset. Furthermore, find the smallest distance value from the 

sample data to the majority data in the training subset. Then the closest distance result X_dist was used as a circle-safe 

radius to form new synthetic data. The last step after the oversampling process was the learning process of each base 

classifier on each sub-dataset. When the model had been formed, the voting method from each base classifier was used 

to determine the final class label of the testing data. 

Table 1. IRS-BAG Algorithm 

Input : S: Training Set ; N : Majority instances; P : Minority instance; 𝑁𝑠𝑢𝑏 : Majority instances in subset data ; 𝑃𝑠𝑢𝑏 : Minority instance in subset 

data; T: Number of iterations; n: Bootstrap size; I: Weak learner; 𝑃𝑠𝑢𝑏𝑛𝑢𝑚: number of minority instance in subset data; 𝑁𝑠𝑢𝑏𝑛𝑢𝑚: number of majority 

instance in subset data ; J : Number of subset data; I: Weak learner; 𝑆𝑡: 𝑆𝑢𝑏𝑠𝑒𝑡 𝑡𝑟𝑎𝑖𝑛𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 

Output: final label prediction  

Bootstrap sampling 

1: for s = 1 to J 

2:             for t = 1 to T do 

3:             𝑆𝑡 ← RandomSampleReplacemnet (n,S) 

 

Oversampling Radius-SMOTE for Each Subset Data 

4: for t =1 to 𝑃𝑠𝑢𝑏𝑛𝑢𝑚 

5:               Compute KNN algorithm  

6:               Classifying  𝑃𝑠𝑢𝑏 

7:               𝑃𝑠𝑢𝑏𝑆𝐴𝐹𝐸   ← 𝑃𝑠𝑢𝑏  classified by KNN as Minority Instances 

8:               𝑃𝑠𝑢𝑏𝐷𝐴𝑁𝐺𝐸𝑅  ← 𝑃𝑠𝑢𝑏  classifier by KNN as Majority Instances 

9:               𝑃𝑠𝑢𝑏𝑆𝐴𝐹𝐸𝑆𝐴𝑀𝑃𝐿𝐸  ← randomly select form 𝑃𝑠𝑢𝑏𝑆𝐴𝐹𝐸  

10: end for 

11: for 1 to 𝑁𝑠𝑢𝑏𝑛𝑢𝑚 

                   𝑁𝑠𝑢𝑏𝑑𝑖𝑠𝑡 ← Compute distance form all majority instances to 𝑃𝑠𝑢𝑏𝑆𝐴𝐹𝐸𝑆𝐴𝑀𝑃𝐿𝐸  using 

Euclidean distance. 

                   𝑁𝑠𝑢𝑏𝑀𝐼𝑁 ← Majority instance with minimum distances from 𝑃𝑠𝑢𝑏𝑆𝐴𝐹𝐸𝑆𝐴𝑀𝑃𝐿𝐸  

12: end for 

13: 𝑋_𝑑𝑖𝑠𝑡 ← distance 𝑁𝑠𝑢𝑏𝑀𝐼𝑁  to 𝑃𝑠𝑢𝑏𝑆𝐴𝐹𝐸𝑆𝐴𝑀𝑃𝐿𝐸  

 

Calculate new synthesize instance with under radius distance  𝑿_𝒅𝒊𝒔𝒕 

14: 𝑃𝑠𝑢𝑏𝑁𝐸𝑊 =  𝑃𝑠𝑢𝑏𝑆𝐴𝐹𝐸𝑆𝐴𝑀𝑃𝐿𝐸  + (rand (0,1) × 𝑋_𝑑𝑖𝑠𝑡)  

15: 𝑃𝑠𝑢𝑏𝑁𝐸𝑊  = 𝑃𝑠𝑢𝑏+𝑃𝑠𝑢𝑏𝑁𝐸𝑊  

16: End for 

 

Learning on Subset Data 

17: for k= 1,….,I 

 18:                          ℎ𝑡= I(. 𝑃𝑠𝑢𝑏𝑁𝐸𝑊)  # train a base learner I from Subset dataset after 

oversampling Radius-SMOTE 

19: add ℎ𝑡 to the ensemble, 𝜀 ←  𝜀 ∪ ℎ𝑡 

End 

Voting 

20: Ensemble Combination: Simple Majority Voting – Given unlabeled instance x 

21: Evaluate the ensemble 𝜀 =  {ℎ1, … … ℎ𝑡} on x 

22: Let 𝑉𝑡,𝑐 = 1 if ℎ𝑡 chooses class 𝜔𝑐 , and 0, otherwise. 

23: Obtain the total vote received by each class. 

𝑉𝑐 =  ∑ 𝑉𝑡,𝑐

𝑇

𝑡=1
, 𝑐 = 1, … . . 𝐶 

Output: Class with highest 𝑉𝑐 
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The following explains each step of the IRS-BAG process: bagging, oversampling Radius-SMOTE, and Voting 

Classification. 

2-1- Radius SMOTE Algorithm 

If analyzed, the problems of overlapping, noise, and small disjunct were the result of selecting random sample data 

for minority class data. Noise data in the minority class had the risk of producing new noise data, which caused regional 

conflicts between each class. The Radius-SMOTE was inspired by the work carried out by Han et al. [13] and 

Bunkhumpornpat et al. [12], which conducted filtering on the sample data so that the selection of data samples was not 

done randomly. It ensured the data was created with the right sample selection. This proposed modification of the 

SMOTE model began by dividing the data points in the minority class into three categories, namely SAFE, NOISE, and 

SMALL DISJUNCT. Data selection or filtering was carried out using the K-NN method based on the data’s location 

and the data’s neighbors to other classes. Each minority dataset would be selected with a parameter value of k in the 

KNN method, which was set to 5. Then, minority data correctly classified as minority data by the KNN method became 

data in the SAFE category. Conversely, minority data classified as majority would be those with the NOISE/SMALL 

DISJUNCT category. 

The next step after the sample data was divided into two categories, namely SAFE and NOISE, where was the process 

of creating new synthetic data. Making new synthetic data was done on data with the SAFE category. As in the SMOTE 

method, synthetic data was made by identifying the closest minority data points and drawing interpolation lines between 

them. Determining the number of closest data points in the SMOTE method used the KNN method approach with 

parameter k as the number of closest data points. As previously explained, using the k parameter was very risky to 

produce new synthetic data, resulting in overlapping between the minority class and the majority class. Therefore, this 

research proposed to use the radius parameter. The radius was obtained by finding the closest distance to the majority 

data point from the sample and using it as the radius value. All new data points were created within that radius. 

For data formation within the radius, the circle equation was used as in Equation 1, with an example of a two-

dimensional vector. 

‖𝑏
~ −

𝑝
~‖ ≤ 𝑟2  

‖𝑎
~ −

𝑝
~‖ ≤ 𝑟2  

(1) 

∑ (𝑏𝑖𝑗 − 𝑃𝑖𝑗)
2

≤ 𝑟2𝑛
𝑖=1   (2) 

𝑟2 = ∑ (𝑝𝑗 − 𝑡𝑗)
2𝑛

𝑗=1   (3) 

where 𝑝 a is the center point of the circle (minority sample point) with (𝑝1, 𝑝2, 𝑝3, … 𝑝𝑛), and t (𝑡1, 𝑡2, 𝑡3, … 𝑡𝑛), is the 

majority point closest to the center of the circle, 𝑏𝑖 is the new data point under the radius with (𝑏1, 𝑏2, 𝑏3, … 𝑏𝑛) with i 

=1…n then 𝑟2 is the distance between p with 𝑡 as in Equation 3. An illustration of this proposed model can be seen in 

Figure 1. Then each minority sample is calculated its distance from the majority class. Calculation of the distance using 

the Euclidean distance method. The nearest majority data point is the one that has the minimum distance to the overall 

distance to the minority data points as in Equation 4. 

𝑟𝑖𝑗 = 𝑚𝑖𝑛 ∑ ∑ √(𝑝𝑗 − 𝑡𝑖)
2𝑛

𝑗=1
𝑛
𝑖=1   (4) 

where 𝑟𝑖𝑗 is the smallest distance between the minority data to j against the majority data to i. After the majority data 

points are found, synthetic data formation is carried out on the interpolation of the two points. The formation of synthetic 

data is carried out in two directions of the line, namely 𝑟𝑖𝑗 and −𝑟𝑖𝑗 with the Equations on 5 and 6. 

𝑎𝑖𝑗 = 𝑝𝑗  + (𝑟𝑎𝑛𝑑(0,1) × (𝑟𝑖𝑗 − 𝑝𝑗)) (5) 

𝑏𝑖𝑗 = 𝑝𝑗  + (𝑟𝑎𝑛𝑑(0,1) × (𝑝𝑗  − 𝑟𝑖𝑗 )) (6) 

Limiting the area of creating this new data reduced the occurrence of overlapping data, as happened in the SMOTE 

method. In this research, Radius-SMOTE was not directly implemented on the entire training dataset but on the sub-

dataset resulting from the bootstrapping process, as shown in Figure 3. A dataset with a high imbalance ratio and a low 

variance value was at risk of overfitting due to data crowding in a narrow area. In addition, one way to improve classifier 

performance was with the ensemble learning technique, which involved multiple classifiers trained on different subsets 

of training data. 
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Figure 3. Radius-SMOTE in every bag/subset training set 

2-2- Bagging Algorithm 

Breiman [31] introduced a concept called bootstrap aggregating to form an ensemble model. This learning ensemble 

was formed from the results of training several classifiers with different bootstrapped replicas of the original training 

dataset. Therefore, a subsample dataset was formed by randomly drawing with replacement instances from the original 

dataset to conduct training for each base classifier. The most usual practice was maintaining the original dataset size, 

meaning that approximately 63.2% of the instances would be presented in each bag (with some of them appearing more 

than once). Given a training dataset S of cardinality N, bagging simply trains T independent classifiers, each trained by 

sampling, with replacement, N instances from S. Because each model was formed from different sample data, the 

resulting decision trees would be different. Therefore, decision-making on bagging applied the principle of aggregating, 

namely voting on the classification results of the entire model. Bagging diversity was obtained from the resampling 

procedure by training each classifier with different data subsets. The assuming base classifier used was of a weak type, 

the resulting model should differ due to the changes in the data. Weighted majority voting was usually used by using 

confidence given by each classifier in the prediction. One of the advantages of this bagging method was its simplicity 

and reduced variance since the effect of voting was similar to that of averaging regression, where the overfitting reduction 

became easier to observe. The pseudo-code of the bagging algorithm is shown in Table 2. 

Table 2. Bagging Algorithm 

Input: Training data S; supervised learning algorithm, BaseClassifier, integer T specifying ensemble size; percent R to create bootstrapped trainning 

data. 

Do t = 1,….,T 

1. Take a bootstrapped replica 𝑆𝑡 by randomly drawing R % of S.  

2. Call BaseClassifier with 𝑆𝑡 and receive the hypothesis (classifer) ℎ𝑡. 

3. Add ℎ𝑡 to the ensemble, 𝜀 ←  𝜀 ∪ ℎ𝑡. 

End 

Ensemble Combination: Simple Majority Voting – Given unlabeled instance x 

20. Evaluate the ensemble 𝜀 =  {ℎ1, … … ℎ𝑡} on x 
21. Let 𝑉𝑡,𝑐 = 1 if ℎ𝑡 chooses class 𝜔𝑐 , and 0, otherwise. 

22. Obtain total vote received by each class 

𝑉𝑐 =  ∑ 𝑉𝑡,𝑐

𝑇

𝑡=1
, 𝑐 = 1, … . . 𝐶 

Output: Class with highest 𝑉𝑐 

3- Experimental Setting 

3-1- Experimental Data 

This section describes the characteristics of the acquired datasets used in this research. The experiments were carried 

out using 13 different imbalanced datasets from different application areas on binary and multiclass classification 

problems. The dataset used had a different number of features and a different imbalance ratio. Dataset obtained from 

UCI Machine Learning Repository and KEEL Repository. Table 3 shows the characteristics of the dataset used in the 
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experiment. In the table, there was information on the imbalanced ratio value, which represented the value of the ratio 

between negative and positive classes, the number of features in each dataset, the number of data or instances in each 

dataset, the number of comparisons of positive and negative instances in percent size. The dataset was selected by 

considering the imbalanced ratio values from relatively low to high. 

Table 3. Dataset Characteristic for Experimentation 

No Name Imbalanced Ratio (IR) Features Instances Positive Instances (%) Negative Instances (%) 

1 03subcl5-600-5-70-BI 5 2 600 16.67 83.30 

2 04clover5z-600-5-70-BI 5 2 600 16.67 83.30 

3 ecoli-0-1-3-7_vs_2-6 39.14 7 281 2.49 97.51 

4 glass1 1.82 9 214 35.46 64.54 

5 new thyroid 4.84 5 215 17.12 82.88 

6 paw02a-600-5-70-BI 5 2 600 16.67 83.30 

7 wine 1.5 13 178 40.00 60.00 

8 yeast-1-4-5-8_vs_7 22.10 8 693 4.330 95.67 

9 Umbilical Cord 18.87 5 151 5.300 94.70 

10 Breast 2.36 9 286 29.12 70.38 

11 Haberman 2.78 3 306 26.39 73.61 

12 Pima 1.87 8 768 34.86 65.14 

13 Bupa 1.38 6 345 42.19 57.81 

3-2- Evaluation Metrics 

The performance of the classification model would be tested using three metrics, including accuracy, precision, recall, 

and F-Measure. In machine learning classification tasks, confusion matrix parameters which were True Positive (TP), 

True Negative (TN), False Positive (FP), and False Negative (FN), were the main parameters from which other 

performance metrics, such as Precision, Recall and F1 scores were computed. Accuracy measured the amount of data 

correctly classified according to the ground truth label divided by the total data used for testing. Precision was the rate 

of correct predictions among all samples predicted to belong to the minority class. It indicated how many of the positive 

predictions were correct, whereas recall means the proportion of minority class samples labeled as positive. Table 4 

shows formulas for measuring accuracy, precision, recall, and F-Measure. 

Table 4. Performance Metrics 

No Metrics Expression 

1 Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

2 Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

3 Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

4 F-Measure 
𝐹𝛽 =  

1

𝛽 ×
1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 + (1 − 𝛽) ×

1
𝑟𝑒𝑐𝑎𝑙𝑙

 

Then the F-measure parameter was the harmonic mean of precision and recall. 𝛽 was the value of the F-measure 

ranging from 0 to 1. The greater the value 𝛽 then the testing model prioritized the results of precision and vice versa. 

4- Experimental Result and Analysis 

4-1- Experiment on Combination of Different Base Classifier and SMOTE variant 

The IRS-BAG model was tested with the first scheme on three types of base classifiers or estimators, namely support 

vector machines (SVM), Decision trees, and K-Nearest Neighbors (KNN), which were also combined with several states 

of art from the development of the SMOTE method. Their default settings in Python libraries had used all of these 

classifiers, and none of their hyperparameters had been optimized. The SMOTE variants used were ADAYSN-SMOTE 

[19], Tomek-link [32], SMOTE-IPF [26], Borderline-SMOTE [13], and Safe-level SMOTE [12]. The K-fold cross 

validation method was used in each classifier with the specified number of folds being 10. 
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Table 5 shows the experimental results on IRS-BAG with the SVM base classifier. The performance shown by the 

proposed model was marked in bold font with the highest value on each dataset. The proposed model performed was 

measured based on accuracy, precision, recall, and F-Measure for each dataset used. The proposed method using IRS-

BAG outperforms in 7 out of 11 datasets compared to other SMOTE methods, namely in 04clover5z-600-5-70-BI, ecoli-

0-1-3-7_vs_2-6, breast, new thyroid, Pima, Umbilical Cord, and yeast-1-4-5-8_vs_7 datasets. These results showed an 

increase in performance for the accuracy of the bagging method with the proposed method (IRS-BAG) on the 

04clover5z-600-5-70-BI dataset of 10%. Then, there was an increase of 10% in the new thyroid dataset and 0.6% in the 

Pima and Umbilical Cord datasets. The increase in performance in terms of precision on the 04clover5z-600-5-70-BI 

dataset by 24%, on the ecoli-0-1-3-7_vs_2-6 dataset by 50%, on the Pima dataset by 12%, and on the Umbilical Cord 

dataset by 0.5%. While the performance improvement in terms of recall on the 03subcl5-600-5-70-BI and 04clover5z-

600-5-70-BI datasets by 30%, on the ecoli-0-1-3-7_vs_2-6 dataset by 50%, and on the Umbilical Cord and yeast datasets 

by 2%. 

Table 5. IRS-BAG Classification result using SVM based classifier compare with varians of previous SMOTE methods 

Metrics Dataset Bagging 

Bagging+ 

SMOTE 

[9] 

Bagging + 

ADAYSN 

[19] 

Bagging 

+ IPF 

[26] 

Bagging + 

TomekLink 

[32] 

Bagging + 

Borderline 

[13] 

Bagging + 

Safe Level 

[12] 

IRS-

BAG 

Accuracy 

03subcl5-600-5-70-BI 0.82 0.8 0.76 0.79 0.83 0.78 0.78 0.84 

04clover5z-600-5-70-BI 0.81 0.87 0.87 0.87 0.91 0.89 0.82 0.91 

bupa 0.71 0.76 0.76 0.52 0.79 0.69 0.57 0.76 

ecoli-0-1-3-7_vs_2-6 0.97 0.99 0.99 0.96 0.99 0.99 0.97 0.99 

glass1 0.74 0.77 0.84 0.46 0.5 0.46 0.57 0.55 

haberman 0.81 0.71 0.6 0.65 0.61 0.57 0.67 0.71 

breast 0.71 0.61 0.52 0.61 0.63 0.59 0.62 0.71 

new thyroid 0.81 0.87 0.87 0.91 0.86 0.91 0.79 0.91 

paw02a-600-5-70-BI 0.85 0.88 0.91 0.89 0.93 0.91 0.84 0.88 

pima 0.81 0.83 0.82 0.86 0.82 0.82 0.75 0.87 

Umbilical Cord 0.91 0.92 0.91 0.87 0.91 0.96 0.93 0.97 

wine 0.87 0.97 0.9 0.91 0.89 0.91 0.87 0.92 

yeast-1-4-5-8_vs_7 0.89 0.81 0.79 86 0.87 0.91 0.81 0.91 

Precision 

03subcl5-600-5-70-BI 0.41 0.85 0.8 0.84 0.87 0.82 0.81 0.87 

04clover5z-600-5-70-BI 0.67 0.87 0.87 0.87 0.91 0.89 0.82 0.91 

bupa 0.71 0.77 0.77 0.32 0.8 0.7 0.6 0.69 

ecoli-0-1-3-7_vs_2-6 0.49 0.99 0.99 0.96 0.99 0.99 0.49 0.99 

glass1 0.74 0.77 0.85 0.23 0.5 0.23 0.54 0.47 

haberman 0.90 0.73 0.6 0.68 0.65 0.59 0.69 0.72 

breast 0.68 0.64 0.56 0.63 0.65 0.62 0.69 0.71 

new thyroid 0.93 0.91 0.89 0.93 0.91 0.92 0.92 0.92 

paw02a-600-5-70-BI 0.75 0.88 0.91 0.89 0.93 0.92 0.84 0.89 

pima 0.77 0.83 0.82 0.86 0.81 0.83 0.75 0.89 

Umbilical Cord 0.9 0.92 0.93 0.82 0.91 0.93 0.91 0.95 

wine 0.85 0.95 0.89 0.89 0.89 0.87 0.83 0.91 

yeast-1-4-5-8_vs_7 0.86 0.79 0.77 0.84 0.87 0.85 0.82 0.89 

Recall 

03subcl5-600-5-70-BI 0.50 0.8 0.76 0.79 0.83 0.79 0.77 0.84 

04clover5z-600-5-70-BI 0.64 0.87 0.87 0.87 0.91 0.89 0.82 0.90 

bupa 0.71 0.76 0.76 0.37 0.8 0.7 0.58 0.56 

ecoli-0-1-3-7_vs_2-6 0.49 0.99 0.99 0.96 0.99 0.99 0.49 0.99 

glass1 0.7 0.77 0.83 0.5 0.5 0.5 0.5 0.5 

haberman 0.53 0.69 0.6 0.64 0.59 0.58 0.64 0.74 

breast 0.65 0.61 0.54 0.62 0.62 0.58 0.62 0.54 

new thyroid 0.59 0.86 0.87 0.91 0.85 0.91 0.57 0.91 

paw02a-600-5-70-BI 0.75 0.88 0.91 0.89 0.93 0.92 0.84 0.88 

pima 0.77 0.83 0.82 0.86 0.81 0.82 0.75 0.84 

Umbilical Cord 0.92 0.91 0.91 0.79 0.89 0.93 0.91 0.94 

wine 0.84 0.93 0.88 0.88 0.89 0.87 0.83 0.89 

yeast-1-4-5-8_vs_7 0.85 0.78 0.74 0.82 0.87 0.85 0.82 0.87 
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F-Measure 

03subcl5-600-5-70-BI 0.45 0.79 0.75 0.78 0.82 0.78 0.77 0.84 

04clover5z-600-5-70-BI 0.65 0.87 0.87 0.87 0.91 0.89 0.82 0.9 

bupa 0.71 0.76 0.76 0.34 0.79 0.69 0.55 0.55 

ecoli-0-1-3-7_vs_2-6 0.49 0.99 0.99 0.96 0.99 0.99 0.49 0.99 

glass1 0.71 0.77 0.83 0.32 0.5 0.32 0.36 0.5 

haberman 0.5 0.68 0.6 0.62 0.56 0.56 0.63 0.71 

breast 0.65 0.58 0.48 0.59 0.61 0.55 0.59 0.5 

new thyroid 0.66 0.87 0.87 0.91 0.86 0.91 0.63 0.91 

paw02a-600-5-70-BI 0.75 0.88 0.91 0.91 0.93 0.92 0.84 0.89 

pima 0.77 0.83 0.82 0.86 0.81 82 0.75 0.85 

Umbilical Cord 0.92 0.91 0.91 0.79 0.89 0.93 0.91 0.94 

wine 0.84 0.93 0.88 0.88 0.89 0.87 0.83 0.89 

yeast-1-4-5-8_vs_7 0.85 0.78 0.74 0.82 0.87 0.85 0.82 0.87 

Then the following experiment was to test the Decision Tree C.45 as a classifier. Table 6 shows the experimental 

results with accuracy, precision, recall, and F-Measure parameters. The IRS-BAG method produced the best 

performance on nine datasets compared to other methods. In the Bagging method with a based classifier using a Decision 

Tree, the use of oversampling increased the resulting performance. The proposed IRS-BAG method was able to dominate 

with superiority in the nine datasets used compared to the previous methods.  

Table 6. IRS-BAG classification result using Decision Tree based classifier compare with variants of previous SMOTE Methods 

Metric Dataset Bagging 

Bagging+ 

SMOTE 

[9] 

Bagging + 

ADAYSN 

[19] 

Bagging 

+ IPF 

[26] 

Bagging + 

TomekLink 

[32] 

Bagging + 

Borderline 

[13] 

Bagging + 

Safe Level 

[12] 

IRS-

BAG 

Accuracy 

03subcl5-600-5-70-BI 0.82 0.85 0.84 0.85 0.86 0.86 0.82 0.89 

04clover5z-600-5-70-BI 0.81 0.87 0.87 0.87 0.91 0.89 0.82 0.91 

bupa 0.71 0.76 0.77 0.52 0.79 0.81 0.70 0.89 

ecoli-0-1-3-7_vs_2-6 0.97 0.99 0.99 0.96 0.99 0.99 0.97 0.99 

glass1 0.74 0.77 0.84 0.78 0.89 0.77 0.67 0.85 

haberman 0.70 0.74 0.72 0.74 0.76 0.75 0.58 0.83 

breast 0.65 0.83 0.78 0.75 0.81 0.80 0.64 0.89 

new thyroid 1.00 0.96 0.97 0.97 0.97 0.95 0.93 0.98 

paw02a-600-5-70-BI 0.85 0.88 0.91 0.89 0.93 0.91 0.85 0.88 

pima 0.80 0.83 0.82 0.86 0.87 0.82 0.75 0.87 

Umbilical Cord 0.98 0.97 0.99 0.99 0.97 0.99 0.92 1.00 

wine 0.96 1.00 0.96 0.94 0.99 0.96 0.94 0.95 

yeast-1-4-5-8_vs_7 0.94 0.95 0.95 0.96 0.95 0.97 0.90 0.98 

Precision 

03subcl5-600-5-70-BI 0.69 0.86 0.84 0.87 0.87 0.86 0.82 0.89 

04clover5z-600-5-70-BI 0.67 0.87 0.87 0.88 0.91 0.89 0.82 0.91 

bupa 0.71 0.77 0.77 0.32 0.80 0.81 0.70 0.91 

ecoli-0-1-3-7_vs_2-6 0.49 0.99 0.99 0.96 0.99 0.99 0.49 0.99 

glass1 0.74 0.77 0.85 0.80 0.89 0.77 0.67 0.85 

haberman 0.56 0.73 0.75 0.75 0.76 0.79 0.58 0.84 

breast 0.60 0.83 0.79 0.76 0.81 0.80 0.64 0.92 

new thyroid 1.00 0.98 0.97 0.98 0.97 0.96 0.93 0.98 

paw02a-600-5-70-BI 0.75 0.89 0.91 0.89 0.93 0.92 0.84 0.88 

pima 0.77 0.83 0.82 0.86 0.87 0.83 0.75 0.90 

Umbilical Cord 0.66 0.99 1.00 1.00 0.99 1.00 0.60 1.00 

wine 0.95 1.00 0.96 0.96 0.98 0.96 0.93 0.93 

yeast-1-4-5-8_vs_7 0.48 0.95 0.97 0.97 0.95 0.98 0.86 0.98 
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Recall 

03subcl5-600-5-70-BI 0.67 0.85 0.84 0.85 0.86 0.86 0.81 0.89 

04clover5z-600-5-70-BI 0.67 0.87 0.87 0.87 0.91 0.89 0.82 0.91 

bupa 0.70 0.77 0.77 0.37 0.80 0.81 0.70 0.80 

ecoli-0-1-3-7_vs_2-6 0.49 0.99 0.99 0.96 0.99 0.99 0.49 0.99 

glass1 0.70 0.77 0.83 0.79 0.89 0.77 0.67 0.85 

haberman 0.56 0.73 0.72 0.74 0.76 0.75 0.59 0.78 

breast 0.57 0.83 0.79 0.77 0.81 0.80 0.64 0.84 

new thyroid 1.00 0.98 0.97 0.98 0.97 0.96 0.90 0.98 

paw02a-600-5-70-BI 0.75 0.89 0.91 0.89 0.93 0.91 0.84 0.89 

pima 0.77 0.83 0.82 0.86 0.87 0.82 0.75 0.84 

Umbilical Cord 0.68 0.99 1.00 1.00 0.99 1.00 0.65 1.00 

wine 0.98 1.00 0.96 0.96 0.98 0.96 0.95 0.94 

yeast-1-4-5-8_vs_7 0.49 0.95 0.96 0.97 0.95 0.98 0.87 0.98 

F-Measure 

03subcl5-600-5-70-BI 0.68 0.85 0.84 0.85 0.86 0.86 0.82 0.89 

04clover5z-600-5-70-BI 0.65 0.87 0.87 0.87 0.91 0.89 0.82 0.91 

bupa 0.71 0.76 0.77 0.34 0.79 0.81 0.70 0.84 

ecoli-0-1-3-7_vs_2-6 0.49 0.99 0.99 0.96 0.99 0.99 0.49 0.99 

glass1 0.71 0.77 0.83 0.78 0.89 0.77 0.67 0.85 

haberman 0.56 0.73 0.72 0.74 0.76 0.76 0.58 0.79 

breast 0.57 0.83 0.78 0.76 0.81 0.80 0.64 0.87 

new thyroid 1.00 0.98 0.97 0.97 0.97 0.96 0.91 0.98 

paw02a-600-5-70-BI 0.75 0.89 0.91 0.89 0.93 0.91 0.84 0.88 

pima 0.77 0.83 0.82 0.86 0.87 0.82 0.75 0.86 

Umbilical Cord 0.66 0.99 1.00 1.00 0.99 1.00 0.62 1.00 

wine 0.96 1.00 0.96 0.96 0.98 0.96 0.94 0.94 

yeast-1-4-5-8_vs_7 0.50 0.95 0.96 0.97 0.95 0.98 0.87 0.98 

The most significant increase using the IRS-BAG method occurred in the Bupa dataset, with an initial accuracy 

compared to the Bagging method by 18%, the Haberman and breast datasets by 13%, the Pima dataset by 7%, the 

paw02a-600-5-70-BI, and yeast-1-4-5-8_vs_7 datasets by 4%, and in the Umbilical Cord dataset by 2%. Performance 

improvement in precision on 03subcl5-600-5-70-BI and 04clover5z-600-5-70-BI datasets by 30%. In addition, on Bupa 

dataset by 20%, the ecoli-0-1-3-7_vs_2-6 dataset by 50%, on Haberman dataset by 28%, the breast dataset by 32%, the 

Pima dataset by 13%, the Umbilical dataset by 34% and yeast-1-4-5-8_vs_7 dataset by 50%. While the performance 

improvement in terms of recall on the 03subcl5-600-5-70-BI dataset by 22%, on the 04clover5z-600-5-70-BI dataset by 

24%, ecoli-0-1-3-7_vs_2-6 by 50%, on the breast dataset by 27%, ecoli-0-1-3-7_vs_2-6 dataset by 50%, on Haberman 

dataset by 20%, breast dataset by 32%, Umbilical dataset by 32% and yeast-1-4-5-8_vs_7 dataset by 49% 

Table 7 shows the test results using the KNN classifier, where the IRS-BAG method can achieve the best result of 

accuracy, precision, recall, and F-Measure on five datasets. The most significant performance improvements occurred 

in the 03subcl5-600-5-70-BI, 04clover5z-600-5-70-BI, Bupa, Haberman, and Breast datasets with an average increase 

in accuracy, precision, and recall of ±21%.  

The most significant increase using the IRS-BAG method occurred in the paw02a-600-5-70-BI with the initial 

accuracy compared to the Bagging method by 4%, the Bupa dataset by 29%, the Haberman dataset by 21%, the breast 

dataset by 27%, and in the Umbilical Cord dataset by 7%. Performance improvement in terms of precision on the 

paw02a-600-5-70-BI dataset with the initial precision compared to the Bagging method by 25%, 04clover5z-600-5-70-

BI dataset by 28%, Haberman dataset by 35%, breast dataset by 25%, breast dataset by 27%, and Umbilical Cord dataset 

by 40%. Improved performance in terms of recall on the paw02a-600-5-70-BI dataset with the initial precision compared 

to the Bagging method by 30%, glass1 dataset by 15%, breast dataset by 34%, yeast-1-4-5-8_vs_7 dataset by 49%, breast 

dataset by 27%, and Umbilical Cord dataset by 32%.  

The use of these three-based classifiers in the experiments that have been carried out showed that IRS-BAG could 

provide a significant increase in performance compared to other methods. These results provided evidence of the 

effectiveness of the Radius-SMOTE method in suppressing the overlapping of data resulting from the oversampling 

process so that it was easier for the classifier to determine the decision boundary of each class in the dataset. 
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Table 7. IRS-BAG classification result using KNN based classifier compare with variants of previous SMOTE methods 

Metric Dataset Bagging 

Bagging+ 

SMOTE 

[9] 

Bagging + 

ADAYSN 

[19] 

Bagging 

+ IPF 

[26] 

Bagging + 

TomekLink 

[32] 

Bagging + 

Borderline 

[13] 

Bagging + 

Safe Level 

[12] 

IRS-

BAG 

Accuracy 

03subcl5-600-5-70-BI 0.79 0.78 0.81 0.86 0.82 0.85 0.80 0.87 

04clover5z-600-5-70-BI 0.71 0.82 0.82 0.80 0.91 0.83 0.82 0.88 

bupa 0.69 0.71 0.73 0.51 0.74 0.81 0.69 0.88 

ecoli-0-1-3-7_vs_2-6 0.98 0.98 0.98 0.95 0.98 1.00 0.96 0.98 

glass1 0.72 0.75 0.81 0.71 0.85 0.71 0.62 0.82 

haberman 0.60 0.72 0.72 0.67 0.71 0.72 0.51 0.81 

breast 0.61 0.80 0.72 0.73 0.74 0.79 0.61 0.88 

new thyroid 1.00 0.92 0.93 0.94 0.98 0.94 0.94 0.98 

paw02a-600-5-70-BI 0.81 0.83 0.88 0.89 0.93 0.90 0.83 0.87 

pima 0.77 0.81 0.82 0.83 0.88 0.83 0.72 0.81 

Umbilical Cord 0.93 0.97 0.94 0.98 0.98 0.99 0.97 1.00 

wine 0.90 1.00 0.95 0.95 0.98 0.95 0.92 0.92 

yeast-1-4-5-8_vs_7 0.91 0.83 0.89 0.91 0.92 0.93 0.83 0.94 

Precision 

03subcl5-600-5-70-BI 0.60 0.85 0.81 0.82 0.84 0.77 0.82 0.85 

04clover5z-600-5-70-BI 0.61 0.87 0.81 0.88 0.91 0.82 0.77 0.89 

bupa 0.70 0.73 0.72 0.32 0.76 0.79 0.67 0.88 

ecoli-0-1-3-7_vs_2-6 0.49 0.99 0.99 0.95 0.98 0.92 0.46 0.92 

glass1 0.73 0.73 0.81 0.81 0.87 0.73 0.63 0.85 

haberman 0.46 0.71 0.74 0.75 0.71 0.75 0.55 0.81 

breast 0.57 0.81 0.73 0.74 0.77 0.81 0.63 0.82 

new thyroid 1.00 0.93 0.92 0.98 0.91 0.93 0.88 0.98 

paw02a-600-5-70-BI 0.77 0.74 0.92 0.88 0.92 0.95 0.83 0.81 

pima 0.77 0.82 0.88 0.84 0.88 0.89 0.75 0.85 

Umbilical Cord 0.60 0.95 0.94 0.95 0.99 0.93 0.60 1.00 

wine 0.99 1.00 0.92 0.87 0.83 0.82 0.93 0.93 

yeast-1-4-5-8_vs_7 0.48 0.90 0.97 0.97 0.98 0.94 0.86 0.97 

Recall 

03subcl5-600-5-70-BI 0.57 0.87 0.79 0.87 0.78 0.83 0.81 0.87 

04clover5z-600-5-70-BI 0.65 0.84 0.85 0.87 0.93 0.88 0.82 0.90 

bupa 0.60 0.72 0.70 0.34 0.71 0.81 0.70 0.77 

ecoli-0-1-3-7_vs_2-6 0.49 1.00 1.00 0.96 0.98 0.99 0.49 0.91 

glass1 0.70 0.72 0.80 0.79 0.92 0.73 0.56 0.85 

haberman 0.53 0.71 0.71 0.75 0.76 0.75 0.57 0.76 

breast 0.56 0.89 0.79 0.77 0.90 0.81 0.78 0.90 

new thyroid 1.00 0.98 0.88 0.96 0.91 0.98 0.90 0.92 

paw02a-600-5-70-BI 0.72 0.87 0.91 0.92 0.87 0.91 0.82 0.88 

pima 0.78 0.81 0.83 0.88 0.89 0.81 0.75 0.84 

Umbilical Cord 0.68 0.89 0.99 1.00 0.97 0.96 0.61 1.00 

wine 0.98 1.00 0.96 0.96 0.98 0.96 0.95 0.94 

yeast-1-4-5-8_vs_7 0.49 0.95 0.96 0.97 0.95 0.98 0.87 0.98 

F-Measure 

03subcl5-600-5-70-BI 0.65 0.84 0.84 0.86 0.86 0.85 0.82 0.89 

04clover5z-600-5-70-BI 0.64 0.88 0.90 0.83 0.90 0.88 0.79 0.89 

bupa 0.65 0.71 0.79 0.46 0.75 0.77 0.69 0.79 

ecoli-0-1-3-7_vs_2-6 0.49 0.99 0.99 0.96 0.99 0.99 0.49 0.99 

glass1 0.71 0.77 0.83 0.78 0.89 0.77 0.67 0.85 

haberman 0.56 0.73 0.72 0.74 0.76 0.76 0.58 0.79 

breast 0.57 0.83 0.78 0.76 0.81 0.80 0.64 0.87 

new thyroid 1.00 0.98 0.97 0.97 0.97 0.96 0.91 0.98 

paw02a-600-5-70-BI 0.75 0.89 0.91 0.89 0.93 0.91 0.84 0.88 

pima 0.77 0.83 0.82 0.86 0.87 0.82 0.75 0.86 

Umbilical Cord 0.66 0.99 1.00 1.00 0.99 1.00 0.62 1.00 

wine 0.96 1.00 0.96 0.96 0.98 0.96 0.94 0.94 

yeast-1-4-5-8_vs_7 0.50 0.95 0.96 0.97 0.95 0.98 0.87 0.98 
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To visually see the results of oversampling from the proposed method compared to other methods used, visualization 

was carried out using a scatter plot as shown in Figure 4 below. The dataset used was named as circle where the dataset 

was conditioned in such a way as to approach the imbalanced dataset condition. The red dots were the distribution of 

minority data, the blue dots were the majority data, and the green dots were synthetic data resulting from the 

oversampling method. 

  
(a) (b) 

  
(c) (d) 

Figure 4. The distribution of synthetic data results from the oversampling method of SMOTE, Borderline-SMOTE, and 

IRS-BAG 

In the figure above, it can be seen that the distribution of synthetic data occurs in each oversampling method. The 

green dots on the scatter plot indicated the distribution of synthetic data resulting from oversampling. In the SMOTE 

method, it can be seen that the results of oversampling make the overlapping region between the minority and majority 

classes more clearly visible. Likewise, in Borderline SMOTE, some of the sampling data were in the majority area, 

which makes the overlapping conditions more widespread. This condition certainly affected the results of the classifier’s 

performance in determining the decision boundary between the two classes. This proposed IRS-BAG method showed 

the results of limiting synthetic data to a safer area, just as the Radius-SMOTE concept works based on a safe radius 

distance. The categorization of data points into SAFE and NOISE means that some minority data points located in the 

majority area were not selected for sampling. It made synthetic data not created in that region. The emphasis on 

increasing the number of minority data occurred between the selected sampling points and the closest majority data. 

5- Conclusion 

This research presented a model for imbalanced dataset classification. Fundamentally, the proposed model was 

oversampling minority data using the Radius-SMOTE method, which was performed on each sample subset generated 

by the Bagging algorithm. This research applied the bagging technique before oversampling to avoid accumulating 

synthetic data with very similar characteristics. Thus, it had the potential to cause overfitting in the learning process by 

the classifier. The combination of the Radius-SMOTE and Bagging methods was named the IRS-BAG model, which 

used three base classifiers in the trial: SVM, KNN, and the Decision Tree algorithm. Oversampling the subset of the 
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sample dataset was done by selecting sampling data in the SAFE category, where the same class dominated the 

surrounding data. Then the creation of synthetic data was limited to the radius distance obtained from the distance of the 

sampling data to the closest majority data. Furthermore, the oversampling results became the final dataset used by the 

classifier to find patterns in each of these classes. 

Based on the binary and multiclass datasets used in the experiments, the experiment results using three different 

classifiers proved that all classifiers had gained a notable improvement when combined with the proposed IRS-BAG 

model compared with the previous state-of-the-art oversampling methods. 
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