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Abstract 

This paper applies deep learning to the prediction of Portuguese high school grades. A deep 

multilayer perceptron and a multiple linear regression implementation are undertaken. The 

objective is to demonstrate the adequacy of deep learning as a quantitative explanatory paradigm 

when compared with the classical econometrics approach. The results encompass point 

predictions, prediction intervals, variable gradients, and the impact of an increase in the class size 
on grades. Deep learning’s generalization error is lower in the student grade prediction, and its 

prediction intervals are more accurate. The deep multilayer perceptron gradient empirical 

distributions largely align with the regression coefficient estimates, indicating a satisfactory 
regression fit. Based on gradient discrepancies, a student’s mother being an employer does not 

seem to be a positive factor. A benign paradigm shift concerning the balance between home and 

career affairs for both genders should be reinforced. The deep multilayer perceptron broadens the 
spectrum of possibilities, providing a quantum solution hinged on a universal approximator. In the 

case of an academic achievement-critical factor such as class size, where the literature is neither 

unanimous on its importance nor its direction, the multilayer perceptron formed three distinct 
clusters per the individual gradient signals. 
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1- Introduction 

An artificial neural network (ANN) [1] is a machine learning algorithm built upon simple interconnected processing 

units, known as artificial neurons or nodes. The nodes are displayed in layers, allowing efficient parallel and distributed 

processing of knowledge and information [1]. Deep learning has been one of the most important developments in 

computer science in the last decade. It consists of using neural networks with at least two hidden layers to address various 

problems in different domains. The widespread use of powerful hardware and graphics processing units has allowed the 

construction of learning systems with numerous parameters trained on large datasets. Although affecting a plethora of 

domains, the most relevant contributions of deep learning have appeared in the computer vision, speech recognition, 

natural language processing, and robot control domains [2, 3]. 

Most recently, the widespread use of the internet, e-learning platforms, educational software, and the establishment 

of public education systems’ databases have generated a substantial increase in the availability of educational data. In 

fact, Internet-based education systems have allowed the accumulation of enormous amounts of digital data from different 

sources, formats, and granularities, inducing the emergence of the Learning Analytics (LA) and Educational Data Mining 

(EDM) fields in the mid-2000s [4]. Deep learning is already being applied in education to predict and explain students’ 
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academic achievement (AA). EDM and LA often use neural networks to study educational realities and extract valuable 

knowledge from digital platform data. Learning systems with the ability to anticipate students at risk of failing are a 

promising development for improving learning contexts and academic attainment. However, there still seems to be an 

ongoing preference for traditional methods such as multiple linear regression [5]. On the other hand, EDM and LA 

develop extensive knowledge models suitable for predictive analysis alone. These models do not have the traditional 

explanatory nature built upon the measurement of the literature-based AA determinants [6]. To the best of the authors’ 

knowledge, there is no educational econometrics study that has considered deep learning as the explanatory quantitative 

method. This article aims to fill this important scientific gap. 

The study of the determinants of AA is crucial to promoting accurate educational policies. Moreover, the success of 

a country’s education system can leverage the entire nation’s wealth [7]. Promoting an improvement in the conceptual 

framework or in the quantitative approach that supports it is a meaningful and necessary breakthrough. Applying deep 

learning to infer relationships between concepts is not the same as using it for purely predictive purposes. Since deep 

learning is based on a universal approximator, the vast underlying parameters make interpretation and knowledge 

retention more challenging. It is necessary to ensure that developments in scientific experimentation do not bring any 

spurious complications. Any added complexity will lead to a better approximation of the reality under scrutiny. Thus, 

deciphering the deep learning black box is a valuable scientific undertaking [8]. In this study we address this challenging 

task by computing the deep gradients for each variable-observation pair and comparing their distributions with the 

traditional βs of the multilinear regression. 

The adoption of deep learning as an experimental approach in educational and social sciences alike has remarkable 

advantages beyond its predictive capacity. The paradigm does not depend on a specific mathematical form to express 

relationships between concepts and has a particular aptitude to represent social phenomena whose heterogeneity is 

paramount [9]. The treatment of conceptual heterogeneity is undertaken naturally and spontaneously. By widening the 

spectrum of possibilities, deep learning introduces a capacity to anticipate nonconformities, which induces the search 

for fairer and more equitable policies. Any policy measure that brings about changes in the critical factors of AA is 

evaluated within the heterogeneous spectrum of both the possible outcomes and the underlying gradient structure. For 

example, there is room for a critical factor with an average positive impact on the student’s grades to have a detrimental 

effect in a hypothetical individual example. This study undertakes this comprehensive analysis for the critical AA factor 

of class size, for which the literature is unanimous on neither its importance nor its direction. 

This paper aims therefore to apply deep learning to predict upper secondary students’ AA, highlighting the 

revolutionary character of its widespread adoption. It seeks to reflect on the repercussions for the AA domain (and for 

the social sciences in general) resulting from the use of a paradigm that has the intrinsic ability to create a quantic space 

of representation of social phenomena. For this purpose, we implement deep learning and multilinear regression 

simultaneously to predict the upper secondary grades assigned by a Portuguese education system teacher at the end of 

the 2018-19 school year. The discussion that follows stems from the interpretation and comparison of the results 

regarding point and interval predictions, independent variables gradients, and the likely effect of a generalized increase 

in class size. 

The remainder of the document is organized as follows: first, a review of AA literature is presented, followed by a 

detailed description of the methodology and the underlying algorithms. Then, the empirical results are shown and 

interpreted, followed by the discussion and conclusions. 

2- Literature Review 

In the scientific literature, AA determinants are commonly classified into student, parents, and school critical factors 

[10]. A thorough assessment of the conditional background induced by those three analytical axes is of utmost 

importance when explaining students’ AA. Cognitive ability has long been considered the most essential determinant of 

AA [11, 12]. Not surprisingly, students’ scores can be anticipated accurately from their Intelligence Quotient [13], 

despite the significant role that is left for other important factors [14]. When it comes to gender, females generally attain 

better scores in school, especially in languages, and less so in Math [15–17]. The tendency to create a negative peer view 

of the school activities undermines males’ levels of engagement, motivation, and achievement [18]. There is a 

relationship between certain personality traits, such as organization and steadiness of effort, and overachievement [19]. 

There is an AA gap between different ethnic groups. Black students in the US are invariably bound to underperform 

[20]. Even though not extendable to the following generations in the US, first-generation children of African, Asian, and 

Hispanic origins achieve higher education levels than did their parents [21]. The AA tends to be poorer if the origin 

country has a low economic development level and better if the origin country is politically stable [22]. Using personal 

computers at school can improve AA. However, students tend to use them primarily for unhelpful leisure activities such 

as emailing friends and navigating the Internet [23]. There is a negative relationship between the non-academic use of 

information and communication technologies and student grades [24]. Greater use of internet applications is also 

associated with sleeping late, fatigue, class absence, and AA underperformance [25]. 
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Parents’ expectations about their children’s education attainment positively affect their AA, which is more significant 

than a proper home structure and supervision [26]. Underachieving students are bound to benefit from good relationships 

between parents and school [27]. Furthermore, parental involvement seems to especially help low socioeconomic status 

(SES) students [28]. There is a strong positive relationship between the SES of the student’s family and AA, highlighting 

education inequalities and the importance of resources and cultural capital [29]. The association between parents’ 

education and AA remains even after controlling for variables associated with intelligence and personality [30], 

underlining the prominent role of schools in providing cultural experiences and additional stimuli that are lacking at 

home. In addition, having private lessons, which is associated with parental education and family income, can be decisive 

for students’ AA [31]. 

There is some controversy surrounding the relationship between class size and AA in the literature. Hoxby (2000) 
[32] concluded that the class size effect is insignificant even for minor effects. By contrast, Krueger (1999) [33] 
concluded that smaller classes improve AA. The most benefitted are the minority and impoverished students. Smaller 
classes appear to have a favourable effect on AA in education systems, where the lecturing quality seems to be lower 
[34]. In a more convergent tone, smaller schools promote AA, providing the greatest benefit to students with learning 
difficulties and lower SES [35]. An adequate school environment and design are conducive to overachievement. Students 
and school stakeholders should be provided with a peaceful and comfortable learning environment with clean air and 
good light [36]. When introducing changes in the school environment, an inclusive design process is recommended that 
welcomes genuine inputs of teachers and students [37]. 

Lecturing ability and teacher quality are important for AA in general and influence underperforming students in 

particular [38]. There is a positive relationship between teachers’ ability and college grades [39]. However, many 

measurable teacher characteristics seem to be unrelated to teacher quality, which is intrinsically linked to unobservable 

factors. This finding points to policies favouring teaching evaluation based on students’ performances [40]. In the same 

line, Rivkin et al. (2005) [41] corroborated that lecturing effectiveness is undoubtedly a significant AA determinant. 

However, in the same study the education and teacher experience revealed only a weak effect. 

The LA/EDM field is a predictive branch of the AA domain that uses machine learning to disclose relevant behaviour 
patterns embedded in the educational databases. The increase of LA/EDM research is an ongoing process. However, 
there are only a few regression studies, as most of them are designed to solve classification and clustering problems [42, 
43]. Normally, the LA/EDM learning systems resort to socio-demographic variables, digital log data, and course 
assignment scores to anticipate the students’ AA. They are extensive knowledge models appropriate for predictive but 
not explanatory analysis [6]. It has also been proved that ANN performs among the best when predicting grades [44]. 
Table 1 shows a representative set of the studies that use ANN in the experimental phase. It is worth mentioning that our 
research goes far beyond their scope and depth. For instance, none of those in Table 1 involves estimating prediction 
intervals, the computation of the deep learning gradients, and further analysis of the results of political measures. 

Table 1. Artificial neural network studies 

Authors Dataset Machine learning algorithms Output variable 

Feng et al. (2022) [45] 
Three datasets of 46, 61, and 51 

university student records 

K-means clustering, discriminant analysis, and 

convolutional neural network 
Four categories of AA 

Nabil et al. (2021) [46] 
4,266 university students and 12 

features 

Deep neural net, decision tree, logistic regression, 

support vector classifier, k-nearest neighbour 
Fail the course 

Al-Tameem et al. (2021) 

[47] 

2013-2014 data from two virtual 

social sciences modules 
Spearman’s correlation and deep neural net Fail the module 

Costa-Mendes et al. 
(2020) [48] 

362,127 high school grades 

Multilinear regression, random forest, support vector 

machine, artificial neural network, and extreme 

gradient boosting machine stacking ensemble 

High school grades 

Cruz-Jesus et al. (2020) 

[10] 
110,267 high school students 

Artificial neural network, decision tree, extremely 

randomized trees, random forest, support vector 

machine, k-nearest neighbours, and logistic regression 
classifiers 

High school retentions 

Musso et al. (2020) [49] 655 university students artificial neural network classifier 
Low and high levels of three 
different measures of AA 

Mengash (2020) [50] 2,039 students 
artificial neural network, decision tree, support vector 
machine, and naïve Bayes classifiers 

Evaluating the admission 
criteria of a Saudi University 

Aydoğdu (2020) [51] 3,518 students and 22,979 grades Artificial neural network classifier Successful or unsuccessful 

Li et al. (2019) [52] 480 students of an online course 
Support vector machine, artificial neural network, 

naïve Bayesian and decision tree classifiers 

Low, middle, high grades 

classes 

Altaf et al. (2019) [53] 900 students Artificial neural network classifier 
Needs assistance and does not 
need assistance 

Lau et al. (2019) [54] 1,085 university students Artificial neural network regressor Cumulative grade point average 

Arunachalam & 
Velmurugan, (2018) [55] 

1,300 undergraduate students 
Artificial neural network, probabilistic neural network, 
and evolutionary neural network classifiers 

First, second, third, and fail 

Mondal & Mukherjee 

(2018) [56] 
480 students 

Artificial neural network, deep neural network, and 

recurrent neural network classifiers 
High, medium, and low classes 
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3- Methodology 

Supervised learning involves learning a function that maps an input to an output based on a set of input-output pairs. 

The function is inferred from labelled data consisting of training examples. Each example is a pair of an input vector and 

an output value in supervised learning, also called a supervision signal. Each component of the input vector corresponds 

to a feature or attribute. A supervised learning algorithm analyses the training data and infers a function to be used to 

map new examples. The learned function should accurately anticipate the class labels in case of classification or the 

numeric target variable in case of regression. The learning algorithm should have the statistical quality of properly 

generalizing from training to unseen data [57]. 

The dataset was split into 60% for training, 20% for validation, and 20% for testing. All the variables were 

standardized. The deep multilayer perceptron (MLP) implementation includes training and test performance statistics, 

test prediction intervals, training, test gradients, and the analysis of the effects on grades of a class size increase. The 

multilinear regression (MLR) implementation does not include the computation of gradients because they coincide with 

the regression coefficients. The core of the experimental phase involved eight main steps. The first consisted of a feature 

selection procedure based on the Lasso regression algorithm. The multilinear regression results were computed in both 

the training and test sets in the second step. In the third step a thorough architecture-topology and hyperparameter 

optimization procedure of the deep MLP was undertaken. Next, the deep MLP was trained. Then the deep MLP test 

prediction intervals were calculated. In the sixth step, the training and test gradients were determined. Finally, the seventh 

and eighth step comprised predicting class size effects on grades for both MLR and deep MLP. Figure 1 displays the 

research methodology followed in this study. 

 

Figure 1. Methodological steps 

3-1- Multilinear Regression 

MLR establishes a linear relationship between a dependent variable to be explained and predicted and a set of 

independent variables. It provides easily interpretable results by imposing important restrictions. The error terms are 

assumed to be independent of one another, homoscedastic, and with a null mean. The model and the individual statistical 

significance tests of the coefficients 𝛽𝑖 presuppose that the error term follows a gaussian distribution. The ordinary least 

squares method was used in the learning phase, and the model parameters were estimated from the training and validation 

set. The point and interval predictions of the test set followed the standard practice [58]. The implementation was based 

on the statsmodels python library [59]. 

3-2- Deep Multilayer Perceptron 

The MLP stems from the perceptron model [60], capable of solving linearly separable classification problems. The 

MLP architecture adds hidden layers between the input and output layers. The number of nodes of the input layer equals 

the number of the input variables. It is a feed-forward topology, as the connections between nodes are established from 

lower to upper layers, and no connections exist between nodes of the same layer. Each connection is assigned a weight. 

The input of every node in any hidden layer or the output layer is a weighted average of the nodes’ outputs of the 
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preceding layer plus a bias. The input is transformed through a nonlinear activation function in a new signal propagated 

forward up to the output layer [61]. The theoretical analysis of an MLP is not an easy task as the nonlinearity of the 

distributed processing and the high connectivity enlarge the optimization search space to numerous possible 

representations of the input patterns by the hidden nodes. The task becomes even more difficult in the case of a deep 

MLP with several large hidden layers. The learning phase of an MLP consists of optimizing the weights and biases to 

minimize the gap between the network output and the target. This optimization is carried out by the backpropagation 

algorithm [62] combined with gradient descent techniques. The learning process has two phases. In the forward phase 

the signals are propagated from lower to upper layers up to the output layer, and the weights and biases remain 

unchanged. In the backward phase the network error is first computed and then propagated backward layer by layer, 

inducing the weights and the biases to change in the direction determined by the gradient of the loss function. The 

learning phase is considered successful as it reaches a configuration of the weights that results in an acceptable value of 

the loss function [61, 63, 64]. 

The implementation was developed using Keras [65], which is a deep learning API written in Python, running on top 

of TensorFlow (an end-to-end machine learning platform). It was developed with a focus on enabling fast 

experimentation and is characterized by flexibility and scalability. In fact, as stated in the Keras documentation, it is 

possible to run Keras on large clusters of GPUs, and export Keras models to run in the browser or on a mobile device. 

3-2-1- Layer weight initializers 

The assignment of initial node weights is done just before the learning phase. Insignificant initial weights tend to 

produce vanishing backward propagated weights. Large initial weights can induce exploding gradients [66]. The hyper-

tunning procedure encompassed four weight initialization alternatives: the random normal initializer with mean zero and 

standard deviation of 0.05, the random uniform initializer between -0.05 and 0.05, the normalized random uniform 

initializer, and the normalized random normal initializer [67]. In terms of biases, the ones initializer, activating every 

node in the deep MLP, and the most commonly used zeros initializer were included. 

3-2-2- Activation Function 

The ANN can learn very complex patterns due to both the nonlinearity of the activation function and the existence 

of hidden layers. The activation function of the hidden layers is the Rectified Linear Unit function (𝑓(𝑥) = max(𝑥, 0)) 

as it typically enhances learning in networks with many layers [68]. The output layer has no activation function. 

3-2-3- Dropout 

Dropout is a regularization technique that randomly and temporarily stops training some nodes and their 

interconnections. Dropout regularization can be compared to model ensembles without the explicit need of creating 

multiple learners [69]. The ANN generalization ability is enhanced because it avoids adapting weights to overfit the 

training set. To keep the mean weight unchanged between training and testing, the weights for unseen data come as 

follows [70]: 

𝑊𝑢𝑑𝑖 = 𝑊𝑖  . 𝑝  (2) 

where p is the dropout rate, the probability of not training the node. 

The hyper-tuning phase evaluated a dropout layer with different dropout rates after any hyper-tuned dense layer. A 

dropout layer sets the inputs to zero according to the dropout rate. 

3-2-4- Batch Size and Batch Normalization 

The batch size corresponds to the number of observations considered in the forward step of the backpropagation 

before updating the network’s weights [71]. There is a trade-off between the computation cost and the ANN accuracy in 

batch size. A larger batch size induces a more straightforward computation but poorer ANN accuracy. The default batch 

size of 32 examples was used [72]. The batch size search space was built from powers of two [71]. 

Batch normalization consists of normalizing the layer inputs for each training batch to maintain its mean close to 

zero and its standard deviation close to 1. With the distributions of the layer inputs stabilized, the optimizer is less prone 

to lead to layer saturations, accelerating learning, reducing the importance of the weight initialization, and eliminating 

the need for dropout [73]. The option of having a batch normalization layer before the activation was evaluated in the 

hyper-tuning phase. 

3-2-5- Optimizers 

The hyper-search includes a representative set of various versions of the gradient descent optimizer to analyse which 

better suits the data’s convergence and pattern. 
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3-2-5-1- Mini-Batch Gradient Descent with Momentum 

The batch gradient descent [3] with moment updates the weights and biases 𝑤𝑡  for a learning rate 𝜂 and a momentum 

hyperparameter 𝛽 are as following: 

𝑤𝑡 = 𝑤𝑡−1 − 𝜂 . 𝑉𝑑𝑤𝑡
  (2) 

where; 

𝑉𝑑𝑤𝑡
= 𝛽. 𝑉𝑑𝑤𝑡−1

+ (1 − 𝛽) .
𝜕𝐿

𝜕𝑤𝑡−1
  (3) 

The momentum addition in the gradient function makes the actual gradient dependent on the previous gradient, 

accelerating convergence and avoiding excessive oscillation. 

An epoch is a complete pass through the entire training set. In the batch gradient descent, there is one update per 

epoch. In the case of the mini-batch version, as the internal parameters are updated for every successive subsample of 

the training data, there are several updates per epoch. In the case of the stochastic version, the update is undertaken for 

every single example. The mini-batch version comes up as a good compromise between the large gradient oscillation of 

the stochastic version that demands lower learning rates and more time to converge and the computation cost of the batch 

version that computes the gradients for the entire training set at once. 

In the hyper-tuning phase, its adoption was evaluated for different learning rates and momentum coefficients. 

3-2-5-2- Root Mean Square Propagation (RMSprop) 

The gradients of each weight or bias 𝑤𝑡  can differ substantially, making it hard to find a proper single learning rate 

that fits every case. Higher gradients should correspond to lower learning rates in terms of convergence and efficiency. 

The RMSprop is based on the mini-batch gradient descent and introduces adaptive learning rates. It divides the actual 

mini-batch gradient by the moving average of the square of the consecutive mini-batch gradients, resulting in different 

learning rates for each weight: 

𝑤𝑡 = 𝑤𝑡−1 −
𝜂

√𝑆𝑡
 .

𝜕𝐿

𝜕𝑤𝑡−1
  (4) 

𝑆𝑡 = 𝜚. 𝑆𝑡−1 + (1 − 𝜚) . (
𝜕𝐿

𝜕𝑤𝑡−1
)

2

  (5) 

In the hyper-tuning phase, its inclusion was evaluated for different 𝜚 values. 

3-2-5-3- Adaptive Moment Estimation (Adam) 

The Adam optimizer [74] uses adaptive learning rates and momentum. As sparse features are bound to generate 

sparse gradients, their learning rates should be higher. The adaptive learning rates allow different feature learning rates 

based on the sum of squares of their previous gradients. 

The Adam optimizer updates the weights and biases 𝑤𝑡  for a core learning rate 𝜂, a momentum hyperparameter 𝛽1 

and an adaptive learning rate hyperparameter 𝛽2: 

𝑤𝑡 = 𝑤𝑡−1 −
𝜂

√𝑆̂𝑡+𝜀
 . 𝑉̂𝑑𝑤𝑡

  (6) 

𝑉𝑑𝑤𝑡
= 𝛽1. 𝑉𝑑𝑤𝑡−1

+ (1 − 𝛽1) .
𝜕𝐿

𝜕𝑤𝑡−1
  (7) 

𝑉̂𝑑𝑤𝑡
=

𝑉𝑑𝑤𝑡

1−𝛽1
𝑡  (8) 

𝑆𝑡 = 𝛽2. 𝑆𝑡−1 + (1 − 𝛽2) . (
𝜕𝐿

𝜕𝑤𝑡−1
)

2

  (9) 

𝑆̂𝑡 =
𝑆𝑡

1−𝛽2
𝑡  (10) 

where 𝜀 > 0 avoids the null denominator case and 𝑆̂𝑡  is different for each feature. As the initial values 𝑉𝑑𝑤0
and 𝑆0 are 

zero, the rectifications in Equations 8 and 10 recentre the exponential averages. 

In the hyper-tuning phase, the default optimizer was Adam. When tuned, the core learning rate 𝜂, the momentum 

𝛽1and the adaptive 𝛽2 hyperparameters were taken-into-account. 
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3-2-5-4- Learning Rate Schedule 

Scheduling the learning rate consists of reducing it as the training goes. Sometimes it is called annealing rate because 

it allows both higher weights variance in the beginning to avoid local minima and lower variance in the final epochs, 

enhancing the likelihood of convergence [72, 75]. 

In the hyper-tuning phase, an exponential learning rate schedule was put forward: 

𝜂𝑠 = 𝜂𝑠−1. 𝜀  (11) 

where 𝜀 ∁ ]0,1] and 𝑠 is the number of steps completed every 𝑑% of total batches. 

3-3- Feature Selection 

Lasso multilinear regression [76] introduces an L1 regularization in the MLR model, penalizing the magnitude of the 

regression coefficients. As the shrinkage pressure increases, the resulting model is likely to be simpler and sparser. In a 

feature selection procedure, the variables that have null 𝛽𝑗̂  are dropped as they are considered unimportant for the 

explanation of the target variable. 

(𝛼,̂ 𝛽̅̂, 𝜆) = 𝑎𝑟𝑔 𝑚𝑖𝑛 {∑ (𝑦𝑖 − 𝛼 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1 )

2𝑁
𝑖=1 + 𝜆. ∑ |𝛽𝑗|

𝑝
𝑗=1 }  (12) 

n the feature selection phase, the choice of the regularization factor 𝜆 was carried out through a four-fold cross-

validation search grid. The 𝜆 of the feature selection model is the highest, which allows the loss function to be less than 

the optimum plus its standard deviation. 

3-4- Hyper-Tuning 

The hyperparameters selection was divided into three steps. The first was based on the hyperband optimization 

method, whereas the other two were based on the Bayesian optimization method. 

The hyperband optimization algorithm was used to select the deep MLP topology. The aim was to include as many 

deepness and width combinations as possible and simultaneously follow a reasonable computation budget. 

3-4-1- Hyperband Optimization 

The hyperband optimization [77] speeds up the random search algorithm [78] (commonly used for hyper-parameter 

optimization) by introducing an adaptive mechanism and an early stopping system. For the same computation budget, 

these two components allow the algorithm to look at more possible configurations with respect to traditional hyper-

parameter optimization approaches. The hyperband undertakes a grid search for n possible configurations. Each grid 

search iteration is called a bracket and includes a complete run of the Successive Halving algorithm [79]. 

The schedule used is described in Table 2. The Max-epochs refer to the maximum iterations per configuration and 

the Factor to the configuration down-sampling rate. 

Table 2. Hyperband Schedule 

Brackets 

4 3 2 1 0 

ni ri ni ri ni ri ni ri ni ri 

81 1 27 2 9 6 3 15 1 37 

27 3 9 6 3 18 1 45   

9 9 3 18 1 54     

3 27 1 54       

1 81         

Hyperparameters 

Max-epochs 200 Factor 3 

ni # Configurations  

ri # Units of computation 

3-4-2- Bayesian Optimization 

Bayesian optimization uses the Bayes Theorem to estimate an acquisition function that determines the spatial location 

of the following search. The acquisition function represents a formal trade-off between exploration, high variance areas 
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of the surrogate objective function with insufficient posterior information, and exploitation, areas for which posterior 

information points to adequate objective function values. It is cost-efficient because it minimizes the demand for 

configuration evaluations and suits non-convex optimization problems [80]. 

In the hyper-tuning phase the Bayesian optimization maximum of trials was set to 200. 

3-5- Deep MLP Prediction Intervals 

Let us suppose a target random variable y as follows [81]: 

𝑦𝑖 = 𝐹(𝑥𝑖 ; 𝜃) + 𝜀𝑖  (13) 

where 𝑥 is a vector of independent variables and 𝜀 is a term of stochastic noise, mean µ, and finite variance 𝛿2. 

Supposing a statistical learning model 𝐹(𝑥𝑖; 𝜃̂𝑡𝑠) and a training set 𝑇𝑆, the Equation 13 comes as, 

𝑦𝑖 = 𝐹(𝑥𝑖 ; 𝜃̂𝑡𝑠) + 𝐹(𝑥𝑖 ; 𝜃) − 𝐹(𝑥𝑖; 𝜃̂𝑡𝑠) + 𝜀𝑖  (14) 

𝑦𝑖 = 𝐹(𝑥𝑖 ; 𝜃̂𝑡𝑠) + 𝑀𝑡𝑠(𝑥𝑖; 𝜃) + 𝜀𝑖  (15) 

where 𝑀𝑡𝑠(𝑥𝑖; 𝜃) is the model error. 

The prediction for any unseen example 𝑥0 is: 

𝑦0 = 𝐹(𝑥0; 𝜃) + 𝜀0  (16) 

𝑦0 = 𝐹(𝑥0; 𝜃̂𝑡𝑠) + 𝐹(𝑥0; 𝜃) − 𝐹(𝑥0; 𝜃̂𝑡𝑠) + 𝜀0  (17) 

𝑦0 = 𝐹(𝑥0; 𝜃̂𝑡𝑠) + 𝑀𝑡𝑠(𝑥0; 𝜃) + 𝜀0  (18) 

To arrive at the prediction interval of 𝑦0  the model prediction 𝐹(𝑥0; 𝜃̂𝑡𝑠)  is first computed and then both the 

distribution of the model error 𝑀𝑡𝑠(𝑥0; 𝜃) = 𝐹(𝑥0; 𝜃) − 𝐹(𝑥0; 𝜃̂𝑡𝑠) and the distribution of the stochastic error 𝜀0 are 

studies. 

3-5-1- Model Error 

A bootstrap can approximate the model distribution. Let us draw with replacement 𝑚 random successive subsamples 

𝑗 of the training set 𝑇𝑆 and fit a model on each of them. The bootstrap predictions on a validation set VS can be denoted 

as follows: 

𝐵𝑖,𝑗 =  𝐹(𝑥𝑣𝑠,𝑖; 𝜃̂𝑗)  (19) 

The mean of the bootstrap distribution 𝐵̅𝑖,𝑚 converges to the true mean of the model: 

𝐵̅𝑖,𝑗 =  
∑ 𝐹(𝑥𝑣𝑠,𝑖;𝜃̂𝑗)𝑚

𝑗=1

𝑚
  (20) 

In turn, the empirical distribution of the centred bootstrap samples converges to the distribution of the model error 

𝑀𝑡𝑠(𝑥𝑣𝑠,𝑖; 𝜃): 

𝑚𝑖𝑗 = 𝐵𝑖,𝑗 − 𝐵̅𝑖,𝑗  (21) 

3-5-2- Stochastic Error 

The distribution of the stochastic error can be approximated by the distribution of the residuals 𝜀 projected on the 

validation set: 

𝜀𝑣̂𝑠,𝑖 = 𝑦𝑣𝑠,𝑖 − 𝐹(𝑥𝑣𝑠,𝑖; 𝜃̂𝑡𝑠)  (22) 

3-5-3-Total Error 

The set T of the empirical distribution of the total error projected in the validation set comes as: 
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𝑇 = {𝑡𝑖,𝑗 = 𝑚𝑖𝑗 + 𝜀𝑣̂𝑠,𝑖 , 𝑖 = 1,2, … , ℎ; 𝑗 = 1,2, … , 𝑚}  (23) 

where h is the validation set dimension. 

For a level of significance of 𝛼 = 5%, the 2.5% and the 97.5% quantiles 𝑄 of the T set were taken to build the 

prediction intervals, 

𝑃𝐼𝛼(𝑥0) = 𝐹(𝑥0; 𝜃̂𝑡𝑠) + (𝑄2,5%, 𝑄97,5% )  (24) 

In the experimental phase the trained deep MLP was used as the statistical learning model 𝐹(𝑥𝑖; 𝜃̂𝑡𝑠)  and the 

bootstrap was carried out as a subsequent fine-tuning. The number of bootstraps samples was 200 and the number of 

epochs was 30. 

The accuracy and adequacy of the Prediction limits were inferred from the Prediction Interval Coverage Probability 

(PICP) and Mean Prediction Interval Width (MPIW) as follows [82]: 

𝑃𝐼𝐶𝑃 =
𝑐

𝑛
  (25) 

where c is the number of samples of the test set whose target falls inside the prediction interval and n is the total of the 

test set samples. 

𝑀𝑃𝐼𝑊 =
1

𝑛
 ∑ (𝑃𝐿𝑢𝑖 − 𝑃𝐿𝑙𝑖)𝑛

𝑖   (26) 

where 𝑃𝐿𝑢 and 𝑃𝐿𝑙 are the upper and the lower limit, respectively 

4- Data and results 

4-1- Data 

The dataset comprises 673,992 grades (from 0 to 20) from Portuguese upper secondary students. The data refer to 

the three final high school years (10th, 11th, and 12th) and comprise 27 subjects from Portuguese and English to Physics 

and Math for the 2018-19 academic year (see Appendix I). A dummy variable was associated with each subject. 

Regarding the proportion of years, 29% are 10th grades, 36% 11th grades, and 35% 12th grades. 53% of the grades are 

from girls. 14% are from half-scholarship students and 12% from those holding a full scholarship. The dataset was built 

from a Microsoft® SQL Server Management Studio series of queries. There are 34 features, 7 of which are from Statistics 

Portugal and the remainder from the Directorate-General for Statistics of Education and Science of the Portuguese 

Ministry of Education. The latter are essentially categorical variables creating a sparse dataset in terms of measurements 

of AA critical factors (see Appendix II for more details). 

The one-hot encoding ended with 131 independent variables to be selected to the input space via the Lasso Regression 

selection procedure. The dataset was split into 404,394 observations for training, 134,799 for validation, and 134,799 

for testing. The test set is a complete holdout set that did not participate in any step of the learning phase, replicating 

unseen data. 

4-2- Results 

4-2-1- Feature Selection 

The feature selection Lasso procedure picked 85 of 131 available predictive variables for an optimized shrinkage 

pressure of 0.004 (Figure 2). The distance between the student’s home and the school was considered irrelevant. The 

dummy variables concerning students whose fathers’ nationality is from either wealthy Western countries or poor 

Eastern European ones were discarded as their behaviour is not significantly different from nationals. The dummy 

variables related to employment situation and student guardians’ education level were largely discarded because they 

are strongly correlated with the same dummy variables that correspond to the parents. In terms of both parents’ job 

situation, several dummies were considered irrelevant and indifferent from the base status of being employed. Here, the 

unemployed situation dummy passed the LASSO filter in both situations. Almost every dummy associated with the 

parents’ education level went to the input space. In terms of scholarship, the half support dummy was discarded, not 

differing significantly from the non-scholarship situation. Among the Statistics Portugal socioeconomic variables, the 

illiteracy rate, unemployment rate, and the primary sector importance were also discarded. 
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Figure 2. Feature selection 

4-2-2- Hyper-Tuning 

The initial deep MLP changes throughout the hyper-tuning process because it incorporates the tuning optimization 

of the preceding steps. For reference, the base MLP is shown in Table 3. 

Table 3. Base MLP topology and hyperparameters 

# layers 1 

# nodes 10 

Initializers 
Weight Glorot uniform 

Bias Zeros 

Dropout Boolean False 

Batch normalization Boolean False 

Batch size 32 

Optimizer Adam 

Learning rate η 0.001 

Adam 
β1 0.9 

 

β2 0.999 

Learning schedule False 

4-2-2-1- Deep MLP Topology 

The first step of the hyper-tuning phase was to optimize the topology of the deep MLP through a hyperband search. 

The search space was built according to Table 4. 

Table 4. Topology search space 

 Minimum Maximum Step 

# Layers 2 20 1 

# Nodes 2 50 1 

The optimization results show a clear preference for topologies with depth lower than 10 hidden layers and a global 

size of fewer than 250 nodes (see Figure 2). On the other hand, topologies with a depth deeper than 12 tend to have a 

higher MAE. This outcome arises from the pattern of the data itself and not from possible divergence issues, as some 

deep topologies reach fair values for MAE (size and colour of the dots in Figure 3). 
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Figure 3. Hidden layers, size, and validation MAE 

The selected topology consists of 6 hidden layers with widths of 45, 45, 3, 22, 48, and 19. The deep MLP seems to 

allocate the first three layers to condense the data and then the latter ones to search for the universal approximator. The 

MLP reduces the dimensionality of the data with an edge: it does not follow a predefined linear or kernelized 

mathematical transformation. 

4-2-2-2- Weight and Bias Initializations, Dropout Layer, and Batch Normalization 

The second step of the hyper-tuning phase consists of choosing the weight and bias initialization method, the 

existence of a dropout layer after each dense layer, and a batch normalization before every activation. The search space 

was built according to Table 5. 

Table 5. Initializations, dropout, and batch normalization search space 

Initializers Choices 

Weight Random uniform Random normal Glorot uniform 

Bias Zeros Ones  

    

Dropout Boolean   

Batch normalization Boolean   

    

 Minimum Maximum Step 

Dropout rate 0 0.9 0.1 

The selected combination was random normal and ones for weight and bias initializations, the existence of batch 

normalization but no dropout. The Bayesian optimization directed the search toward areas where the weight and bias 

initializations were random normal (68%) and zeros (91%), respectively, and neither dropout nor batch normalization 

existed (83.50%). Thus, only the choices of random normal for the weight initializer and the dropout inexistence can be 

said to have a robust decision basis. The other choices were substantiated on a weaker stand. 
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4-2-2-3- Optimizer and Batch Size 

The last step of hyper-tuning encompasses the batch size optimization and the optimizer choice along with the tuning 

of its hyperparameters: learning rate and schedule, momentum, and adaptive learning rate factors. The search space is 

described in Table 6. 

Table 6. Optimizer and batch size 

 Choices 

Optimizer SGD Adam RMSprop  

Batch size 32 64 128 256 

     

Learning schedule Boolean 
   

   

  minimum maximum Step 

Learning rate η 1.E-05 0.001  

Learning schedule 
d 0.1 0.5 0.1 

ε 0.7 0.95  

SGD β 0.6 0.99  

Adam 
β1 0.6 0.99  

β2 0.6 0.99  

RMSprop ϱ 0.1 0.99  

The Bayesian choices of Adam as optimizer and 64 as batch size (see Table 7) are robust because they are present in 

55% and 45% of the 20 best combinations, respectively. However, the choice for a learning rate schedule is weak as half 

of the 20 best combinations have no learning schedule. The learning rate and the batch size increased from the default 

value of 0.001 and 32 to 0.00553 and 64, respectively. The surge of the learning rate is not unexpected given the existence 

of a learning schedule and the increase in the batch size. 

Table 7. Optimizer and batch size tuning 

Batch size 64 

Optimizer Adam 

Learning rate η 0.0055 

Adam 
β1 0.7503 

β2 0.8226 

Learning schedule True 

Learning schedule 
d 0.5 

ε 0.7514 

4-2-3- Learning Results 

The deep MLP presents better results than the MLR in training and testing (Table 8). The MLP MAE in training and 

test are 0.6357 and 0.6484, respectively, better than the MLR 0.6944 and 0.6910. The multilinear regression training set 

includes the validation set. Regarding the MLP, using the validation set allowed for saving the best combination of epoch 

weights used further to compute predictions limits and gradients. The MLP suffers from some overfitting as the test 

results are poorer than both the validation and the training results. Several variance reduction techniques were foreseen 

when optimizing the architecture and the hyperparameters, so the MLP overfitting should be interpreted as a virtuous 

cost associated with achieving a better generalization error. 

Table 8. Learning results 

 Training Validation 

 MAE MSE R2 MAE MSE R2 

MLP 0.6357 0.6414 32.68% 0.6503 0.6710 29.56% 

MLR 0.6944 0.7414 25.86%    

 Test    

 MAE MSE R2    

MLP 0.6484 0.6686 29.64%    

MLR 0.6910 0.7357 26.10%    
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The deep MLP training optimization converged smoothly and reached a low variance plateau around epoch 600 

(Figure 4), the weight combination that prevailed corresponds to the 799th epoch. 

 

Figure 4. Deep MLP training convergence (Depicted from the Keras-Tensorflow learning history) 

The predictions limits were built for a 𝛼 = 5%, and both deep MLP and MLR have a 𝑃𝐼𝐶𝑃 greater than 95%. The 

deep MLP has a prediction interval 5% shorter than MLR (Table 9). 

Table 9. Prediction limits 

 Test 

 PICP MPIW 

MLP 0.9504 3.2140 

MLR 0.9562 3.3760 

4-2-4- Gradients Analysis 

The gradients correspond to the first derivatives with respect to the input variables. In the MLR the gradients are the 

data-invariant βs. In deep MLP the gradients vary from data point to data point, forming a vector of βs for each input 

variable. The analysis consists of comparing the MLP mean β̂𝑠 with the MLR β̂𝑠 in the light of what is expected from 

the literature. 

Inconsistencies between the MLR β̂𝑠 and the mean MLP β̂𝑠 were found in only 8 out of 85 input variables (see and 

follow Table 10). The guardian not being a parent or a close relative can indicate a dysfunctional family background, 

which is detrimental to AA. However, the MLP β̂𝑠 relative to both Guardian is not a relative and Guardian is a relative 

but not parent input variables have a contradicting positive signal. Regarding internet usage, the MLP β̂ signal is negative 

and different from the positive β̂ in the MLR. In the literature, the use of the Internet is reported as having both positive 

and negative effects on AA, depending on being directed to school activities or entertainment. Regarding the professional 

teacher category, it might be expected that any category below being a definitive permanent staff member of a school 

would be detrimental to AA. However, in two such cases the MLR has positive β̂𝑠 and in one such case the MLP also 

has a positive mean β̂. The MLR and the MLP β̂𝑠 disagree in signal once again in the collective dwellings input variable. 

As some collective dwellings such as hotels and state buildings are bound to be found in high-income urban zones and 

others like shopping centres and hospitals can be placed in some suburban areas, the literature does not indicate a specific 

signal on this β. 
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Table 10. Differences in the gradients (𝛃̂𝒔) 

Input variables MLPmean MLPstd MLR Literature MLP|MLR 

Guardian is not a relative 0.0025 0.0303 -0.0056 - +- 

Guardian is a relative but not parent 0.0030 0.0425 -0.0134 - +- 

Student uses Internet -0.0005 0.0747 0.0092 ? -+ 

Pedagogic zone no definitive permanent staff members -0.0002 0.0358 0.0077 - -+ 

School cluster definitive permanent staff members -0.0097 0.1040 0.0068 - -+ 

School cluster no definitive permanent staff members 0.0012 0.0197 -0.0063 - +- 

Guardian has a university degree 0.0001 0.0263 -0.0016 + +- 

Percentage of collective dwellings -0.0034 0.0590 0.0076 ? -+ 

More inconsistencies between the results and the literature are noted in Table 11. The results show that students 

belonging to the Chinese community tend to have better grades than the natives, contradicting the literature. Other 

examples are the negative effect of teacher age and the positive effect of teacher years to retirement on AA. Indeed, it 

could be expected that more lecturing experience would result in higher grades. Curiously, female teachers are bound to 

assign lower grades, a finding not explicitly addressed by the literature. Fixed contract teachers tend to assign higher 

grades than fully permanent teachers, contradicting the notion that a teacher with a stable career is more efficient in 

lecturing, thereby yielding higher AA levels. The results also show that the mother being an employer is detrimental to 

the student’s AA, contradicting the positive association between parental SES and AA to some degree. Lastly, the results 

also show an unequivocal negative class size effect on AA even though the literature is non-conclusive in this regard. 

Table 11. Gradients (𝜷̂𝒔) and literature 

Input variables MLPmean MLPstd MLR Literature MLP|MLR 

Father nationality is Chinese 0.0028 0.0211 0.0092 - ++ 

Teacher age -0.0244 0.0995 -0.0257 + -- 

Teacher gender is female -0.0051 0.0816 -0.0018 ? -- 

Teacher years to retirement 0.0056 0.1073 0.0046 - ++ 

Fixed term staff 0.0044 0.0808 0.0134 - ++ 

Mother is an employer -0.0086 0.0269 -0.0062 + -- 

Class size -0.0196 0.1296 -0.0088 +- -- 

4-2-5- Class Size Effect 

It is necessary to change the test set to analyse an increase of five students in the size of the classes accordingly. In 

this case, the impacts on grades arise naturally from the difference between the modified and the original test set 

predictions. 

In the MLR the impact is the same whichever test example is considered and is driven by the 𝛽̂ associated with the 

class size. In this case, the grades of every example were down by 0.0282. 

In the deep MLP every test example has assigned a specific 𝛽̂𝑖 and the impacts on grades varied accordingly. The 

mean impact is down in 0.1047, and the standard deviation is 0.3747. The deep MLP anticipates, on average, a more 

substantial effect on grades than MLR does. The test set is split into three clusters regarding the type of impact on grades: 

a first cluster in which grades are predicted to improve, a second cluster in which grades are predicted to worsen, and a 

third cluster in which grades are predicted to remain unchanged (see Table 12). 

Table 12. Class size impact clusters 

Mean -0.1047 

Sd 0.3747 

# Negative impact 82,872 

# Positive impact 51,751 

# Null impact 176 

# Test set 134,799 
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The formation of the clusters closely followed the test set gradients even though there is a clear difference between 

first derivatives and differentials in the MLP framework. The analysis of the confusion matrix of Table 13 highlights 

that 78.46% of the impacts on grades are per the respective gradient signal. 

Table 13. Confusion matrix: gradients and impacts on grades 

 Grade variation 

Gradient + - Null 

+ 40,797 17,995 0 

- 10,845 64,794 0 

Null 109 83 176 

5- Discussion 

The feature selection procedure solved multicollinearity problems concerning the variables measured for the 

guardian, the parents simultaneously, and the socioeconomic variables retrieved from Statistics Portugal. On the other 

hand, the regularization techniques such as dropout and batch normalization had only a minor rule in the deep MLP 

hyper-tuning optimization, seemingly coherent with the high-bias knowledge-intensive model in question and an 

inherent low variance trait [6]. 

In terms of efficiency, the deep MLP has better results than MLR, whichever the metrics or approach. The deep MLP 

generalization error is more minor in the student grades prediction, and its prediction intervals are more accurate. This 

added generalization ability is a hallmark of machine learning, particularly deep learning. Furthermore, the deep MLP 

gradients empirical distributions are primarily in line with the regression coefficients estimates of the MLR, pointing to 

a satisfactory MLR fit to the pattern embedded in the data. The relationship between the structure of the MLR regression 

coefficients and the deep MLP gradients empirical distributions corroborates the absence of significant specification 

distortions in the MLR, strengthening its results and inferences. There is no doubt that in the presence of a strong 

nonlinear pattern, the divergence between the gradient structures would undoubtedly be accentuated. In fact, the deep 

MLP implementation turns out to be an extremely robust way to assess the adequacy and soundness of the MLR fit. 

In terms of discrepancies between the resulting gradients and what would be expected according to the literature, it 

should be highlighted that teachers with fixed-term contracts tend to assign higher grades than teachers with a permanent 

contract and school. AA seems to be negatively associated with lecturing experience, as older teachers closer to 

retirement tend to assign lower grades. However, care should be taken when interpreting this empirical result. Perhaps, 

with more lecturing experience, teachers tend to increase their stringency for excellence concerning student performance, 

resulting in lower grades for comparable attainments of AA. Female teachers also tend to assign lower grades, which 

can also be associated with stricter evaluation criteria. The AA of students belonging to the Chinese community 

highlights successful integration, sound economic and social endowments, and efficient support networks [83]. The 

mother being an employer does not seem to be a positive factor in the student's AA. This is an important empirical result 

because it is essential to ensure that women’s empowerment in their aspirations, objectives, undertakings, and civic 

participation is followed by a benign paradigm change in terms of the balance between home and career affairs for both 

genders. Therefore, the father should reinforce his role at home, and career demands should not follow the more 

aggressive patterns of Western patriarchal society. 

Deep MLP broadens the spectrum of possibilities and greets each individual specificity as a core element of the 

phenomenon by providing a quantum solution hinged on a universal approximator. For example, there is room for a 

critical factor with an average positive impact on the student’s grades to have a detrimental effect in a hypothetical 

individual example. In the case of a critical AA factor such as class size, for which the literature is unanimous regarding 

neither its importance nor its direction, the MLP formed three distinct clusters per the individual gradients. The first 

cluster is formed by the students most likely to benefit from the increase. This cluster is followed by those most likely 

to be indifferent to it. The third cluster is for students most likely to be harmed by the increase. The gradients anticipate 

the likely response to a change in class size and therefore must be considered in decision-making processes and policy 

design. 

Deep MLP can have a revolutionary effect on the social sciences in general and the educational sciences in particular. 

Deterministic mathematical functions cannot formalize social science conceptual relationships without an evident loss 

of explanatory and predictive power. The heterogeneity of responses to social phenomena is a pattern that should be 

accepted into social conceptual frameworks. Forging a quantitative basis that does not need a deterministic functional 

assumption and welcomes high levels of heterogeneity is a decisive breakthrough clearly adequate for the complexity of 

social phenomena. The aim is not to increase complications. The objective is to use a quantum method of empirical 

inference and prediction that can anticipate the conceptual behavior of phenomena, extending it to the complexity and 

heterogeneity that have always been the hallmark of the social sciences. Moreover, in this heterogeneity, it is possible to 

achieve the character of "new normality" in the presence of relational divergence between concepts and enhance the ex-

ante tools that can explain, anticipate, and resolve concrete inequities and discrepancies. 
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6- Conclusion 

The high school grades attributed by teachers appeared to be negatively associated with lecturing experience. 

However, drawing conclusions about AA is not straightforward. For instance, a simple increase in the teaching 

stringency as teachers grow older should result in lower grades for comparable AA attainments. Female teachers are also 

bound to attribute lower grades. This can also be linked to stricter evaluation criteria. The mother being an employer is 

detrimental to student AA. It is of utmost importance to ensure that women’s empowerment in their aspirations, 

objectives, undertakings, and civic participation is followed by an appropriate balance between home and career affairs 

for both genders. 

Deep MLP is more efficient than other methods in predicting students’ grades. However, the adoption of deep 

learning as an experimental approach in educational and social sciences also has remarkable advantages beyond its 

predictive capacity. We are dealing with a paradigm that does not depend on a specific mathematical form to express 

relationships between concepts with a particular aptitude to represent social phenomena whose heterogeneity is 

paramount. The treatment of conceptual heterogeneity is undertaken naturally and spontaneously. By widening the 

spectrum of possibilities, deep learning introduces a capacity to anticipate nonconformities, which is an inducement to 

the search for fairer and more equitable policies. In deep learning, any policy measure that induces changes in the critical 

factors of AA is evaluated within the heterogeneous spectrum of both the possible outcomes and the underlying gradient 

structure. Deep learning recreates a quantum space of representation and explanation of phenomena that promotes a 

diversity of leads and accurate predictions. On the other hand, in the presence of more uniform realities, it establishes an 

intelligible relationship with the MLR and the classic meaning of its coefficients. The absence of a strong empirical 

relationship between deep learning and classic MLR is a robust means to assess the correctness of implementing the 

latter. 

6-1- Limitations 

Like any other study of this nature, some limitations need to be acknowledged. The vast majority of the variables 

under consideration are categorical and do not directly measure the critical factors of AA. They are proxy variables with 

measurement biases. There is no variable associated with parent involvement and school environment and design. The 

target variable itself, being teacher-attributed grades rather than exam scores, is susceptible to issues such as differences 

in the stringency of teachers’ assessment criteria. Adopting a data-driven approach for policy definition and design needs 

a substantial improvement in the quantity and quality of the data to forge a capable and reliable education data system. 
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Appendix I: Number of Observations per Subject 

 Portuguese Biology Biology & Geology Chemistry Communication Nets 

10th 29,105 775 11,372 486 483 

11th 27,765 974 18,084 400 496 

12th 50,441 12,956 78 4,795 1,894 

Total 107,311 14,705 29,534 5,681 2,873 

 Design Economics English Geography History 

10th 1,094 3,805 26,382 9,536 7,422 

11th 986 5,809 41,236 14,556 6,386 

12th 1,765 5,395 15,809 6,963 11,593 

Total 3,845 15,009 83,427 31,055 25,401 

 Informatic Applications ICT Math Math A Math to Social Sciences 

10th 0 8,554 5,506 15,355 5,099 

11th 0 2,170 5,430 13,582 7,201 

12th 10,168 1,122 8,824 22,412 33 

Total 10,168 11,846 19,760 51,349 12,333 

 Physical Education Physics Physics and Chemistry Psychology Sociology 

10th 25,019 284 13,828 1,509 254 

11th 23,851 464 22,408 2,083 321 

12th 49,028 5,340 2,403 14,991 5,548 

Total 97,898 6,088 38,639 18,583 6,123 

 Descriptive Geometry History of Culture and Arts Philosophy Spanish  

10th 2,274 1,566 24,017 2,841  

11th 3,526 2,627 38,340 3,900  

12th 41 2,267 22 943  

Total 5,841 6,460 62,379 7,684  
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Appendix II: Features 

Feature Description 
Literature AA 

Critical Factor 
Data Type 

Enrolments Number of student enrolments Cognitive ability Integer 

Retentions Number of student retentions estimated by age in excess Cognitive ability Integer 

Gender Feminine and masculine gender Gender Categorical 

Father nationality Portugal, Africa, Brazil, China, East Europe, developed countries, and others Ethnicity Categorical 

Computer Student owns a personal computer Computer usage Binary 

Internet Student has access to the Internet Internet usage Binary 

Parish Student's home is located in the school parish SES Binary 

County Student’s home is located in the school county SES Binary 

Guardian Mother, father, the student representing themselves, close relative, and guardian SES Categorical 

Job situation Student works SES Binary 

Responsible job situation Unknown, employee, unemployed, self-employed, employer, home affairs, retired, student, and other SES Categorical 

Father job situation Unknown, employee, unemployed, self-employed, employer, home affairs, retired, student, and other SES Categorical 

Mother job situation Unknown, employee, unemployed, self-employed, employer, home affairs, retired, student, and other SES Categorical 

Guardian educational level 

Unknown, no formal education, elementary I (grades 1- 4), elementary II (grades 5 - 6), Middle III 

(Junior-high, grades 7 – 9), secondary (Senior-high, grades 10 – 12), undergraduate degree, university 

degree, post-graduation, master, Ph.D., and other 

SES Categorical 

Father educational level 

Unknown, no formal education, elementary I (grades 1- 4), elementary II (grades 5 - 6), Middle III 

(Junior-high, grades 7 – 9), secondary (Senior-high, grades 10 – 12), undergraduate degree, university 

degree, post-graduation, master, Ph.D., and other 

SES Categorical 

Mother educational level 

Unknown, no formal education, elementary I (grades 1- 4), elementary II (grades 5 - 6), Middle III 

(Junior-high, grades 7 – 9), secondary (Senior-high, grades 10 – 12), undergraduate degree, university 

degree, post-graduation, master, Ph.D., and other 

SES Categorical 

Scholarship No support, half support, and full support SES Categorical 

Family non-classic dwellings Percentage of family non-classic dwellings that exist in the student’s home parish SES Percentage 

Collective dwellings Percentage of collective dwellings that exist in the student’s home parish SES Percentage 

Feature Description 
Literature AA 

critical factor 
Data Type 

Illiteracy rate Student home parish Illiteracy rate SES Percentage 

Post-secondary schooling rate Student home parish post-secondary schooling rate SES Percentage 

Primary sector importance Student home parish primary sector activities importance SES Percentage 

Secondary sector importance Student home parish secondary sector activities importance SES Percentage 

Unemployment rate Student home parish unemployment rate SES Percentage 

School size Number of school students School size Integer 

Class size Number of class students Class size Integer 

Teacher age the age of the teacher Lecturing quality Integer 

Teacher gender Feminine and masculine gender Lecturing quality Categorical 

Lecturing time Teacher time dedicated to lecturing in hours Lecturing quality Integer 

Non-lecturing time Teacher time not dedicated to lecturing in hours Lecturing quality Integer 

Teacher’s years to retirement Years until retirement age Lecturing quality Integer 

Teacher professional category 

School definitive permanent staff, school cluster definitive permanent staff, pedagogical zone 

definitive permanent staff, school non-definitive permanent staff, school cluster non-definitive 

permanent staff, pedagogical zone non-definitive permanent staff, and fixed-term staff 

Lecturing quality Categorical 

Teacher educational level Bachelor, university degree, master and Ph.D., and other Lecturing quality Categorical 

Grade year 10th, 11th, and 12th high school grades n.a Categorical 

Subjects  n.a Categorical 

Teacher mark Teacher end of the year mark Target variable Integer 

 


