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Abstract 

The Möbius strip spacetime topology and the entangled antipodal points on black hole surfaces, 

recently described by ‘t Hooft, display an unnoticed relationship with the Borsuk-Ulam theorem from 

algebraic topology.  Considering this observation and other recent claims which suggest that quantum 

entanglement takes place on the antipodal points of a S3 hypersphere, a novel topological framework 

can be developed: a feature encompassed in an S2 unentangled state gives rise, when projected one 

dimension higher, to two entangled particles.  This allows us to achieve a mathematical description 

of the holographic principle occurring in S2.  Furthermore, our observations let us to hypothesize that 

a) quantum entanglement might occur in a four-dimensional spacetime, while disentanglement might 

be achieved on a motionless, three-dimensional manifold; b) a negative mass might exist on the 

surface of a black hole. 
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1- Introduction 

The spacetime topology of a black hole has been recently described in four dimensions [1, 2]. The impenetrable, 

continuous curtain surrounding the black hole, termed firewall, displays antipodal quantum states with matching 

description. This also means that particles emerging at opposite sides of the 4-dimensional hypersphere are strongly 

entangled. In turn, recent claims suggest that quantum entanglement can be assessed in terms of opposite features on a 

4D hypersphere. Indeed, Peters and Tozzi [3, 4] showed that a separable state can be achieved for each of the entangled 

particles lying in S2, just by embedding them in a higher dimensional S3 space. The Authors view quantum entanglement 

as the simultaneous activation of signals in a 3D space mapped into a S3 hypersphere. Because the particles are entangled 

at the S2 level and un-entangled at the S3 hypersphere level, a composite system is achieved, in which each local 

constituent is equipped with a pure state.   

It is noteworthy that both the issues, i.e., the black hole’s antipodal points and the entanglement on a hypersphere, 

are assessable through the framework described by the Borsuk-Ulam theorem (BUT), which states that every continuous 

map 𝑓: 𝑆𝑛 → 𝑅𝑛 must identify a pair of antipodal points – diametrically opposite points on an n-sphere [5, 6]. Points are 

antipodal, provided they are diametrically opposite [7-9]. Examples of antipodal points are the endpoints of a line 

segment, or opposite points along the circumference of a circle, or poles of a sphere, or the opposite quantum states with 

matching description embedded in the ‘t Hooft’s four-dimensional black hole surface [10-12]. In other words, the BUT 

states that two features with matching description are mapped to a single feature one dimension lower, provided the 

function under assessment is continuous. In the case of ‘t Hooft’s account of black holes, the continuity is preserved, 

because the firewalls of their surfaces are continuous. In the sequel, we will show how the BUT is correlated with the 

holographic principle and will draw unexpected consequences.   
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2- Holographic Principle and Topological Mappings 

The possibility dictated by the BUT to proceed from higher to lower dimensions and vice versa leads us to the realm 

of the holographic principle (HP). It states that the description of a volume of space can be thought of as encoded on a 

lower-dimensional boundary to the region [13, 14]. The theory suggests that the entire universe can be seen as two-

dimensional information on the cosmological horizon. In HP, information (albeit quantum states evolving in spacetime) 

can be represented as a hologram, explainable via the theory of topological deformation retracts [15]. A deformation 

retract is a mapping of the boundary of a shape (surface) to its skeleton [16]. In the context of black holes, we have a 

deformation of quantum states in their neighborhood. Here we show how, starting from the ‘t Hooft black hole equipped 

with quantum strates entangled on its horizon, an algebraic topological description of the HP can be provided.  

The derivation of the holographic principle is represented concisely as a fibre bundle. Briefly, a fibre bundle is a 

triple (𝐸, 𝜋, 𝐵), where 𝜋: 𝐸 → 𝐵 is a projection mapping from a bundle space E to a base space B [17]. Fibre bundles 

are on the threshold of an operational view of a complex collection of mappings that includes a projection mapping.  

This is the case, since it is a straightforward task to extract from a fibre bundle the steps of an algorithm (aka, precise 

prescription leading to implementations in different settings, such as a black hole’s horizon equipped with antipodal 

points). A fibre bundle representation of the holographic principle L is given in Figure 1, that illustrates how the 

holographic manifold 𝐿(𝑀, 𝑋) can be extracted from a cross product of mappings:  

  ( ) ( ( )), ( ( )) ( , )

( , )

( , ),

X n M m X n X n L M X

X M L M X

L M X

   

   (1) 

Where 𝑋(𝑛)  is the Hamiltonian of a quantum signal impacting on the particle n and an antipodal gathering 

𝑀(𝑚(𝜑(𝑋(𝑛)), 𝜑(−𝑋(𝑛)))) that includes input from black hole’s antipodal evaluations of 𝑋(𝑛) from a spherical view 

of the black hole’s horizon, i.e., antipodal values 𝜑(𝑋(𝑛)), 𝜑(−𝑋(𝑛)) originated from a circle-shaped region of the 

horizon. That is, the mapping. 

( , )X M L M X   (2) 

Models the mapping of the accumulation  accruing from the interaction of the results of the mappings X and M to 

the holographic manifold 𝐿 (𝑀, 𝑋), which displays a dimension lower than the black hole’s 4D surface.   

Concerning Figure 1, each arrow represents a mapping. The arrows depict both ordinary mappings that carry 

the derivation forward and a projection mapping from 𝑋(𝑛) to the black hole’s horizon, which results in a gathering of 

antipodal evaluations of 𝑋(𝑛), namely, 𝑚(𝜑(𝑋(𝑛)), 𝜑(−𝑋(𝑛))). A particular value of a holographic manifold 𝐿 (𝑀, 𝑋)
 

results from a synthesis of two signals: 𝑋(𝑛) and 𝑀(𝑚(𝜑(𝑋(𝑛)), 𝜑(−𝑋(𝑛)))). 

 

Figure 1. Fibre bundle representation the holographic principle and its relationships with black holes. The picture illustrates 

the procedure to achieve a topological correlation between black hole’s surface and the holographic principle. See text for 

further details.   
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3- Black Hole Dynamics on a Möbius Strip 

The entangled antipodal points on black hole surfaces described by ‘t Hoof trequire spacetime topology displaying 

a time-like Möbius strip [1]. The Möbius strip, also called the twisted cylinder, is a one-side surface equipped with just 

one boundary [18, 19], when embedded in three-dimensional Euclidean space. A Möbius strip can be built by taking a 

paper strip and giving it a half-twist, then joining the ends in order to form a loop. This means that a line that starts from 

the seam down the middle meets back at the seam, but at the other side. If continued, the line meets the starting point, 

in a point that is double the length of the original strip. This single continuous curve may be described either through a 

parameterized subset of a three-dimensional Euclidean space, or through cylindrical polar coordinates. Topologically, 

the Möbius strip can be defined as the square [0, 1] × [0, 1], with its top and bottom sides identified by the relation         

(x, 0) ~ (1 − x, 1) for 0 ≤ x ≤ 1.   

In ‘t Hooft’s terms, the mapping obtained by making a trip around the black hole’s Möbius strip is a CPT inversion 

that allows time to change sign at the horizon.   

In the previous paragraphs, we showed how the BUT, which copes with projections and mappings among different 

functional dimensions, has been proven suitable for the description of black hole’s antipodal features. Here we show 

how the BUT’s antipodal features with matching description can be assessed in terms of closed paths on a Möbius strip.  

This allows us to evaluate the system’s dynamics in terms of paths and trajectories taking place onto the well-established, 

easily manageable phase space of a twisted cylinder.  Because the techniques of algebraic topology that assess the BUT 

features are quite complex, difficult to approach and quantify, a framework is required that allows the description of the 

BUT’s matching features in terms of dynamics taking place in phase spaces. This means that the scenario described by 

the BUT can be transported to a peculiar phase space, i.e., a Möbius strip, in order that antipodal points can be tackled 

in terms of trajectories taking place on a rather simple abstract manifold.   

Our aim is to achieve the transport of the BUT’s antipodal points to the one-side surface of such twisted cylinder. If 

we embed the trajectories of two BUT matching functions x and –x (Figure 2A) on a Möbius strip, we achieve a closed, 

continuous loop where the two functions are allowed to travel along constrained trajectories.  It is easy to see that a piece 

of strip of a given length, standing for a time interval, may display both x and –x at the same time (Figure 2B). The BUT 

dictates are preserved because, even if the two matching features are simultaneous, they do not have points in common: 

indeed, they lie on the opposite surface of the same strip. In black holes’ terms, this means that the oscillations’ 

trajectories of two areas which activate together can be followed in subsequent times, even when their matching 

activation has disappeared (Figure 2C).   

 

Figure 2. Transport of the BUT theorem on a Möbius strip. Figure 2A. Changing the radius of the hypersphere makes the 

antipodal points more or less close. Close to the center, the two points (marked with the number 3) are almost superimposed.  

Figure 2B. The movements of the antipodal points can be described in terms of trajectories on a Möbius strip. The 

parallelepiped stands for a slice of time, where both the antipodal features occur simultaneously. Figure 2C. A theoretical 

example from neuroscience is provided. A cerebral hemisphere is unfolded and flattened into a two-dimensional 

reconstruction [26] that can be embedded into a circular manifold. When two antipodal areas display simultaneously a feature 

in common, e.g., the same value of pairwise entropy [27], we achieve a topological description assessable in terms of BUT (left 

side). Such two areas and their subsequent dynamics can be easily visualized and assessed in terms of trajectories taking place 

on an abstract twisted cylinder (right side). 
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4- Introducing Time in the BUT Framework 

The account of the cosmic holographic principle is generally provided by a framework which takes for granted that 

the event horizon is equipped with two spatial dimensions plus time. However, another possibility does exist, in order 

to describe a holographic manifold. A question arises: is it just a coincidence that the parameter time is not contemplated 

in two important formulas describing the Universe and the holographic principle? Indeed, both the Bekenstein-Hawking 

and Wheeler-De Witt equations take into account a static state of the related phenomena. Here the Moreva et al.’s results 

come into play [20]. These Authors experimentally described how an observer located inside the Universe perceives the 

time flow, while a hypothetical external observer perceives the Universe as motionless. According to their framework, 

entanglement discloses time as an emergent phenomenon. By running their experiment in two different modes 

(“observer” and “super-observer” mode) they showed how the same energy-entangled Hamiltonian eigenstate can be 

perceived as evolving by the internal observers that test the correlations between a clock subsystem and the rest, whereas 

it is static for the super-observer [21]. If we describe the Moreva et al.’s framework in terms of the BUT, we achieve the 

following topological result: an “observer” lies on a S3 manifold, while a “superobserver” on a S2 manifold.  Indeed, the 

higher-dimensional manifold displays the coordinate of time, while the lower-dimensional does not.  In physical terms, 

a manifold equipped with four dimensions (the three spatial dimensions plus time) encompasses two features with 

matching description.  In turn, if we keep the dimension of time equal to zero (therefore removing it), we achieve a 

manifold, equipped with just three (spatial) dimensions, that encompasses just a single feature.  

In sum, joining together the above-mentioned frameworks, it might be hypothesized that quantum entanglement 

occurs in spacetime, while disentanglement is achieved onto a motionless, three-dimensional manifold. Therefore, we 

may introduce the holographic principle in the following BUT terms: a motionless feature lying in a lower-dimensional 

stationary S2 manifold gives rise to two moving features on a higher dimensional S3 manifold, where time flow occurs.  

In other words, a feature encompassed in an unentangled state characterized by absence of time gives rise, when 

projected in one dimension higher (where time is not anymore zero), to two entangled particles. And vice versa.   

5- Antipodal Masses: a Hypothesis  

The above-mentioned frameworks allow to compare curved spacetime manifolds with structures equipped with 

antipodal symmetries.  It is generally agreed that a black hole tends to deform the space around it, creating a vortex that 

captures nearby chunks of matter. The evolution of black holes can be represented by a Schwarzschild Spacetime 

Embedding Diagram [22]. In this approach, an embedding diagram for the vortex for a black hole can be visualized as 

a rubber sheet onto which a heavy mass is dropped. When an initial mass in increasing, the black hole’s radius increases, 

burgeoning to a new mass with increasing gravitational pull. This observation allows us to tackle the issue in terms of 

antipodal points on black holes. Indeed, the different modes of the mass of a chunk of matter in the neighborhood of a 

black hole might reveal mass as an emergent phenomenon. The antipodal spacetime scenario for a chunk of matter being 

sucked into (of in the neighborhood of) a black hole is shown in Figure 3 in a Penrose diagram, that is a conformal 

compactification of 2D Minkowski space. Using such a diagram to represent the evolution of soft particles populating 

spacetime was first suggested by Gerard ‘t Hooft [1, 2].  

 
 

Figure 3. Evolution of chunks of soft matter in the neighborhood of a black hole. Antipodal spacetime is represented with a 

Penrose diagram, which also mimics the behavior of matter in the neighborhood of a black hole. Vertically, the green region 

represents future time and the orange region represents past time in the lifespan of a chuck of matter. Horizontally, the 

concave down blue geodesic line in the red region +𝝅 represents the positive mass of a chuck matter on the S4 surface of a 

black hole, whereas the concave up blue geodesic line in the red region – 𝝅 represents the negative mass of a chunk of matter 

on the opposite surface. 
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Indeed, Penrose diagrams are able to capture the causal relations between antipodal points in spacetime. It is used to 

represent the infinities (timelike infinities vertically in two regions representing spacetime past and future, and spacelike 

infinities representing the evolution of the mass of a chunk of matter on the surface of a black hole).  Figure 3 extends 

‘t Hooft’s model, using the horizontal axis to represent the masses of soft matter [23-25].  The relationship between 

chunks of matter and a black hole in the neighborhood of surrounding ones, represented by the Penrose diagram in 

Figure 3, says to us that, as well as it is feasible to achieve antipodal points with matching features on a black hole 

horizon, we are allowed to hypothesize the simultaneous presence on the horizon of particles with positive and negative 

mass. 

6- Conclusion  

We showed how black holes’ antipodal points can be described in terms of BUT.  This led us to an algebraic 

topological description of the HP. The correlation between black hole’s surface and HP allows a fibre bundle 

representation, standing for an algorithm that can be implemented in softwares. The BUT approaches [28, 29] are 

fruitful, because they allow the formulation of intriguing theoretical claims, suggesting a) the possible presence of 

antipodal positive and negative masses on black hole horizons and b) a feature encompassed in an unentangled state 

characterized by absence of time might give rise to entangled particles, when mapped to a four-dimensional spacetime.  

Because ‘t Hooft tackles antipodal entangled quantum states in terms of opposite points on a S3 hypersphere, his account 

might hold also for the 4-dimensional Minkowskian manifold of the general relativity. Therefore, we are in front of a 

potential unification of quantum mechanics and general relativity on a S3 manifold. 

Results from different disciplines point towards the BUT as a universal principle to quantitatively assess otherwise 

elusive biological/physical activities [30-32].  In this topological context, systems operations become projections among 

different levels, giving rise to apparently emergent properties in higher dimensions. Here we showed how the features 

described by BUT, occurring on an orientable manifold with positive-curvature, can be assessed in terms of paths on a 

non-orientable manifold, i.e., a Möbius strip. The possibility to locate oscillations on a Möbius strip allows the 

assessment of simultaneous activities that are spatially separated. It must also be taken into account that the BUT 

requirements, such as two features with no points in common and the proper mappings, are fully preserved when 

projected to a Möbius strip. The transport of the BUT apparatus to a Möbius strip displays also another valuable 

advantage: because the mapping achieved by making a trip around a twisted cylinder is an inversion, this permits the 

preservation of the invariance under inversions, therefore obeying to the laws of conservation of energy and information 

[30, 33]. In sum, the study of patterns on a twisted cylinder (instead of a three-dimensional Euclidean phase space) is 

justified by the BUT framework and might pave the way to the detection of unexpected relationships among different 

synchronous physical activities. 
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