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Abstract 

The Healthcare 4.0 era is surrounded by challenges varying from the Internet of Medical Things 

(IoMT) devices’ data collection, integration and interpretation. Several techniques have been 

developed that however do not propose solutions that can be applied to different scenarios or domains. 

When dealing with healthcare data, based on the severity and the application of their results, they 

should be provided almost in real-time, without any errors, inconsistencies or misunderstandings. 

Henceforth, in this manuscript a platform is proposed for efficiently managing healthcare data, by 

taking advantage of the latest techniques in Data Acquisition, 5G Network Slicing and Data 

Interoperability. In this platform, IoMT devices’ data and network specifications can be acquired and 

segmented in different 5G network slices according to the severity and the computation requirements 

of different medical scenarios. In sequel, transformations are performed on the data of each network 

slice to address data heterogeneity issues, and provide the data of the same network slices into HL7 

FHIR-compliant format, for further analysis. 
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1- Introduction 

Most of the current researches are dealing with how medical and health-monitoring devices, clinical wearables, and 

remote sensors can contribute to better health for patients, and a more efficient healthcare that can drive better systems, 

population, and patient outcomes [1]. For the past years, medical device manufacturers and suppliers have been facing 

more challenges in product development to bring their devices faster and easier to the market, facing increasing 

complexities mainly in how to achieve and gather quicker, more reliable, interoperable and efficient measurements. 

Current healthcare – known as Healthcare 4.0 [2], is considered as one of the fastest industries to adopt the Internet of 

Things (IoT) technologies, aiming to help in personalized services, reduce operating costs, and improve patient care and 

quality of life. Such thing has led to the marriage of the IoT and medicine, generating the concept of Internet of Medical 

Things (IoMT) [3]. In this domain, IoMT is promising changes in the way that the medical industry delivers healthcare, 

as almost all of the IoMT devices are linked to cloud platforms, while they are equipped with cellular or wireless 

communication, thus allowing the machine-to-machine communication. 

Nevertheless, for most patients and care providers, the promises of the IoT and IoMT have not yet introduced dramatic 

changes in how these stakeholders are experiencing healthcare. What is required is higher connection speeds that will 

be transforming the relationship of the patients and the healthcare providers, and integrating electronic communications 

into medical care, which can be achieved through the arrival of the 5G networks [4]. According to [5], 5G will enable 

more than $1 trillion in devices and services for the global healthcare sector. However, most of these devices are facing 

high degrees of heterogeneity, since they are having different capabilities, or functionalities. In this context, the challenge 

remains on how medical data can be extracted out of these heterogeneous devices, and how this extracted information 
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will be integrated, by also managing the abstractions and the different nature of these devices. Current data collection 

and integration techniques are facing difficulties in adapting and adopting to these changes and requirements, since they 

are mostly designed for specific areas and domains. However, the problem does not only remain to the difficulty of data 

acquisition among different devices, but also to the ingested data heterogeneity [6]. The latter is considered as a challenge 

for many decades in the healthcare domain, as tons of heterogeneous data are produced every second. By having data in 

different formats and terminologies is leading to non-consistent ways in the identification of patients, difficulties for 

sending, receiving and managing information between healthcare systems, and blocking knowledge that usually results 

into higher rates of mortality. Henceforth, data interoperability techniques require healthcare data to be restructured into 

a common format and standard terminologies, while being linked to other data sources. 

To go beyond the hype and the use of the existing solutions, in this manuscript we are going to targeted address these 

challenges. In more detail, an end-to-end platform is introduced where IoMT devices that can serve different application 

scenarios (e.g. vital signs tracking, home monitoring) are connected through Wi-Fi. Through the proposed Data 

Acquisition mechanism, the IoMT devices’ data are being acquired, as well as their network specifications, in order to 

be segmented in different 5G network slices through the Slicing Management mechanism, each one serving the 

computation requirements of the different medical scenarios. In sequel, a Data Interoperability mechanism is performed 

on each different network slice to address data heterogeneity, and provide the data that belong to the same slices into a 

common and interpretable format for further analysis. 

The rest of this paper is organized as follows. Section 2 presents the background, and the challenges that led us to 

this research, with regards to the Healthcare 4.0 era, 5G networks, data acquisition and heterogeneity. Section 3 describes 

the materials and methods that were used in to order to develop the proposed platform for achieving interoperable data 

collection and transmission of high availability, while Section 4 states the evaluation of the platform, through an end-

to-end scenario. Finally, in Section 5 the derived results are discussed, analysing our conclusions and future goals 

2- Background & Challenges 

2-1- Healthcare 4.0 

Healthcare is considered to be a complex industry including several stakeholders involved such as patients, 

caregivers, healthcare providers, hospitals and pharmaceutical companies, containing several restrictions, rules, and 

regulations which several times lead to less than adequate care accorded to patients. Most of these stakeholders are being 

currently affected by the promises and integration of new technologies that support the Healthcare domain, being 

impacted by the introduction of data enabled technologies, which has led to the generation of the Healthcare 4.0. 

Healthcare 4.0 envisions the creation of a system where everyone is connected through wearable devices, while every 

data point of patients is getting recorded without being affected by their current location. That is why according to BCC 

Research [7] it is estimated that the healthcare market will grow from $521.2 billion in 2017 to $674.5 billion by 2022, 

making companies to strive towards new markets and innovative products in order to stay competitive. Among the 

biggest challenges that the early adoption of Healthcare 4.0 is facing has to do with the lack of coherence in digital 

enablement across different stakeholders. For instance, many hospitals may not be able to implement a complete digital 

transformation, due to financial issues. What is more, the growing number of medical devices with millions of product 

variations, presents an additional challenge for the healthcare supply chain. With over 6 million medical devices on the 

market, information about them is often difficult to be managed, since all of this require manual entry, leading to high 

risks of faulty, inconsistent, and incomplete data. Therefore, the healthcare industry demands not only a high level of 

technological transformation but also efficient, reliable and fast results so as to fully produce reliable decisions that aim 

in improving personalized health. Currently, multiple fragmentations in the healthcare domain do not allow a seamless 

experience for patients, making them to interact with multiple parties and struggle with storing, analyzing and 

interpreting their medical records. All the challenges that are involved in the industry need to be confronted first, in 

order for the Healthcare 4.0 to become a reality. 

2-2-  5G in Healthcare 4.0 

While many things on the road to 5G are uncertain, it is easy to envision the emergence of new and innovative 

applications. 5G technologies allow a significantly higher data capacity and extremely fast response time, opening up 

completely new potential applications for a fully connected society. Especially in the Healthcare domain, this constitutes 

a prerequisite, as faster and more accurate results are needed for patients’ remote monitoring, and examination, along 

with sophisticated equipment imaging, which can lead to additional pressure on healthcare network operators. This often 

increases congestion and slows network speeds, especially for healthcare providers who could interact with dozens of 

patients per day, leading to delayed patient care, which could hurt the results in the long run. Taking into consideration 

that the usage of IoT continues to grow, constantly increasing the volume of the data for networks, 5G technologies 

come to resolve the emerging challenges. In this context, 5G promises quick transmission of large medical imaging files 

that often needed to be exchanged between patients and caregivers, avoiding low bandwidth networks’ performance, 
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and thus time-consuming data transmission [8]. Apart from this, 5G promises to cope with the reliability and the 

connectivity of the emerging devices. More particularly, Gartner states [9] that around 8.4 billion IoT devices were in 

use in 2017, up 31% from 2016, and this will likely reach 20.4 billion by 2020, the exact point of history when 

standardized 5G networks will start to hit the market and deliver unprecedented levels of connectivity. In addition, 

several healthcare functions begin using Artificial Intelligence (AI) to identify possible diseases and decide on the best 

treatment plan for a particular patient. At the same time, network operators are facing tremendous traffic increases with 

the introduction of IoMT devices, especially due to content rich multimedia and health applications. Thus, by switching 

to 5G networks, Healthcare 4.0 can use the AI tools needed providing the best care possible and patient experience, 

while reducing healthcare costs. 

2-3- Heterogeneous Data Acquisition 

In the last decade, there has been a transition from a data-poor to a data-rich world with the promise of unparalleled 

intelligence. Much of this unprecedented increase in data generation can be attributed to the abundance of thousands of 

mobile devices, wearables, and sensors that fall under the era of IoT. According to Machina Research [10], the total 

number of connected devices is expected to be 27 billion by 2024, while according to Cisco [11], there will belong 

nearly 1.5 mobile devices per capita by 2020, and more than 601 million of wearable devices will be in use. These 

numbers only confirm that the IoT remains one of the biggest trends in 2018. Such thing results into a myriad of 

heterogeneous devices that will be connected to the IoT world in the near future, producing data of different types that 

may have been collected at different rates and time scales, by different devices. Most of these devices are typically 

characterized by a high degree of heterogeneity, in terms of having different specifications, capabilities, or network 

specifications, needing to be easily manageable by single IoT platforms and systems. Therefore, devices’ integration is 

one of the most challenging research topics in the IoT era, revealing the need of the existence of a global interface that 

will be able to manage all these heterogeneous devices. Especially for the IoMT devices that are widely adopted and 

used in Healthcare 4.0, the need for integration of these devices is an issue of vital importance. For example, patients’ 

telemonitoring at home, requires a wide variety of sensors and devices that usually present a set of very specific features 

and characteristics, thus being difficult to be integrated into different platforms in order to offer each patient’s medical 

data. Without the effective integration of the heterogeneous medical devices’ data, no patients’ data will be collected, 

and thus no further actions will be possible to be performed. Without the effective integration of the medical devices’ 

data, no patients’ data will be collected, and thus no further actions will be possible to be performed, failing in finally 

achieving integrated care. 

2-4- Data Heterogeneity 

Vast amounts of heterogeneous medical data are becoming available in various healthcare organizations and sensors, 

thus completely reshaping the Healthcare 4.0. Hundreds of hospitals and healthcare systems deal everyday with 

challenges in extracting data from silos, affecting both patient care and medical research. Currently, the rapidly 

increasing availability of health records is pushing towards the adoption of data-driven approaches, bringing the 

opportunities to automate healthcare related tasks, providing better disease detection, more accurate prognosis, faster 

clinical research advance and better fit for patient management. Nevertheless, the healthcare organizations are still facing 

many difficulties in implementing, maintaining and upgrading their healthcare systems, including many challenges in 

the technical, security and human interaction fields. Heterogeneity, timeliness, complexity, noise and incompleteness 

are among the most common challenges of creating value from data. Among others, what is missing is an integrated 

data exchange system that according to [12] could reduce Medicare spending by more than $3 billion each year. In order 

to exchange data with as many stakeholders as possible, interoperability is the only way for letting systems interact with 

each other, in order to take the complete image of a patient, being considered a necessity in electronic healthcare systems 

for resolving data heterogeneity issues. A recent study [13] estimated that the global healthcare middleware market is 

expected to reach $3.07 billion by 2023 from $1.90 billion in 2018, in order to overcome healthcare interoperability 

issues. Among the different existing researches and standards, the Health Level Seven International (HL7) organization 

provides the development and the framework of standards that are widely used in the medical market and research, with 

HL7 Fast Healthcare Interoperability Resources (FHIR) [14] being the latest standard created by this organization, for 

the exchange of clinical information. 

2-5- Key Contributions of the Proposed Approach 

It is undeniable that the Healthcare 4.0 era is surrounded by challenges that can be allocated in different domains. 

Such challenges can vary from the data integration to the data manipulation, or from the IoMT devices’ requirements to 

their data interpretation. It is undeniable that when dealing with healthcare related data, based on the severity and the 

application of their results, they should be provided almost in real-time, without any errors, inconsistencies or 

misunderstandings to the stakeholders, for further analysis. Such thing can be considered of vital importance since based 

on [13], in 2016 hospitals and healthcare providers’ offices nationwide might have avoided nearly 2000 patient deaths, 
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if medical staff and patients communicated better. Based on these challenges and requirements, a trustworthy and 

efficient solution is provided in this manuscript for efficiently managing healthcare related data, by taking advantage of 

the latest technologies and techniques that have been currently developed under the context of Healthcare 4.0, 5G 

networking, Data Acquisition and Data Interoperability. These State of the Art techniques are thoroughly described in 

Section 3, addressing all the aforementioned challenges through an end-to-end application that can gather healthcare 

data out of 5G IoMT devices, through allocating the device’s requirements and making its provided data interoperable, 

by using the concept of network slicing according to specific applications’ criteria and requirements. 

3- Materials and Methods 

The developed platform deals with heterogeneous IoMT devices that are designed to serve different application 

scenarios and provide their data in different frequencies among them. Henceforth, this platform initially addresses the 

data collection part, where a Data Acquisition mechanism is implemented for acquiring the Wi-Fi connected devices’ 

data being independent of the nature of the IoMT devices. At the same time, this mechanism gathers the network 

specifications of each IoMT device, in order to firstly provide the latter to the Slicing Management mechanism that is 

responsible for segmenting the aforementioned in different network slices, according to the different computational 

requirements of specific medical scenarios, and secondly the acquired healthcare data to the Data Interoperability 

mechanism. As soon as the slices are constructed, the Data Interoperability mechanism takes place, being performed on 

each different network slice in order to address data heterogeneity issues, and deliver data into a common and 

interpretable format, through identifying both syntactic and semantic similarities of the provided data. Henceforth, 

interoperable data can be given for further analysis to different stakeholders, in different periods based on the needs and 

the severity of each different medical scenario. Figure 1 depicts the overall architecture of the developed platform, while 

all the aforementioned steps are explained in the following sub-sections.  

 

Figure 1. Overall Architecture 

It should be noted that three medical scenarios are being considered for allocating the IoMT devices into three different 

slices, containing different computation requirements: a) Massive IoMT scenario including requirements for 

instantaneously capturing, collecting and receiving patient’s medical data, physical activity and vital signs, b) Enhanced 

Mobile Broadband scenario demanding enhanced data rates and high connectivity for remote doctor examination, and 

c) Mission-Critical Services scenario requiring boosted network reliability for healthcare providers deliver healthcare in 

critical cases. 

3-1- Data Acquisition 

In the first stage, as soon as all the devices have been connected to the platform through a Wi-Fi Gateway, the 

collection of these devices’ specifications occurs, accompanied by their data collection. In more detail, the Data 

Acquisition mechanism is responsible for collecting all the specifications, APIs, and network specifications by the 

different connected devices, to finally gather their data. In order to achieve that, the proposed mechanism implements 

the following four steps that are depicted in Figure 2. 

3-1-1- Devices Information Collection 

The objective of the Devices Information Collection is the collection of the connected devices’ specifications, 

network specifications, and APIs. In more detail, through the Wi-Fi Gateway the mechanism initially gathers 

information about the connected devices’ network specifications (i.e. reliability, availability, scalability, bandwidth, 

capacity, cache, end-to-end delay, and latency), in combination with their specifications (i.e. names, and Internet 

Protocol (IP) addresses). As soon as the IP address of each device is collected, through the latter it becomes feasible to 
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identify each device’s Media Access Control (MAC) and as a result the corresponding Organizationally Unique 

Identifier (OUI) (i.e. manufacturer), using the MAC Vendors API [15]. However, apart from the manufacturer and the 

name of each device, the mechanism gathers information about each device’s height and width, using the image-

processing library of the OpenCV [16], so as to be used and combined with the manufacturer and the name of the 

corresponding devices in the next steps.  

 

Figure 2. Data Acquisition Mechanism 

As soon as all these devices’ specifications are captured, the latter are queried and programatistically compared with 

the corresponding specifications of the devices that already exist in a registry that includes known IoMT devices (i.e. 

known devices’ registry). Depending on whether the connected devices already exist in this registry or not, they are 

characterized as either known or unknown correspondingly. More specifically, in the case that the specifications of the 

connected devices match exactly with the specifications of the devices of the known devices’ registry, then the connected 

devices are automatically considered to be known (i.e. devices of known type), whereas if there is no resemblance or 

even a partial resemblance among them, then the connected devices are considered to be unknown (i.e. devices of 

unknown type). After capturing the specifications of the different devices and categorizing them, their information 

storage occurs, where the specifications of the unknown devices are stored into a new registry (i.e. unknown devices’ 

registry), whilst the specifications of the known devices are not stored, as they already exist in the known devices’ 

registry. 

However, apart from this information, the mechanism requires knowledge about the devices’ APIs. Therefore, in 

sequel, since we have knowledge for all the devices’ manufacturers and nature (i.e. either known or unknown devices), 

we are able to retrieve from each manufacturer’s website the corresponding online development documentations, 

gathering information about each device’s (i) API Uniform Resource Locator (URL) paths for accessing the different 

methods that are included into the API, and (ii) API methods’ descriptions. To this end it should be noted that since a 

manufacturer may produce more than one different types of devices, its online documentation will contain methods for 

all the different types of devices. Henceforth, we store for each different known device in the known devices’ registry 

the corresponding API methods’ information about each device’s specific device type, whereas for the unknown devices 

we store in the unknown devices’ registry all the APIs methods’ information, as we do not know the type of the devices 

yet, in order to store the corresponding methods. 

3-1-2- Specifications Similarity 

The objective of the Specifications Similarity is to identify the syntactic similarity that exists between the devices of 

the known devices’ registry and each connected device’s specifications, to categorize the unknown connected devices 
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to the device type of the known ones, depending on the syntactic similarities that they will have among their names and 

manufacturers. It is worth mentioning that this step takes place only for the connected devices that are of unknown 

device type, as the known ones already exist in the known devices’ registry and their device type is already known. 

Henceforth, the names and the manufacturers of the unknown connected devices are taken as an input, and are 

syntactically compared with the names and manufacturers of the devices of the known devices’ registry, using the 

Levenshtein string metric [17]. In order to achieve the aforementioned, the mechanism proposed in [18] is implemented.  

Based on the results of this process, the device of the known devices’ registry with higher probability of similarity 

with each unknown connected device is considered that it is identical or almost identical with the corresponding 

unknown device, and as a result, the device type of each unknown connected device becomes known. To this end, it 

should be noted that in order to consider the results as trustful and reliable, these must exceed the set threshold of 85%. 

Henceforth, each unknown device that transcends this threshold is considered as known, being finally stored with its 

specifications in the known devices’ registry. 

3-1-3- Specifications Classification 

There might be cases where the unknown connected devices do not exceed the set threshold, indicating that neither 

the name nor the manufacturer of them match with any corresponding specifications of the devices of the known devices’ 

registry. For that reason, the objective of the Specifications Classification is to classify each unknown device’s 

specifications based upon the K-Nearest Neighbors (KNN) algorithm [19], to group all the unknown connected devices 

with the existing known devices according to their specifications. In order to achieve this process, the classification 

process proposed in [20] is implemented. 

Based on the results of this process, each unknown connected device may have different degrees of resemblance 

with one or more different known devices. Henceforth, in order to conclude into efficient results, we assume that each 

unknown device will be classified to the type of category of the device with which it has greater values of similarity (i.e. 

90%), and thus it will be finally treated as a device of known type. As a result, each one of these connected recognized 

devices in combination with their specifications are finally stored in the known devices’ registry. 

3-1-4- APIs Mapping & Data Collection 

Even if so far we have achieved to discover and automatically identify heterogeneous devices of unknown device 

type, their API methods’ nature is still remaining unknown. As our primary goal is to recognize the API methods that 

are responsible for collecting the devices’ data, the objective of the APIs Mapping & Data Collection is to carry out the 

mapping of the different devices’ API methods, by syntactically and semantically comparing all the API methods of the 

devices of the same type, thus understanding the nature and the meaning of the different API methods that are used by 

the different devices, in order to finally collect their data. As described in the Devices Information Collection step, 

through the manufacturer of each device, we are able to gather information about the devices’ (i) API URL paths for 

accessing the different methods, and (ii) API methods’ descriptions. However, the API URL paths are not providing 

internal details for each method in terms of its source code and its functionality purpose, but they are only providing 

descriptions on what does each method is supposed to do, when it should be used and how it should be called. Therefore, 

through this step, it becomes feasible to identify the API methods of a prior-unknown connected device, for which we 

only have access to the names of its API methods. In order to achieve that, the mechanism proposed in [21] is 

implemented. 

Based on the results of this process, as soon as all the API methods for gathering data have been identified, the 

implementation of the generic data acquisition API occurs. More particularly, the latter constitutes a unified API that 

merges into a single data method all the different devices’ API methods that are responsible for collecting data. Thus, 

this API is responsible for finally collecting the data from all the connected devices. 

3-2- Slicing Management 

In the second stage, the collected data are promoted among with the devices’ network specifications for further 

analysis to the Slicing Management mechanism. In more detail, the proposed mechanism’s design relies on 5G network 

slicing, which is able to let 5G Core (5GC) operators to offer parts of their networks for specific medical scenarios. 

Since each one of the medical scenarios impose their own set of network specifications (e.g. low latency, high 

bandwidth), a network slice instance is created by a group of network functions and logical resources, enabling the 

preparation of a completely logical network infrastructure capable to accommodate the computation requirements for 

each corresponding case [22]. To address all the aforementioned, the proposed Slicing Management mechanism, 

develops the following three steps that are depicted in Figure 3: 
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3-2-1- OS Management & Orchestration 

The Slicing Management mechanism interacts with the Operations Support System (OSS) [23] of the 5GC which in 

our case is an established infrastructure management and orchestration framework, using the Open Source (OS) 

Management and Orchestration (OSM - MANO) framework [24] that exposes REST APIs for controlling slicing, 

including management and orchestration of infrastructure resources. 

 
Figure 3. Slicing Management Mechanism 

3-2-2- Feasibility Analyzer 

The objective of the Feasibility Analyzer is to determine whether the infrastructures have available resources, as well 

as whether it can afford the request of a new slice in terms of cost, instantiation and successful deployment of the 

requested slice. Therefore, this process is triggered after the collection of the connected devices’ network specifications, 

in the Data Acquisition stage. To this end, it should be noted that these specifications are considered to be expressed in 

the form of policies, while they are used so as to formulate each requested slice’s expectations and targets, thus develop 

the required services, processes and capabilities, inside the 5GC. 

3-2-3- Slice Planner 

Sequentially, as soon as the network specifications have been successfully analyzed, the Slice Planner takes place, in 

order to adopt the network-sharing concept in the form of separate building blocks, on behalf of the network operator. 

For that purpose, in order to create the needed network slices, the MANO gathers the medical scenarios’ computational 

demands, and according to their computation requirements, it deploys a network slice that responds to their requests. To 

achieve this, the Slice Planner supports the provisioning of network slices using the feasible network specifications per 

medical scenario, obtained from the connected IoMT devices. Based on a high-level description of the medical scenario 

and the network specifications extracted from the Data Acquisition mechanism, we deploy an end-to-end slices 

deployment planner. To achieve that, the planner uses the dynamic discovery of unfractured resources, as well as the 

monitoring data coming from MANO. To this end, it should be pointed out that a slice is composed of a set of Virtual 

Network Functions (VNFs) in order to create a chained Network Service for the Data Interoperability mechanism, 

implemented on top of the infrastructure, whereas each one of them is isolated from the other slices, having a dedicated 

network proceeding. Henceforth, based on the computation requirements of each medical scenario, three different slices 

are deployed, in which the IoMT devices’ data are provided in order to be given as an input to the Data Interoperability 

mechanism. To successfully construct these slices, we consider that a) the Massive IoMT scenario demands IoMT 

devices with high levels of reliability, scalability, low end-to-end delay and high bandwidth, b) the Enhanced Mobile 

Broadband scenario demands high capacity, cache, low end-to-end delay, and high bandwidth, whilst c) the Mission-

Critical Services scenario demands low latency, high reliability, low end-to-end delay and high bandwidth. 

3-3- Data Interoperability 

The last stage includes a mechanism that is capable of constructing healthcare ontologies from the different datasets 

that have been acquired from the previous layer, and then identifying similarities and common links between these 

ontologies and the ontologies that represent the HL7 FHIR Resources, for finally translating the healthcare datasets into 
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the HL7 FHIR standard. The Data Interoperability mechanism is deployed in the 5GC in form of a chained Network 

Service, considering the three different medical scenarios that are allocated into the three network slices accordingly. 

The Data Interoperability mechanism behaves in the same way for each network slice, with differences in the execution 

speed according to the medical scenario’s computation requirements, implementing the following four steps that are 

depicted in Figure 4: 

 

Figure 4. Data Interoperability Mechanism 

3-3-1- Ontology Building System 

Initially, the Ontology Building System takes place, being responsible to gather the eXtensible Markup Language 

(XML) schema of the healthcare datasets – despite their primary format, and the HL7 FHIR resources, and build the 

ontologies. The generation of the ontologies is initially achieved through the transformation of the healthcare dataset 

into XML format, by identifying the different elements of the document, as well as the parent and the child nodes, along 

with their attributes. Sequentially, the transformation of the created XML document into XML schema using the Trang 

API [25] occurs, followed by the analysis of the XML schema using the XML Schema Object Model (XSOM) [26], 

where the output of the XSOM is used as an input for the Java Universal Network/Graph framework (JUNG) [27] that 

is used for graph-based manipulations. The latter generates a XML Schema Graph (XSG) [28] which is used as an input 

to the Apache Jena [29], in order to generate RDF entities (i.e. ontologies), emerging from complex types, element group 

declarations, and attribute-group declarations according to specific matching rules. It should be noted that the concepts 

and the properties that were identified from the created ontologies are stored through an RDF triplestore [30] that can 

store and retrieve the different: (i) concepts, (ii) relationships, and (iii) axioms of the derived ontologies. 

3-3-2- Syntactic Similarity Identifier 

Afterwards, the Syntactic Similarity Identifier takes place, in order to provide a way for identifying the syntactic 

similarity between the healthcare datasets and the HL7 FHIR Resources ontologies, and provide the probability that a 

specific ontology is syntactically same with another ontology. In our case, in order to measure the syntactic similarity 

between two ontologies, firstly the values of the different ontological concepts are gathered, and are then compared one-

by-one, in order to calculate their syntactic similarity. For that reason, the Levenshtein distance measure [17] is 

implemented, as a measure of similarity between the two concept names. By the time that all the different combinations 

of comparisons have occurred, different tables of the syntactic similarity between the ontological concept names are 

created. Among the different degrees of similarities, this mechanism finally stores and syntactically maps the concept 

names and the HL7 FHIR Resources that syntactically match better. 
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3-3-3- Semantic Similarity Identifier 

In sequel, the Semantic Similarity Identifier occurs, being responsible to provide the means for aligning and matching 

the different healthcare datasets and the HL7 FHIR Resources ontologies, according to their semantic meaning. In our 

case, in order to measure this semantic similarity, firstly the different concepts, along with their relationships and axioms 

of the stored ontologies are gathered. As soon as the different triples of information are gathered from the ontologies, 

these are compared one-by-one, in order to calculate their semantic similarity. For that reason, the Retina API [31] is 

implemented, where each instance of the triples of information is translated into semantic fingerprints, in order to 

compare their meanings by overlaying their semantic fingerprints and calculating their distance. By the time that all the 

different combinations of comparisons have occurred, different tables of the semantic similarity between the different 

triples of arrays are created. The purpose of the Semantic Similarity Identifier is to identify the triples of arrays of the 

healthcare dataset that have greater degree of resemblance with the HL7 FHIR Resources. Consequently, among the 

different degrees of similarities, this mechanism finally stores and semantically maps the triples of arrays and the HL7 

FHIR Resources that semantically match better. 

3-3-4- Overall Ontology Mapper 

Finally, the Overall Ontology Mapper takes place, in order to provide a process being able to aggregate and merge 

the results that have derived from the previous mechanisms of the Syntactic and the Semantic Similarity Identifiers, in 

order to finally map the healthcare datasets to the proper HL7 FHIR Resources. After the calculation of the mean of the 

Syntactic and Semantic Similarity Identifiers, the HL7 FHIR Resource attribute with higher probability of similarity 

with each compared ontological concept is automatically considered that it represents the specific dataset’s attribute. 

The same mechanism iterates in order to finally assign the ontologies of the healthcare data into their HL7 FHIR format 

4- Evaluation  

4-1- Working Environment 

The overall platform was developed in Java SE using the NetBeans IDE v8.0.2. Current study used a processing 

environment with 16GB RAM, Intel i7-4790 @ 3.60 GHz x 8 CPU Cores, 2TB Storage, and Windows 10 operating 

system. The 5GC testbed was implemented on top of a real 5G environment, currently under deployment on behalf of 

the 5GTANGO EU project [32]. The provided European Telecommunications Standards Institute (ETSI) compliant 

5GTANGO Service Platform is a modular Network Function Virtualization (NFV) platform that manages network 

services throughout their end-to-end lifecycle, from instantiation to termination. The platform combines a policy 

mechanism with a customizable MANO Framework to allow the operator and the service developer to join forces in 

managing their lifecycles to fulfil specific network slices. It should be noted that concerning the source code availability, 

it is not currently in fully open-source format, since it has not been finalized.  

4-2- Experimental Results 

Data Acquisition: In order to perform a complete testing and evaluation of the platform, 30 IoMT devices of various 

types and open APIs were chosen, being able to connect through a Wi-Fi Gateway with our platform. In more detail, 

following the Devices Information Collection step, 29 of them were recognized as of known device type (these devices 

can be seen in Table 4, Table 5 and Table 6), whereas 1 of them was of unknown device type. Therefore, for the 29 

known devices, we had prior knowledge about seven of their specifications (i.e. name, IP address, MAC address, 

manufacturer, height, width, and type) outlining the type of the device that each one of them belongs to (i.e. activity 

tracker, blood pressure monitor, pulse oximeter, body weight scale, toothbrush, glucometer, and thermometer). 

Regarding the 1 unknown device, we had only prior knowledge about two of its specifications (i.e. name, and IP 

address), whereas its manufacturer, height, width, and type were initially unknown. Table 1 depicts a snapshot of the 

specifications of a known IoMT device, and a snapshot of the unknown device’s specifications. 

Table 1. Fitbit Flex Specifications 

MT Specifications Fitbit Flex Misfit Vapor 

IP address 104.16.65.26 104.229.25.19 

Mac address 1800DB6C572B Unknown 

Manufacturer Fitbit Unknown 

Height (cm) 1.5 Unknown 

Width (cm) 1.01 Unknown 

Type Activity Tracker Unknown 
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Following the steps of the Devices Information Collection, as   soon as the IP address of the unknown device was 

collected, we identified the device’s MAC address, and manufacturer, which was the Misfit, while we gathered 

information about the device’s height and width, which were 3.5 cm and 3.5 cm correspondingly. Apart from these, 

since we acquired knowledge for the device’s manufacturer (i.e. Misfit), we retrieved from Misfit website its online 

development documentations, gathering information about the device’s API URL paths, and API methods’ descriptions, 

following exactly the same process for the 29 known devices. 

Sequentially, following the steps of the Specifications Similarity, for the unknown device’s name, the syntactic 

similarity was calculated, between the unknown device’s name and each different known device’s name. The same 

process was followed for the unknown device’s manufacturer, where the syntactic similarity was calculated again, 

between the unknown device’s manufacturer and each different known device’s manufacturer. In our case, we identified 

(Table 2) that Misfit Vapor had greater degree of similarity with Fitbit Aria (47.7% of overall similarity). However, 

since this result did not exceed the set threshold (i.e. 85%), it was not efficient enough to conclude to the type of the 

device, as it was not possible to map Misfit Vapor to any of the devices of the known devices’ registry. 

Table 2. Overall Similarity between Misfit Vapor and Fitbit Aria 

Similarity Type Value 

Name Similarity 45.5% 

Manufacturer Similarity 50% 

Overall Similarity 47.7% 

For that reason, the stage of the Specifications Classification had to be implemented for grouping the 1 unknown 

connected device with the 29 existing known devices based upon their specifications (i.e. name, manufacturer, height, 

width, and device type), and thus predicting the unknown devices’ type. KNN was performed and predicted that the 1 

unknown connected device belonged to the group of the activity trackers, as its classification’s output illustrated that 

the unknown instance was classified correctly in a percentage of 95% into the group of the activity trackers, having 

approximately the same specifications with the other pre-existing 12 activity trackers. 

Having recognized the connected device’s type, the final stage of the mechanism was implemented in order to identify 

the connected device’s API methods’ nature, thus distinguishing the ones that are responsible for collecting data from 

the device. For the 1 connected device, as mentioned in the Devices Information Collection, we retrieved from Misfit’s 

online documentation all its API methods, gathering information about how the device’s API methods are called (i.e. 

URL path), and what they offer as functionality (i.e. description). Table 3 depicts a snapshot of an unknown API method 

of the unknown device. 

Table 3. Snapshot of an unknown API method 

API Information Value 

Method Identifier Unknown1 

URL Path activity/goals?start_date=X&end_date=Y 

Description Goals of a user in the period 

Concerning the description of the 1 connected device’s API methods, even though we had the syntactic description of 

it, we did not know its semantic meaning, in contrast to the descriptions of the 12 other activity trackers API methods’ 

descriptions. After performing the steps of the APIs Mapping & Data Collection, the API methods that were used for 

collecting data from the activity trackers were recognized, including the ones that were used into the Misfit Vapor in 

order to gather its data. Finally, having recognized all the API methods that were responsible for gathering data from 

the IoMT devices, their data was acquired along with the network specifications of each IoMT device, in order to be 

provided to the Slicing Management mechanism for splitting the IoMT devices to the three different medical scenarios. 

Slicing Management: Based on the computation needs of the three medical scenarios, the Slicing Management 

mechanism assigned the IoMT devices into the slices of Table 4, Table 5 and Table 6. 

Table 4. Massive IoMT scenario 

Slice 1  

IoMT Devices 

Fitbit Aria, iHealth Sense, Withings Pulse O2, iHealth Track, Mi Electric 

Toothbrush, iHealth View, Garmin Vivofit, Mi Body Composition Scale, 

Fitbit Alta HR, Withings Steel HR, iHealth Core, Garmin Forerunner 630, 

Misfit Vapor. 

Requirements 
High Reliability, High Availability, High Scalability, Low End-to-end 

delay, High Bandwidth. 
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Table 5. Enhanced Mobile Broadband scenario 

Slice 2  

IoMT Devices 

Fitbit Flex, Withings BPM, iHealth Ease, iHealth Air, Withings Body 

Cardio, Garmin Vivomove HR Sport, iHealth Lite, iHealth Smart, 

Garmin Vivosport, Fitbit Charge 2, iHealth Wave, Withings Body+. 

Requirements High Capacity, Low Cache, Low End-to-end delay, High Bandwidth. 

Table 6. Mission-Critical Services scenario. 

Slice 3  

IoMT Devices 
iHealth PT3, Garmin Vivosmart 4, Withings Steel, Fitbit Zip, Withings 

Thermo. 

Requirements Low Latency, High Reliability, Low End-to-end delay, High Bandwidth. 

Data Interoperability: For each different constructed slice, the ontological hierarchical tree of the IoMT provided 

dataset (Figure 5a) was created representing its concepts, relationships, and axioms (Figure 5b). Shortly, Figure 5a 

depicts an instance of the IoMT device dataset that represents the heart rate measurement of an anonymized patient, on 

the 2017-02-20T18:27:14.000Z, that was of value 81 bmp measured by the previously unknown, Misfit Vapor device 

(Slice 1). Furthermore, the HL7 FHIR Resources were also constructed as ontologies, taking as an input the XML 

representation of each one of the different HL7 FHIR Resources. 

 

 

Figure 5. (a) Instance and (b) Ontological Hierarchical Tree of the IoMT device dataset 

Afterwards, the Syntactic Similarity and the Semantic Similarity Identifier were performed for each IoMT device’s data 

in each slice, providing the HL7 FHIR Resources syntactic and semantic similarity degrees accordingly. A snapshot of 

the Syntactic and Semantic Similarity Identifier higher similarity degrees is depicted in Table 7, with regards to the 

instance of Figure 5. 
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Finally, the Overall Ontology Mapper dealt with the identification of the largest calculated pairs of means of both 

the Syntactic and the Semantic Similarity Identifiers’ results, providing finally the attributes of the IoMT device dataset 

with higher probabilities of resemblance with the identified HL7 FHIR Resources attributes. It should be noted that this 

mechanism iterated for all the different slices and IoMT devices’ data, transforming them into a common format, being 

able to be provided to different stakeholders for further analysis or usage. 

Table 7. HL7 FHIR Resources with higher Syntactic and Semantic Similarity Degrees with the Misfit Vapor dataset 

IoMT Deivce Dataset Attribute FHIR Resource  

ObservationIdentifier observation.id 

 (94% | 76%) 

patient observation.subject 

 (79% | 31%) 

paName observation.subject.patient.name 

 (87% | 76%) 

paIdentifier subject.patient.identifier 

 (83% |72%) 

id observation.id 

 (100% | 93%) 

dateOfMeasurement observation.effectiveDateTime 

 (23% |78%) 

ObservationSystem observation.code 

 (91% | 26%) 

measuredValue observation.value 

 (87% | 81%) 

sub-category observation.category 

 (69% | 77%) 

5- Evaluation  

Based on the captured results, concerning the Data Acquisition mechanism, we resulted that the device type of an 

unknown connected device is feasible to become known. It is worth mentioning that there might be some cases where 

the unknown device may not have any similarity with any other known device, as in the case of the Misfit Vapor in our 

experimental results. Moreover, in the Data Acquisition mechanism it is clear that there might be cases that an ontology 

may have syntactical similarity with a specific API method, but it may not have any semantic similarity with this specific 

API method. Consequently, we are not able to create patterns and rules mentioning that in the case that an ontology 

matches syntactically or semantically with a specific ontology, it will have always an exact match with it. With regards 

to the Slicing Management mechanism, we can conclude that the dedicated slices were split into a correct form, since 

the provided slices were also calculated manually and compared with the aforementioned results. Concerning the Data 

Interoperability mechanism, the specific IoMT device dataset was translated manually in HL7 FHIR, in order to compare 

the results of the developed mechanism, with the actual outcomes. This was the main reason that a small data sample 

was chosen for the platform’s evaluation. Through that, we resulted that the developed mechanism provided results of 

100% accuracy. 

To conclude, through the developed platform we were able to effectively identify a device of unknown type and 

collect its data, along with its network specifications, for assigning it into network slices along with other IoMT devices, 

and making their data interoperable through their translation into HL7 FHIR with speeds and performance which are 

adapted to the severity and the computational needs of the medical scenario that each IoMT device has been assigned to. 

This approach is extremely innovative, considering that all the researches that have been proposed in the literature so 

far, lack of sufficient flexibility and adaptability to heterogeneous incoming devices. What is more, in the context of 

healthcare interoperability, multiple attempts have also been provided to standardize and cover most of the healthcare 

field, which still result into clinical misinterpretations. However, through the provided platform, the known and unknown 

heterogeneous IoMT devices’ parallel connection and data collection is becoming a reality, towards their translation into 

a globally recognized medical standard, with speeds and performance which are adapted to the severity of the medical 

scenario that each IoMT device has been assigned to. 

 Our future work includes the evaluation of the provided platform by testing it with additional heterogeneous IoMT 

devices of different types, as well as with datasets of different sizes, standards and formats, respecting privacy and 
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human-computer interaction issues [33]. Apart from this, we aim to extend our mechanism by supporting a general 

interface in which all the devices will be able to be connected regardless of their communication protocol. Finally, we 

aim to implement a visualization module providing abstractions over the available devices through a Web interface that 

will enable users to observe and manage their connected devices, to monitor the state and the location of their devices, 

and to visualize the acquired data, the network slices and the overall data transformation process. 
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