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Abstract 

Next Generation Sequencing (NGS) technologies has revolutionized genomics data research by 

facilitating high-throughput sequencing of genetic material that comes from different sources, such 

as Whole Exome Sequencing (WES) and RNA Sequencing (RNAseq). The exploitation and 

integration of this wealth of heterogeneous sequencing data remains a major challenge. There is a 

clear need for approaches that attempt to process and combine the aforementioned sources in order to 

create an integrated profile of a patient that will allow us to build the complete picture of a disease. 

This work introduces such an integrated profile using Chronic Lymphocytic Leukemia (CLL) as the 

exemplary cancer type. The approach described in this paper links the various NGS sources with the 

patients’ clinical data. The resulting profile efficiently summarizes the large-scale datasets, links the 

results with the clinical profile of the patient and correlates indicators arising from different data types. 

With the use of state-of-the-art machine learning techniques and the association of the clinical 

information with these indicators, which served as the feature pool for the classification, it has been 

possible to build efficient predictive models. To ensure reproducibility of the results, open data were 

exclusively used in the classification assessment. The final goal is to design a complete genomic 

profile of a cancer patient. The profile includes summarization and visualization of the results of WES 

and RNAseq analysis (specific variants and significantly expressed genes, respectively) and the 

clinical profile, integration/comparison of these results and a prediction regarding the disease 

trajectory. Concluding, this work has managed to produce a comprehensive clinico-genetic profile of 

a patient by successfully integrating heterogeneous data sources. The proposed profile can contribute 

to the medical research providing new possibilities in personalized medicine and prognostic views. 
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1- Introduction 

With the completion of the 1000 Genome project [1] and the rapid evolution of sequencing techniques, genomic 

information is now massively produced. The collection and process of the genome of living things is called genomic 

data. The availability of multiple types of genomics data has considerably affected the medical sciences [2]. It has now 

become possible to extract information from a great variety of genomic data. A result of this evolution is the emerging 

need for developing robust biotechnologies for storage, management, analysis and interpretation of this information. 

Taking into consideration additional types of health related data accompanying this genomic information for a person, 

such as the clinical information, other laboratory exams or behavioral data collected by smart devices, the data collected 

are of such volume that are difficult to manage and process. For this reason, biomedical informatics has become an 

essential component in medical research. 

One of the most popular sequencing techniques that has emerged during the last decade is the Next Generation 

Sequencing (NGS) [3]. NGS is a technique that is based on massive, parallel, small reads of the genome and is a radical 

approach that changed the potential of sequencing. NGS opened new possibilities in exploration of diseases in a genomic 
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level by making easy to detect mutations or gene behavior [4]. Some examples of NGS data is Whole Exome (WES) [5] 

and RNA (RNAseq) [6] Sequencing. WES is a sequencing technique focusing on the coding protein genes’ regions. 

These regions cover about 1% of the whole genome and provide information about the mutations in the lower possible 

cost. RNAseq is a transcriptomic sequencing technique and provides information about the count level of transcripts and 

their isoforms and the gene structure along with their expression level. 

In this paper we propose an end-to-end methodology that extends the state-of-the-art in the analysis and integration 

of two different sources of genomic data, WES and RNAseq, in descriptive and predictive level (see Section 1-1 below). 

The methodology starts with the raw data analysis, continues with further analysis of the results in order to summarize 

the large-scale datasets, visualize them and detect biomarkers that arise from this analysis to be used for the deployment 

of the predictive models. This further analysis is conducted not only individually for each sample but also for groups of 

patients so the results can be easily compared. Finally the integrated profile is created with the use of these methods and 

by summarizing the variety of information.  

1-1- Literature Review 

The raw data resulting from these sequencing techniques are bulky and complicated, thus difficult to process and 

interpret. To that end, a variety of tools have been developed for analysis of the sequences including different methods, 

and functionalities that vary from general purpose to more targeted analysis. Some of the most popular tools for WES 

analysis are: SeqMule [7], which is a tool that performs alignment and variant calling and is used in this study, Impact 

[8], which performs computation of variants and Copy Number Variations in order to perform drug response predictions, 

and, WEP [9] which performs a complete analysis for data cleaning and alignment and variant detection. For further 

exploration of these pipelines, variant annotation tools are available with the most popular being ANNOVAR [10] which 

offers a great variety of annotations. Respectively, many tools for RNAseq raw data analysis have been developed with 

the most popular being: Tuxedo Protocol [11] which performs alignment, gene and transcript count and expression level 

computation and differential analysis between patients or groups of patients and is used in this study, and Tuxedo 2 [12], 

a more recent version of the protocol with the same outcome, Viper [13] which performs RNASeq data analysis and 

provides visualizations of the results, and, IRAP [14] which is also a workflow for alignment, gene expression 

computation and differential expression analysis. 

Although these methods for raw data analysis are very useful, they do not provide a comprehensive view of the 

datasets so that the information can easily be used by the experts. So, there is a need for developing integrated tools for 

analysis, presentation and summarization of the results. There are some available tools for simultaneous presentation of 

the results of different analysis, such as the Integrative genomics viewer [15], which is a visualization tool for interactive 

exploration of large, integrated genomic data and supports a great variety of NGS data types and formats, Epiviz [16] 

which provides a variety of visualization methods based on the region of interest or characteristics as the expression, 

and, Timiner [17] which integrates WES and RNAseq analysis in order to detect neoantigens in a sample. 

Moreover, there is an interest in research towards the integration of data in ways that their combination increases the 

individual data’s value, such as the Codina-Solà et al. study, in which WES and RNAseq analysis’ results are used to 

detect genes that cause the disease (Autism Spectrum Disorder), transcript mutations and mutations sensitivity [18]. 

Another interesting approach is the one described from Wilkerson et al. that use an integrated and novel approach to 

detect mutations, based on the assumption that WES analysis has minor sensitivity in low purity tumors [19]. In addition 

to that, Landesfeind et al. propose a method for mutation detection in both WES and RNAseq data and comparison of 

these results for a more punctual and comprehensive molecular characterization of the samples [20]. More recent studies 

focus on integrating gene expression with DNA methylation data, as of Cappelli et al. and Li et al., for knowledge 

extraction beneficial to prognosis [21, 22]. Moving towards prognosis approaches, Fleck et al. propose a method based 

on the integration of mutations and gene expression to detect how mutations can lead to changes in gene expression, 

and, consequently, cancer progression [23]. In the same direction, Yu et al. and Zafeiris et al. propose the use of artificial 

neural networks for disease classification and biomarker discovery respectively [24, 25]. 

2- Methods 

For the purposes of this study, the disease chosen is Chronic Lymphocytic Leukemia (CLL) which is a neoplastic 

blood disease with a strong genetic influence. This disease was selected as an example for the implementation of the 

methodology. CLL is a chronic disease, currently untreated and is the most frequent type of adult leukemia. Moreover, 

the knowledge of the nature, progression and treatment of the disease is in an early stage. The complete procedure is 

described in the block diagram of Figure 1. 

2-1- Data 

All data used for this analysis are open data acquired from the National Center for Biotechnology Information 

(NCBI). Two genomic data sources were selected for this study, RNASeq and WES data. Both cases consist of raw data 
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of early stage CLL patients in fastq format. RNAseq raw data belong to IGR_U985_RNASeq* study and consist of 12 

cases, each one corresponding to a single subject, 4 cases with mutated and 8 cases with unmutated EGR2 gene. WES 

raw data belong to IGR_U985_CLL_Exome† study and consist of 24 cases, 17 with mutated and 7 with unmutated 

IGVH gene. Each WES case corresponds to cancer (B lymphocytes) and healthy (T lymphocytes) tissue sample of the 

patients. Healthy tissue is used as control sample for this analysis. A summary of the datasets is provided in Table 1. 

 

Figure 1. Integrated profile creation process. 

This division between groups was used to perform the inter-group comparisons and the classification for the 

predictive analysis. The separation for the predictive analysis was made based on the assumption that, for the RNAseq 

analysis, patients with mutated EGR2 gene have a good prognosis [26] and, for the WES analysis, the patients with 

unmutated the IGVH gene are characterized as stable [27]. 

Table 1. Data Summary. 

Case group description Nr. of cases Size in Gb Disease Outcome Ground Truth 

WES 

Group A - mutated IGVH 17 ~340 Aggressive 

Group B - unmutated IGVH 7 ~140 Stable 

RNAseq 

Group C - mutated EGR2 4 ~40 Stable 

Group D -un mutated EGR2 8 ~80 Aggressive 

2-2- Descriptive Analysis 

The descriptive analysis includes as a first step the raw sequencing data analysis and proceeds with further 

exploration of the results with the methods described in detail below. All kinds of analysis were performed on one of 

the two high-performance computational clusters of AUTH, Afroditi ‡ , part of the National Grid Infrastructure, 

Hellasgrid. This infrastructure was selected because these tools demand high computational resources and time to be 

executed. After constant communication with the experts of this infrastructure maintenance and support we concluded 

in the optimal amount of resources needed for the fastest and most efficient execution.  
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2-2-1- WES Analysis 

Whole Exome Sequencing analysis was conducted using the Seqmule pipeline which performs alignment and variant 

calling, providing the opportunity of using a desirable combination of different aligners and variant callers. Two distinct 

configurations of this pipeline were used for this analysis, namely: (a) the normal vs. cancer tissue analysis for the 

descriptive analysis - this configuration uses BWA and Gatk aligners and Samtools and Bayes variant callers; (b) cancer 

tissue vs reference genome for the predictive analysis - the default configuration. The results of this analysis consist of 

information regarding the mutations detected in each sample and they need further processing. 

Regarding variant annotation, different gene- and filter-based annotations were used in order to filter the detected 

Single Nucleotide Polymorphisms, SNPs. First, we perform a gene based annotation from which the type of each 

detected variant is derived. In this level, the variants are categorized as {synonymous, non-synonymous, other}. 

Secondly, in a filter-based approach, the variants are annotated based on the 1000 Genome Project findings and each 

one is given a MAF (Minor Allele Frequency [28]) value and then is filtered based on this value in order to distinguish 

frequent from infrequent ones. Finally, another filter-based approach is used, using the scores of dbNSFP [29] in order 

to categorize the variants as {tolerated, deleterious}. 

These tools produce a great amount of information regarding the mutations detected in the samples that needs to be 

further analyzed and explored in order to be used for the deployment of predictive models. Furthermore, powerful 

visualizations can highlight the importance of these results. This visual exploration analysis was conducted using well 

known and easy to use Python Libraries, as Pandas and Matplotlib.  

2-2-2- RNAseq Analysis 

RNA sequencing raw data analysis was conducted using the Tuxedo pipeline. This pipeline performs (a) sequence 

alignment with the tool Tophat [30], which provides a list of successful alignments as well as information for mutations 

and junctions, (b) gene & transcript expression computation with the Cufflinks [31], and (c) differential gene expression 

analysis between two groups of patients with Cuffdiff [32]. For the purposes of this research, we focused on gene 

expression and differential gene expression data. In this study, we used this pipeline to calculate gene and transcript 

expression for all the patients and differential expression analysis between two groups. 

Further analysis of these results was conducted using the Cummerbund R library [33], which provides a whole set 

of tools for exploring RNAseq analysis results, from statistics to dimensionality reduction tools. In addition, algorithms 

built from scratch in python programming language were employed to feature selection and model training process. 

Powerful visualizations indicate the importance of these results as described in Section 3-2. We further explored the 

outcomes of the descriptive analysis towards the design and deployment of predictive models. 

2-3- Predictive Analysis 

In any disease, there are a lot of questions that need to be answered so a clinician can proceed directly to a treatment 

or a personalized choice for the patients. Such questions are: 

● Response to treatment, e.g. is the patient going to respond to a specific medication? 

● Relapse, e.g. is the patient going to relapse after the treatment? 

● Disease Outcome, e.g. is the patient going to be in a stable condition or the disease is aggressive and will lead to 

lower expected survival? 

In this study we chose one of these questions as the target of the predictive analysis. The aim of this analysis is to 

predict the Disease Outcome, meaning the prediction if the disease is going to be aggressive, with devastating 

consequences for the patient, or stable. For this purpose each group of patients was divided in two classes, stable and 

aggressive. Two models were developed, one based on RNAseq analysis results and one based on WES analysis results. 

For every case, a dimensionality reduction algorithm was used to primarily explore the potential of these datasets. 

Particularly, Multidimensional Scaling (MDS) analysis was used and the results depicted in Figure 2. The figure shows 

that in the RNASeq (a) case the samples of different classes were grouped but in WES (b) case they weren’t. 

For this analysis, the scikit-learn [34] Python Library was used. This tool provides implementations of all the well-

known machine learning algorithms in an easy-to-use environment. The specific classifiers tested is a simple 1 hidden 

layer neural network, decision tree and random forest, as well as a linear regression and a Bayesian one. The first step 

of the deployment of the predictive models is the feature selection and it is described for both cases below. 

2-3-1- RNAseq-based Feature Selection 

In this case, gene expression for all patients was calculated. Then, the results were merged on each gene, the mean 

expression of each gene was calculated for every group and, finally, the difference of mean expression between groups. 

The 20 most differentially expressed genes was selected as the features defining the model.  
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2-3-2- WES-based Feature Selection 

In this case, the SNPs detected in every sample were merged for all patients in every group and after the 

aforementioned annotations they were filtered and only the SNPs that were non-synonymous, heterozygous, deleterious 

and with MAF>0.5 were finally selected. The number of SNPs per gene was calculated for each patient and these genes 

were selected as the features defining the model. 

 

Figure 2. MDS Analysis Plots: (a) RNAseq; (b) WES. 

2-3-3- Training and Evaluation 

Both models ware trained with a number of well-known classifiers in order to select the one that performs the better 

in each case. For the validation of the models, the Leave-one-subject-out cross validation method was used. In cases 

were a classifier imports randomness the reported results are the mean value of 100 runs. The evaluation metrics used 

are accuracy, sensitivity and specificity.  

2-4- Integrated Profile 

The construction of the cancer patient’ integrated profile is a complete methodology which starts with the raw data 

analysis, continues with the descriptive and predictive analyses and concludes with the summarization, visualization and 

integration of this information.  

2-4-1- RNAseq-WES Data Correlation 

The first approach, the first image of the Combined Visualizations section in Figure 7, attempts to explore correlation 

between gene expression and mutation frequency and depicts a combination of the results in gene level. The information 

used is the gene significance and expression, computed via RNASeq Analysis, and variant frequency per gene, computed 

via WES analysis. Each bubble in the scatter plot represents a gene and the size of the bubble represents the expression 

level of this gene. The position on the y-axis represents the number of non-synonymous/heterogeneous SNPs detected 

in the specific gene and the position on the x-axis the p-value of this gene. 

The second approach, the second image of the Combined Visualizations section in Figure 7, explores the difference 

in the detection of SNPs from the different analyses and depicts a combination of the results in SNP level. The 

information used in this case is the number of SNPs detected in every chromosome via RNAseq vs WES analysis. From 

literature, it is known that RNAseq analysis is used in many cases to detect SNPs as an aid to the WES analysis as in 

some cancers is more accurate and detailed.  

In addition to that, the results of the predictive analysis need to be combined for achieving higher accuracy. Although 

for this study it was not possible to achieve this integration due to lack of multi-omics data for the same patients. 



Emerging Science Journal | Vol. 3, No. 3 

Page | 162 

2-4-2- Integrated Profile 

After discussion with experts of the biology field, specializing in immunogenetic and blood cancer research, and 

after reviewing relevant literature on the important outcomes and integration of each analysis, this attempt tries to present 

the results of individual analyses and combine them in an easy readable way in order to facilitate a quick view of the 

condition of the patient. The information of the two previous analyses need to be combined in order to have a more 

comprehensive view of the disease, in genomic and transcriptomic level. In more detail, from the available clinical 

information, only a small and representative sample was chosen. The first panel of the profile provides personal 

information of the patient, containing demographics (e.g. gender) and clinical information (e.g. treatment schema). The 

second panel provides a summary of RNAseq analysis. The information selected for presentation, was considered to be 

the most representative of thin analysis and depicts the 20 most expressed genes of the patient. Regarding WES analysis, 

as important information for summarizing the results in the third panel, we chose the distribution of all variants detected 

in the patient categorized in SNPs/Indels. Furthermore, in the fourth panel, it provides a prediction for the aggressiveness 

or not of the disease for this patient presenting the results of both predictive models deployed in this study, and, finally, 

in the last panel, a presentation of the integrated RNAseq and WES analysis in gene and chromosome level as described 

in detail in Section 2-4-1. 

3- Results 

3-1- Execution Performance 

As already discussed there has been a study on the optimal resources needed for every tool in order to achieve the 

desired execution time. Table 2 depicts the performance time for each of the external tools and the resources’ demands. 

It was observed that, in some cases, increasing the resources after a certain amount didn’t cause a reduction in execution 

time and, in some cases, it caused an increment. The execution time presented is the average time of all runs of the tools, 

#24 for seqmule pipelines, #12 for tophat, cufflinks and #1 for cuffmerge, cuffdiff. 

Table 2. Performance and resources for the external tools 

Case Tool Input/Output Size Resources’ constraints 
Execution 

Time (hours) 

WES analysis 

Seqmule Pipeline (Default Normal configuration) 10/25 Gb 
Max RAM: 40G, Max 

#CPU: 12 
~8 

Seqmule Pipeline (Somatic configuration) 20/25 Gb 
Max RAM: 40G, Max 

#CPU: 12 
~7 

RNAseq analysis 

Tophat 10/5 Gb 
Max RAM: 40G, Max 

#CPU: 12 
~10 

Cufflinks 5/0,5 Gb 
Max RAM: 40G, Max 

#CPU: 12 
~0,5 

Cuffmerge -/0,5 Gb 
Max RAM: 40G, Max 
#CPU: 8 

~0,5 

Cuffdiff -/5 Gb 
Max RAM: 80G, Max 
#CPU: 32 

~36 

3-2- Descriptive Analysis Results 

The results of the descriptive analysis are a summarization-visualization of the pipelines’ results. In both cases, WES 

and RNASeq analysis, the presentation takes place in two levels. The first level concerns the intra-person comparison. 

It contains visualizations from the two different analyses outcomes for one person in order to extract the combined 

information needed for integration in the last step. The second level concerns the inter-group comparison and contains 

visualizations that compare the results for two groups or two individual members of two groups. In any case, there are 

several graphs to be used to depict all the available information. Some examples are chosen to be displayed for 

explanatory purposes. 

Examples of the intra-person and inter-group comparisons for WES analysis are depicted in Figures 3 and 4 

respectively. In this case, the distribution of variants in the sample is depicted. Examples of the intra-person and inter-

group comparison for RNAseq analysis are depicted in Figures 5 and 6 respectively. In this case, the differential gene 

expression between the two groups is depicted. 
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Figure 3. WES analysis result intra-person visualization: (a) SNP frequency types (synonymous/non-synonymous/other) per 

gene for the 20 genes with the most variants and the pie charts (b) frequency of detected variants in the same sample, divided 

in SNPs and indels and per variant type. 

 

Figure 4. WES analysis result inter-person visualization: (a) frequency of transitions and transversions in the two group (b) 

the distribution of synonymous/non-synonymous, homozygous/heterozygous SNPs for each group. 

 

Figure 5. RNAseq analysis results intra-person visualization: (a) the 20 most highly expressed genes in a patient (b) the 

distribution of SNPs per chromosome as they were computed via this analysis. 



Emerging Science Journal | Vol. 3, No. 3 

Page | 164 

 

Figure 6. RNAseq analysis results intra-person visualization: (a) 20 most differentially expressed genes between these groups 

(b) distribution of the expression of all genes between the two groups, as they were divided based on the EGR2 gene mutation. 

3-3- Predictive Analysis Results 

The features selected for the RNA-seq based model were the 20 genes: {RNVU1-14, H3F3B, SCARNA2, RGS2, 

SAT1, SOD2, SRGN, RGS1, IGHV4-34, YPEL5, NAMPT, NFKBIA, CCNL1, S100A6, IL8, HIST1H2BD, S100A8, 

FTH1, DUSP1, HIST1H2AM}. The features selected for the WES based model were the 10 genes for the one class: 

{EXO1, GPRIN2, BCLAF1, OR13F1, OR1B1, OR6C68, ELOA2, KNG1, CYP4V2, SLC17A1} and 26 for the second: 

{CLCNKB, TRAF3IP3, FAM177B, LEXM, OR51S1, TMEM132C, CCDC175, CACTIN, TPO, RIF1, GRB14, 

HJURP, COL6A3, PLB1, DTX3L, LARP1B}. 

As depicted in Table 3, for both cases the classifier with the better performance is Random Forest. As clearly Table 

3 shows, and in accordance to what it was expected from the MDS analysis, the performance of the classifiers in the 

RNAseq-based model is better. 

Table 3. Validation Results. 

Case Classifier Accuracy Sensitivity Specificity 

RNAseq -based model 

Neural Network 0,43 0,37 0,50 

Logistic Regression 0,62 0,50 0,75 

Naive Bayes 0,81 0,75 0,87 

Decision Tree 0,68 0,75 0,62 

Random Forest 0,87 0,74 0,87 

WES -based model 

Neural Network 0,44 0,02 0,60 

Logistic Regression 0,45 0,00 0,61 

Naive Bayes 0,54 0,00 0,65 

Decision Tree 0,55 0,24 0,67 

Random Forest 0,75 0,42 0,88 

3-3- Integrated Profile 

Finally, with the combination of the results of the two analyses, Descriptive and Predictive, it has been able to create 

an integrated profile of a CLL patient that summarizes the clinical information, WES & RNAseq data and predictions. 

An example of the view of this profile is depicted in Figure 7. 
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Figure 7. Integrated Genomic Profile. 

4- Discussion 

As already discussed, with the rapid growth of NGS technologies, the variety and volume of genomic data has 

increased. So, it is of great importance to integrate this wealth of data in order to build an integrated profile that 

characterizes each patient and provide a comprehensive view of the nature and origin of a disease. This work has made 

some first yet important step to this direction. However, there are some issues to be addressed in future work. 

The predictive analysis conducted in this study is in preliminary level and needs to be optimized in order to achieve 

higher performance and accuracy. The potentially complementary findings at structural and functional level (WES & 

RNAseq, respectively), could be combined to achieve added value. This raises the need for combining the two different 

models, either on feature level, by performing the feature selection procedure simultaneously and create one integrated 

prediction model, or, simpler, on result level by combining the classifiers. Evidently, multi-omics data availability is 

necessary requirement to achieve the integration.  

With multi-omics data accompanied with complete clinical meta-data, it will become possible to create more 

integrated predictive models that will answer to questions as the response to a treatment or overall survival of the patient. 

Moreover, progressing beyond the proposed presentation of information, a further step includes the development of a 

complete user interface that will incorporate all the methods described and will provide the information in an efficient 

way as an aid for the clinicians. This interface will serve as a decision support system by providing immediate answers 

to the clinicians. 

Finally, the type of cancer selected for this study, CLL, was selected as a showcase and is expected that, after the 

optimization of the methodology and the completion of the user interface, this approach will be applicable in all types 

of cancer diseases.  

During this research, some limitations have been encountered regarding the initial aim. First and most important is 

that the study was conducted using open data. We decided to use open data in order to ensure reproducibility of the 

results. In this case, it was difficult to have an open dataset that is accompanied with many clinical information for the 

patient, such as the nature of the disease (stable/aggressive). To that end, we had to infer the necessary clinical 

information (to label the patient for the purposes of ML) using specific biomarkers such as gene mutations indicating 

disease aggressiveness. Moreover, in public databases, there is a lack of multi-omics data. It was not possible to find a 

dataset which contains more than one genomic raw data for a patient along with proper clinical data. For this reasons, 

the integration performed is not totally validated and the methodology proposed is a collection of steps that can be used 

in any cancer case. 
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4- Conclusion  

The proposed integrated profile, although not thoroughly validated, seems like a promising approach as it is able to 

convey useful and complementary information. After demonstrating the outcome of this study to the experts, we had a 

positive feedback about the usefulness and importance of the integrated profile. With its detailed and meticulous design, 

this profile can be established as useful and meaningful tool for clinical decisions. 

Concluding, this innovative, exploratory, data-driven approach attempts to make use of the big genomic data by 

summarizing and presenting them in a way that renders them easily usable and interpretable by health professionals. It 

focuses on integrating different analyses, descriptive and predictive, creating an end-to-end service that begins raw data 

input and concludes with a complete summary of the patient status. 
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