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Abstract 

Participants' emotional reactions are strongly influenced by several factors such as personality traits, 

intellectual abilities, and gender. Several studies have examined the baseline reduction approach for 
emotion recognition using electroencephalogram signal patterns containing external and internal 

interferences, which prevented it from representing participants’ neutral state. Therefore, this study 

proposes two solutions to overcome this problem. Firstly, it offers a modified weighted mean filter 
method to eliminate the interference of the electroencephalogram baseline signal. Secondly, it 

determines an appropriate baseline reduction method to characterize emotional reactions after the 

smoothing process. Data collected from four scenarios conducted on three datasets was used to 
reduce the interference and amplitude of the electroencephalogram signals. The result showed that 

the smoothing process can eliminate interference and lower the signal's amplitude. Based on the 

three baseline reduction methods, the Relative Difference method is appropriate for characterizing 
emotional reactions in different electroencephalogram signal patterns and has higher accuracy. 

Based on testing on the DEAP dataset, these proposed methods achieved accuracies of 97.14, 99.70, 

and 96.70% for the four categories of emotions, the two categories of arousal, and the two categories 
of valence, respectively. Furthermore, on the DREAMER dataset, these proposed methods achieved 

accuracies of 89.71, 97.63, and 96.58% for the four categories of emotions, the two categories of 

arousal, and the two categories of valence, respectively. Finally, on the AMIGOS dataset, these 
proposed methods achieved accuracies of 99.59, 98.20, and 99.96% for the four categories of 

emotions, the two categories of arousal, and the two categories of valence, respectively. 
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1- Introduction 

The participants’ emotional reactions are strongly influenced by several factors such as personality traits, intellectual 

abilities, and gender [1–3]. These tend to generate different EEG signal patterns in each of them, affecting the accuracy 

of emotion recognition. Yang et al. (2018) studied a baseline reduction process using the Difference method to represent 

emotional reactions in different EEG signal patterns [4]. This is performed by subtracting the experiment's EEG signal 
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using the average baseline. The baseline signal represents a neutral condition with a lower amplitude value than 

meditation, concentration, and emotional states [5–7]. Its reduction process is equivalent to the value of the experiment's 

EEG signal features that represent different emotional reactions. Based on the application of CNN methods to classify 

emotions into two categories, the baseline reduction approach proposed by Yang et al. (2018) [4] has been proven to be 

highly accurate. Several other studies have also analyzed different methods, for instance, Yang et al. (2018) [8] 

investigated baseline reduction using the difference method. Fortunately, the CNN and LSTM methods were used for 

feature extraction and to classify emotions into two categories, namely arousal and valence. Its use for the classification 

process aims to characterize the EEG signal with respect to time series.  

Cheng et al. (2020) reviewed a baseline reduction approach using the Difference method. Furthermore, a multi-

grained cascade forest (gcForest) method was used to classify emotions into two categories [9]. To consider the spatial 

information of the EEG signal in the baseline reduction approach, Liu et al. (2020), proposed the Capsule Network 

method. This technique was also used to classify emotions into two categories [10]. According to Zhao et al. (2020) 

[11], the baseline reduction approach was used to discern four emotional categories. This study further used the CNN 

method to classify emotions into high arousal and positive valence, high arousal and negative valence, low arousal and 

positive valence, and low arousal and negative valence. Wirawan et al. (2021) studied three baseline reduction methods, 

namely difference, relative, and fractional differences. This research stated that these three basic reduction methods 

failed to produce significant accuracy. There is a need for further studies to be carried out to determine an appropriate 

baseline reduction method for characterizing emotional reactions with respect to different EEG signal patterns [12]. 

Although several baseline reduction methods have been applied to deep learning, recording the EEG signal without 

external or internal interference is complex even though the participants are calm [5, 9]. Internal disturbances 

experienced during calm conditions included Electrooculograms (EOG), Electrocardiograms (ECG), Electromyograms 

(EMG), and emotional reactions [5, 13]. External interference is often caused by electrode power lines. This disturbance 

constantly increases the EEG baseline signal amplitude fluctuation in the long term [14-17]. It also leads to its inability 

to represent a neutral condition. On the contrary, Narayana et al. (2019) [6], and Zhuang et al. (2018) [7] stated that 

neutral states are usually fulfilled if the EEG signal amplitude is lower than the concentration and emotional conditions. 

It is essential to examine the appropriate method used to reduce the interference encountered when recording the baseline 

EEG signal in this study. Several approaches have been employed to eliminate interference or artefacts, including 

regression, Wavelet Transform, Independent Component Analysis (ICA) [18–21], and Principal Component Analysis 

(PCA). However, these algorithms focus only on detecting and removing some of them, such as EOG, ECG, and EMG.  

Another approach this is commonly used is smoothing. This process improves data quality by converting the noise 

into a smoother signal. Among several others, the Mean Filter method reduces interference in EEG signals by smoothing 

the short-term amplitude fluctuations. This method has several advantages, such as producing a low MSE value and low 

computational time compared to the other methods [22]. In contrast, the Mean Filter method cannot reduce the amplitude 

of the EEG baseline signal in the long term [23, 24], thereby leading to the use of weighted values. This was derived 

from the baseline EEG signal amplitude. It was used to maintain its pattern irrespective of the fact that the amplitude 

was lowered. Considering that the baseline EEG signal has non-stationary characteristics, the Z-score normalization can 

be used to determine its weight, as well as normalize its data [25]. Modification of the Mean Filter approach by adding 

a weight value based on the normalization of the Z-Score is known as the Modified Weighted Mean Filter method. 

The earlier description led to the formulated problem that the baseline EEG signal is disturbed both internally and 

externally, therefore, it is unable to represent each participant's neutral condition. This led to the proposition of two main 

contributions, namely (1) Offering a Modified Weighted Mean Filter method to eliminate the interference of the EEG 

baseline signal. (2) Determining an appropriate baseline reduction method to characterize emotional reactions in different 

EEG signal patterns using the feature values after smoothing with the MWMF approach. Based on the literature review 

from 2015 to 2021, the proposed contribution has never been evaluated in previous studies [3]. 

2- Related Works 

The baseline reduction approach has been proven to increase the accuracy of emotional recognition based on EEG 

signals [4, 10]. This was detected by subtracting the feature value of the experiment EEG signal by the average baseline. 

This approach aims to produce signals representing different emotional reactions [12]. The emotional and neutral states 

are represented by experiment and baseline EEG signals, respectively. The baseline EEG signal was recorded before the 

participants were given the stimulus medium. They were expected to be calm and free from emotional reactions [16, 26, 

27]. Neutral conditions have lower amplitude values than meditation, concentration, and emotional states [6, 7]. 

Yang et al. (2018) first researched a baseline reduction approach [4]. This process employed the feature values of the 

experiment EEG signal and the average baseline. These were obtained from the extraction procedure using the 

Differential Entropy method. This is a suitable approach because it tends to characterize the EEG signal with respect to 

the time series and its frequency [28, 29]. The value of the DE is obtained using Equation 1 [3, 30]: 
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ℎ𝑖(𝑋) =
1

2
log(2𝜋𝑒𝛿2)  (1) 

The value of 𝑒 is represented as Euler's constant, 𝛿2 depicts variance, and ℎ𝑖 is the DE for each segment of the EEG 

signal. The DE feature values from the baseline and experiment EEG signals were used for the reduction process. Yang 

et al. (2018) stated that the baseline reduction process employs the Difference method. The result of the reduction process 

is equivalent to the feature value of the experiment EEG signal. Furthermore, Yang et al. (2018) represented the value 

of the DE feature from an experiment EEG signal in a 3D Cube. This is spatially represented by the frequencies and 

EEG channels. The DE feature value from the experiment signal described in the 3D Cube is then used as input data in 

the classification method. The technique proposed by Yang et al. (2018) involves using the CNN method. To avoid the 

loss of feature information from the input data (matrices 9 × 9), the CNN method proposed by Yang et al. (2018) uses 

the SAME padding and does not employ pooling. As shown in Figure 1, the 1st 3D Cube data (input data) was convoluted 

four times. The 1st, 2nd, and 3rd use a 4 × 4 filter, and the stride value are 1. The 4th convolution uses a 1 × 1 filter, with a 

stride value of 1. The feature map of the fourth convolution was reshaped and connected to the hidden layer (fully 

connected). Each node was connected to the output layer (two outputs) from the hidden one. The convolution process 

was then activated using a Rectified Linear Unit (ReLU). Based on some tests on the DEAP dataset, average accuracy 

of 89.45% and 90.24% were obtained for recognizing the valence and arousal emotions, respectively. A baseline 

reduction approach triggered emotional recognition based on EEG signals to produce a higher accuracy [4, 8]. 

 

Figure 1. The architecture of the CNN method for four emotion classes [4] 

Nevertheless, studies on the baseline reduction approach are still being carried out, such as that by Yang et al. (2018). 

A combination of CNN and LSTM methods was proposed to optimize the extraction and classification processes. These 

were used for the extraction process and emotion classification, respectively. Based on tests on the DEAP dataset, the 

proposed baseline reduction approach produced an accuracy of 90,80% and 91,03% for valence and arousal emotions, 

respectively [8]. In addition to using a hybrid method for the extraction and classification processes, Cheng et al. (2020) 

attempted to optimize the baseline reduction approach. This led to the proposed extraction and classification processes 

using the multi-Grained Cascade Forest (gcForest) technique. Based on tests carried out on the DEAP, the proposed 

baseline reduction approach accurately identified arousal and valence values of 97.53% and 97.69%, respectively. 

Relating to the tests on the DREAMER dataset, accuracies of 90.41% and 89.03% for arousal and valence emotions 

were obtained, respectively [9]. Liu et al. (2020) proposed a Capsule Network method considering the spatial information 

of EEG signals in the baseline reduction approach. Based on analysis performed on the DEAP dataset, the average 

accuracies for arousal and valence were 98.31% and 97.97%, respectively. Concerning the DREAMER dataset, 

accuracies of 94.59% and 95.26% were obtained for arousal and valence, respectively [10]. Its usage to identify two 
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categories of emotions caused Zhao et al. (2020) [11] to use the baseline reduction approach to identify four of them, 

namely high arousal and positive valence, high arousal and negative valence, low arousal and positive valence, and low 

arousal and negative valence. This investigation involved using the CNN method for the extraction and classification 

processes. The tests carried out on the DEAP, and AMIGOS datasets yielded mean accuracies of 93.53% and 95.86% 

for the four emotional classes. 

In addition to the extraction and classification processes, other efforts to optimize the baseline reduction approaches 

were carried out by Wirawan et al. (2021). This led to the examination of three baseline reduction methods, namely the 

Difference, Relative, and Fractional Difference methods [4, 12, 31]. In the Difference method, the baseline reduction 

process involves subtracting the value of the experiment EEG signal feature by the average feature value of the baseline 

EEG signal feature. In the Relative Difference method, the baseline reduction is achieved by dividing the feature value 

of the experiment EEG signal by the average feature value of the baseline EEG signal feature. The Fractional Difference 

method is a combination of Difference and Relative Difference approaches. The Difference method's baseline reduction 

process was first applied by Yang et al. (2018) [4]: 

 The Difference Method: The baseline reduction process is achieved by subtracting the value of the DE feature from 

the experiment EEG signal by the average on the baseline EEG signal. The Difference method is obtained using 

Equation 2: 

𝐹𝑖𝑛𝑎𝑙𝑣𝑗
(𝑥) = 𝐸𝑥𝑝𝑒𝑟𝑣𝑗

(𝑥) − 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝑥)  (2) 

 The Relative Difference Method: The baseline reduction process is achieved by dividing the value of the DE feature 

from the experiment EEG signal by the average on the baseline EEG signal [12] which is obtained using Equation 

3: 

𝐹𝑖𝑛𝑎𝑙_𝑣𝑗(𝑥) =
𝐸𝑥𝑝𝑒𝑟_𝑣𝑗(𝑥)

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝑥)
  (3) 

 The Fractional Difference Method: The Fractional Difference method is obtained using Equation 4. It combines 

the Difference and Relative Difference methods. The value of the DE feature in the experiment EEG signal is 

subtracted from the average on the baseline EEG signal [12]. The result was then divided by the average value of 

DE features in the baseline EEG signal: 

𝐹𝑖𝑛𝑎𝑙_𝑣𝑗(𝑥) =
𝐸𝑥𝑝𝑒𝑟_𝑣𝑗(𝑥)−𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝑥) )

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝑥)
  (4) 

wherein 𝐸𝑥𝑝𝑒𝑟_𝑣𝑗(𝑥) denotes the DE feature value of the x frequency band of the jth index of an experiment EEG 

signal. 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝑥) is the baseline EEG signal's average DE feature value of the x frequency band. 

𝐹𝑖𝑛𝑎𝑙_𝑣𝑗(𝑥) denotes the final DE feature value of the x frequency band at the jth index of an experiment EEG 

signal. The 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝑥) calculation process is given in Equation 5: 

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝑥) =  
∑ 𝐵𝑎𝑠𝑒_𝑣𝑗(𝑥)𝑁

𝑗=1

𝑁
{𝐵𝑎𝑠𝑒_𝑣𝑗}  ∈ 𝑅𝐶   (5) 

wherein 𝐵𝑎𝑠𝑒_𝑣𝑗(𝑥) defines the DE feature value of the frequency band x at the jth index of the EEG baseline 

signals. N denotes the number of DE feature values of EEG baseline signals, while C is the number of channels. 

The 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝑥) indicates the average DE features for the frequency band x indicates the average DE features 

for the frequency band x on the EEG baseline signal. Based on the classification process carried out with the CNN 

method, tested on the DEAP dataset, the Difference, Relative, and Fractional Difference methods were used to 

obtain 81.25, 82.16, and 82.10% accuracy of emotional arousal, respectively. Sequentially, these were also used to 

obtain an accuracy of 80.61, 81.37, and 81.47%, for valence emotions. These three basic reduction methods 

produced significantly similar accuracies. It is essential to carry out further studies to determine an appropriate 

baseline approach for characterizing emotional reactions in different EEG signal patterns [12]. 

Although several reduction methods have been applied to deep learning, recording the baseline EEG signal without 

external or internal interference is complex even when participants are calm. These internal disturbances include 

Electrooculograms (EOG), Electrocardiograms (ECG), Electromyograms (EMG), and emotional reactions. External 

interference is often caused by the electrode power lines, and it constantly increases the fluctuation of the EEG baseline 

signal amplitude in the long term [14-17]. This causes the signal to be unable to represent a neutral condition. Three 

public datasets based on EEG signals are often used to investigate emotional recognition, particularly studies that adopted 

baseline reduction approaches, such as DEAP, DREAMER, and AMIGOS. In accordance with the random selection of 

these participants, the signal amplitude of the baseline and experiment EEG signals were the same, as shown in Figures 

2 to 4. 

The raw EEG signals obtained from the first trial with the first participant are shown in Figure 2. In the DEAP dataset, 

the duration of each experiment was 63 seconds. The first three seconds are the baseline EEG signals, while the 

remaining 4 to 63 s are that of the experiment. Additionally, the 128 Hz sampling rate represents each second. 
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Figure 2. Raw EEG signals for Fp1 from the DEAP dataset [26] 

 

Figure 3. Raw EEG signals for AF3 from the AMIGOS data set [27] 

 

Figure 4. Raw EEG signals for AF3 from the DREAMER data set [16] 
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Figure 3 shows the raw EEG signals of the eighth participant during the eighth trial. The overall duration of the 

experiment is 75.9 seconds. In the AMIGOS dataset, the first five seconds are the baseline EEG signals, while the 

remaining 6 to 75.9 seconds are that of the experiment. Furthermore, the 128 Hz sampling rate represents each second. 

Figure 4 shows the raw EEG signals obtained from the tenth participant in the tenth trial, and the overall duration was 

72 s. In the DREAMER dataset, the first five seconds were the baseline EEG signals, while the remaining 6 to 72 s were 

that of the experiment. Coincidentally, the 128 Hz sampling rate represents each second. The baseline EEG signal 

amplitude is same than the experiment EEG signal. Both external and internal interferences cause this problem during 

the recording process [5, 9, 32]. Internal disturbances include Electrooculograms (EOG), Electrocardiograms (ECG), 

Electromyograms (EMG), and emotional reactions. The power line current often causes external interference at each 

electrode [14–16]. This constantly increases the fluctuations of the EEG signal amplitude in the long term, thereby 

causing the baseline to be unable to represent neutral conditions [16, 17]. Conversely, the studies by Narayana et al. 

(2019) [6] and Zhuang et al. (2018) [7] and reported that the neutral state is fulfilled if the EEG signal amplitude is less 

than that of the concentration and emotional states.  

This study designed a Modified Weighted Mean Filter (MWMF) method to reduce interference as well as represent 

the neutral condition in the baseline EEG signal. Interestingly, this technique is a development of the Mean Filter method 

in which a weight value is added, and its value is discerned using Equation 6: 

𝑧𝑗 =  
∑ 𝑥𝑗+𝑖

𝑛
𝑖=−𝑛

2(𝑛+1)
  (6) 

where xi denotes the input value of the EEG signal at the ith index, 2(n +1) s the window length, and zj indicates the 

current output value at the jth index. Since the determination of the window lengths significantly affects the extent of 

delay and latency, an increase in its value triggers the extent of delay elements and latency, and vice versa [33]. Based 

on these conditions, the window length used in this study was 1 (n=1). The Mean Filter method reduces noise in the 

baseline EEG signal through a smoothing process [22]. Additionally, it is essential to examine the use of weights in this 

approach to represent the neutral condition of baseline EEG signals. The purpose was to reduce its amplitude. A neutral 

state tends to be achieved by reducing the baseline EEG signals. Furthermore, weight values were generated by 

normalizing its amplitudes. It was also used to maintain the same baseline EEG signal pattern even though the value of 

the amplitude was lowered. The Z-score method was employed to normalize the baseline EEG signals. Its use for the 

normalization process tends to overcome the non-stationary values in the EEG signal. Several critical procedures need 

to be considered when developing EEG signal-based emotional recognition models, such as feature extraction, 

representation, and classification [3, 34, 35]. The determination of these frameworks refers to the research carried out 

by Wu et al. (2018), and Wirawan et al. (2021) [4, 12]. Secondary datasets such as DEAP, DREAMER, and AMIGOS, 

were used to validate the emotional recognition. 

3- The Proposed Model 

Based on the two contributions proposed in this study, the stages of emotional recognition concerning EEG signals 

are arranged, as shown in Figure 5. 

 

Figure 5. Emotional recognition is based on EEG signal stages 
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There were four emotional recognition steps, two of which are blue rectangles, and contributed to this study. The first 

is a smoothing approach, namely, the Modified Weighted Mean Filter technique used to eliminate interference and 

decrease the amplitude of the baseline EEG signals. The second contribution is to determine which of the three reduction 

methods is appropriate for characterizing emotional reactions from different EEG signal patterns based on those that 

have been smoothed. Furthermore, this model uses EEG signal data to recognize the four and two emotional classes. 

This study applied three public datasets, namely DEAP, DREAMER, and AMIGOS. These have different characteristics 

regarding the number of channels used, trial mechanisms performed individually or in groups, and the duration. The use 

of these three datasets was crucial for validating the proposed model. 

3-1- Preprocessing Stages 

3-1-1- Segmentation 

This process divides EEG signals into baseline and experiment segments. Regarding the DEAP dataset, the first three 

seconds are the baseline signals (𝑥0 … 𝑥383), while the fourth to the sixty-third s are that of the experiment (𝑥384 … 

𝑥8063). Meanwhile, in DREAMER and AMIGOS, the first five seconds are the baseline signals, while the next second 

is that of the experiment. Figure 6 shows the segmentation process for the DEAP dataset on the Fp1 channel for the first 

participant [4]. 

 

Figure 6. EEG signal segmentation processes on channel Fp1 

The segmentation process was performed for each channel during the diverse trials. The DEAP dataset contains 32 

channels and 40 trials for each participant. Meanwhile, that of DREAMER includes 14 channels and 18 trials. The 

AMIGOS dataset consists of 14 channels and 20 trials. 

3-1-2- Smoothing Baseline Signal (Contribution) 

A neutral state is achieved by eliminate disturbances and decrease the amplitude the baseline EEG signals, and this 

process is the main contribution of this study. Furthermore, a Modified Weighted Mean Filter (MWMF) method was 

proposed to eliminate disturbances and decrease the amplitude of the EEG baseline signals. Weight values were 

generated by normalizing their amplitudes. These were also used to maintain the same baseline EEG signal pattern even 

though its amplitude was reduced. The Z-score technique was used to normalize the baseline EEG signals and to 

overcome the non-stationary values. Based on Equation 6, the baseline procedure involving the use of the MWMF 

method consisted of three processes, namely normalization, padding, and smoothing. 

 Normalization 

The values resulting from the normalization process were converted using an absolute function (ABS). This aims 

to produce a positive weight value to overcome the problem of outliers when smoothing the baseline EEG signal 

data. Table 1 shows the values obtained using Z-Score normalization, which lasted for three seconds (384 Hz). 
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Table 1. Illustration of the normalization process in the baseline EEG signal 

Data Baseline signals (𝒙𝒊) Weight (𝑾𝒊) 

1st Data 𝑥0 𝑊0 = 𝐴𝐵𝑆 (
𝑥0 − �̅�

𝜎
) 

2nd Data 𝑥1 𝑊1 = 𝐴𝐵𝑆 (
𝑥1 −  �̅�

𝜎
) 

`3rd Data 𝑥2 𝑊2 = 𝐴𝐵𝑆 (
𝑥2 − �̅�

𝜎
) 

384th Data 𝑥383 𝑊383 = 𝐴𝐵𝑆 (
𝑥383 − �̅�

𝜎
) 

Based on Table 1, Equation 7 is used to calculate the weight value determined using the Z-Score normalization 

method [25, 36]. 

𝑊𝑖 = 𝐴𝐵𝑆 (
𝑥𝑖− �̅�

𝜎
)  (7) 

�̅� is the average value of the EEG baseline signal data, and 𝜎 is the standard deviation. 𝑥𝑖 is the value of the EEG 

baseline signal data at the ith index, and 𝑊𝑖 is the weighted value at the ith index. The value of i = 0, 1, 2, 3,….., M-

1, where M is the number of data points (sampling rate). 

 Padding 

The padding process is performed by adding a null value (0) both at the beginning and end of the EEG baseline 

signal data (𝑥𝑖) and weight value data (𝑊𝑖). It allows the MWMF method to perform the smoothing operation on 

all baseline EEG signal data (𝑥𝑖) and weight value data (𝑊𝑖). Given that the window length is one (1), the padding 

process is carried out by adding a value of zero (0) both at the beginning and end of the data. Table 2 shows the 

padding process for the three s baseline signal on the DEAP dataset. In addition, the 1 (s) EEG signal had 128 

sampling rates. At 3 (s), the baseline signal contains 384 sampling rates. 

Table 2. Illustration of the padding process in the baseline EEG signal 

Data  Baseline Signals (𝒙𝒊) Weight (𝑾𝒊) 

1 0 Padding 0  Padding 

2 𝑥0 𝑊0 

3 𝑥1 𝑊1 

385 𝑥383 𝑊383 

386 0 Padding 0  Padding 

In this process, the three-second baseline EEG signal produces 𝑥𝑖 and 𝑊𝑖 values of 386 data points for the DEAP 

dataset. The DREAMER and AMIGOS datasets had 𝑥𝑖 and 𝑊𝑖 values of 642 data points in five seconds. 

 Smoothing Stage 

After the weight and padding processes were performed, the baseline EEG signal was smoothed using the MWMF 

method. Table 3 shows the smoothing process for the baseline EEG signal data (DEAP dataset), starting from the 

2nd to 385th data points. 

Table 3. Illustration of the smoothing process in the baseline EEG signal 

Data Baseline signals (𝒙𝒊) Weight (𝑾𝒊) Modified Weighted Mean Filter (𝒛𝒊) 

1st Data 0 0 0 

2nd Data 𝑥0 𝑊0 𝑧0 = [0 + (
𝑊0

0 + 𝑊0 + 𝑊1

) 𝑥0 + (
𝑊1

0 + 𝑊0 + 𝑊1

) 𝑥1] (2 + 1)⁄  

3rd Data 𝑥1 𝑊1 𝑧1 = [(
𝑊0

𝑊0 + 𝑊1 + 𝑊2

) 𝑥0 + (
𝑊1

𝑊0 + 𝑊1 + 𝑊2

) 𝑥1 + (
𝑊2

𝑊0 + 𝑊1 + 𝑊2

) 𝑥2] (2 + 1)⁄  

385th Data 𝑥383 𝑊383 𝑧383 = [(
𝑊382

𝑊382 + 𝑊383 + 0
) 𝑥382 + (

𝑊383

𝑊382 + 𝑊383 + 0
) 𝑥383 + 0] (2 + 1)⁄  

386th Data 0 0 0 

Based on Table 3, the smoothing process of the EEG baseline signal using the MWMF method is represented by 

Equation 8: 
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𝑧𝑗 = (
∑ 𝑊𝑗+𝑖𝑥𝑗+𝑖

𝑛
𝑖=−𝑛

(2𝑛+1) ∑ 𝑊𝑗+𝑖
𝑛
𝑖=−𝑛

)  (8) 

In the MWMF method, the values of 𝑗 = n, n+1, n+2……, m+2n, while m is the amount of data. Considering that 

the total weight needs to meet the requirements of ∑ 𝑊𝑗 = 1, determining the weight value of the Z-Score is carried 

out as follows ∑ 𝑊𝑗+𝑖
𝑛
𝑖=−𝑛  [37]. 

3-1-3- Decomposition 

Decomposition was carried out on the smoothed baseline and experiment EEG signals. A bandpass filter was used to 

convert both signals into four frequency bands. This method filters the frequency of the EEG signals based on the low 

and high-pass ranges. Table 4 shows the low and high-pass fields for each frequency band. 

Table 4. Range of low - high pass for each frequency band 

No Frequency Band Low Pass High Pass 

1 Theta 4 Hz 8 Hz 

2 Alpha 8 Hz 14 Hz 

3 Beta 14 Hz 31 Hz 

4 Gamma 31 Hz 45 Hz 

Decomposition was performed for all channels on the baseline and experiment EEG signals, as shown in Table 5 for 

the Fp1 channel. 

Table 5. Illustrates the decomposition process of the baseline EEG and experiment signals for the Fp1 channel in one 

experiment on the DEAP dataset 

Frequency band 
Baseline EEG signal Experiment EEG signal 

𝒛𝟎 ….. 𝒛𝟑𝟖𝟑 𝒙𝟑𝟖𝟒 ….. 𝒙𝟖𝟎𝟔𝟑 

Theta band 𝑧0𝑇ℎ𝑒𝑡𝑎 ….. 𝑧383𝑇ℎ𝑒𝑡𝑎 𝑥384𝑇ℎ𝑒𝑡𝑎 ….. 𝑥8063𝑇ℎ𝑒𝑡𝑎 

Alpha band 𝑧0𝐴𝑙𝑝ℎ𝑎 ….. 𝑧383𝐴𝑙𝑝ℎ𝑎 𝑥384𝐴𝑙𝑝ℎ𝑎 ….. 𝑥8063𝐴𝑙𝑝ℎ𝑎 

Beta band 𝑧0𝐵𝑒𝑡𝑎 ….. 𝑧383𝐵𝑒𝑡𝑎 𝑥384𝐵𝑒𝑡𝑎 ….. 𝑥8063𝐵𝑒𝑡𝑎 

Gamma band 𝑧0𝐺𝑎𝑚𝑚𝑎 ….. 𝑧383𝐺𝑎𝑚𝑚𝑎 𝑥384𝐺𝑎𝑚𝑚𝑎 ….. 𝑥8063𝐺𝑎𝑚𝑚𝑎 

3-2- Extraction and Representation Stages 

3-2-1- Extraction Features 

The extraction process was carried out to obtain the relevant features of the EEG signal. This research employed the 

Differential Entropy (DE) method, as shown in Equation 1. The feature extraction was performed every second (128 

sampling rate/data) on the smoothed baseline and the experiment EEG signal in each frequency band, as shown in Table 

6 for the Fp1 channel. 

Table 6. Illustrates the extraction process of the baseline EEG and experiment signals for the Fp1 channel on the 

DEAP dataset 

Frequency 

band 

Baseline EEG signal on 1st s 1st DE feature on 

baseline EEG signal 

Experiment EEG signal on 63th s 63th DE feature on 

experiment EEG signal 𝒛𝟎 ….. 𝒛𝟏𝟐𝟕 𝒙𝟕𝟗𝟑𝟓 ….. 𝒙𝟖𝟎𝟔𝟑 

Theta 𝑧0𝑇ℎ𝑒𝑡𝑎 ….. 𝑧127𝑇ℎ𝑒𝑡𝑎 ℎ1(𝑇ℎ𝑒𝑡𝑎) 𝑥7935𝑇ℎ𝑒𝑡𝑎 ….. 𝑥8063𝑇ℎ𝑒𝑡𝑎 ℎ63(𝑇ℎ𝑒𝑡𝑎) 

Alpha 𝑧0𝐴𝑙𝑝ℎ𝑎 ….. 𝑧127𝐴𝑙𝑝ℎ𝑎 ℎ1(𝐴𝑙𝑝ℎ𝑎) 𝑥7935𝐴𝑙𝑝ℎ𝑎 ….. 𝑥8063𝐴𝑙𝑝ℎ𝑎 ℎ63(𝐴𝑙𝑝ℎ𝑎) 

Beta 𝑧0𝐵𝑒𝑡𝑎 ….. 𝑧127𝐵𝑒𝑡𝑎 ℎ1(𝐵𝑒𝑡𝑎) 𝑥7935𝐵𝑒𝑡𝑎 ….. 𝑥8063𝐵𝑒𝑡𝑎 ℎ63(𝐵𝑒𝑡𝑎) 

Gamma 𝑧0𝐺𝑎𝑚𝑚𝑎 ….. 𝑧127𝐺𝑎𝑚𝑚𝑎 ℎ1(𝐺𝑎𝑚𝑚𝑎) 𝑥7935𝐺𝑎𝑚𝑚𝑎 ….. 𝑥8063𝐺𝑎𝑚𝑚𝑎 ℎ63(𝐺𝑎𝑚𝑚𝑎) 

The DEAP dataset produced three DE features for the baseline (ℎ1(x) - ℎ3(x)) and 60 for the experiment EEG signal 

(ℎ4(x) - ℎ63(x)) in each channel, frequency band, trial, and participant. The DREAMER and AMIGOS datasets produced 

five DE features for the baseline EEG signals. On the contrary, the resulting one from the experiment EEG signal 

corresponds to each participant's trial duration in the respective channels, frequency band, and participant. 
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3-2-2- Baseline Reduction (Contribution) 

After the feature values of the smoothed baseline and the experiment EEG signals were obtained, a reduction process 

was performed. Three baseline reduction methods were examined to determine the most appropriate one for describing 

emotional responses from different EEG signal patterns. The DE features from both signals were used for the baseline 

reduction. This research reviewed three reduction processes, namely the Difference, Relative, and Fractional Difference 

methods. The average value of the DE features on the smoothed baseline EEG signal for each frequency band in a 

channel and during an experiment on one participant concerning the DEAP dataset was calculated as the initial step. 

Based on Equation 5, the calculation process is as follows: 

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝑇ℎ𝑒𝑡𝑎) =
(ℎ1(𝑇ℎ𝑒𝑡𝑎)+ℎ2(𝑇ℎ𝑒𝑡𝑎)+ℎ3(𝑇ℎ𝑒𝑡𝑎))

3
  

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐴𝑙𝑝ℎ𝑎) =
(ℎ1(𝐴𝑙𝑝ℎ𝑎)+ℎ2(𝐴𝑙𝑝ℎ𝑎)+ℎ3(𝐴𝑙𝑝ℎ𝑎))

3
  

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐵𝑒𝑡𝑎) =
(ℎ1(𝐵𝑒𝑡𝑎)+ℎ2(𝐵𝑒𝑡𝑎)+ℎ3(𝐵𝑒𝑡𝑎))

3
  

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐺𝑎𝑚𝑚𝑎) =
(ℎ1(𝐺𝑎𝑚𝑚𝑎)+ℎ2(𝐺𝑎𝑚𝑚𝑎)+ℎ3(𝐺𝑎𝑚𝑚𝑎))

3
  

Next, using Equations 2 to 4 the baseline reduction processes for the Difference, Relative, and Fractional Difference 

methods for each frequency band are shown in Table 7. 

Table 7. Illustration of the baseline reduction using Difference, Relative Difference, and Fractional Difference methods on 

the DEAP dataset 

DE Features 
Baseline reduction method 

Difference Relative Difference Fractional Difference 

𝐹𝑖𝑛𝑎𝑙_𝑣4(𝑇ℎ𝑒𝑡𝑎) ℎ4(𝑇ℎ𝑒𝑡𝑎) − 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝑇ℎ𝑒𝑡𝑎) 
ℎ4(𝑇ℎ𝑒𝑡𝑎)

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝑇ℎ𝑒𝑡𝑎)
 

(ℎ4(𝑇ℎ𝑒𝑡𝑎) − 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝑇ℎ𝑒𝑡𝑎))

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝑇ℎ𝑒𝑡𝑎)
 

𝐹𝑖𝑛𝑎𝑙_𝑣63(𝑇ℎ𝑒𝑡𝑎) ℎ63(𝑇ℎ𝑒𝑡𝑎) − 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝑇ℎ𝑒𝑡𝑎) 
ℎ63(𝑇ℎ𝑒𝑡𝑎)

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝑇ℎ𝑒𝑡𝑎)
 

(ℎ63(𝑇ℎ𝑒𝑡𝑎) − 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝑇ℎ𝑒𝑡𝑎))

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝑇ℎ𝑒𝑡𝑎)
 

𝐹𝑖𝑛𝑎𝑙_𝑣4(𝐴𝑙𝑝ℎ𝑎) ℎ4(𝐴𝑙𝑝ℎ𝑎) − 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐴𝑙𝑝ℎ𝑎) 
ℎ4(𝐴𝑙𝑝ℎ𝑎)

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐴𝑙𝑝ℎ𝑎)
 

(ℎ4(𝐴𝑙𝑝ℎ𝑎) − 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐴𝑙𝑝ℎ𝑎))

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐴𝑙𝑝ℎ𝑎)
 

𝐹𝑖𝑛𝑎𝑙_𝑣63(𝐴𝑙𝑝ℎ𝑎) ℎ63(𝐴𝑙𝑝ℎ𝑎) − 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐴𝑙𝑝ℎ𝑎) 
ℎ63(𝐴𝑙𝑝ℎ𝑎)

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐴𝑙𝑝ℎ𝑎)
 

(ℎ63(𝐴𝑙𝑝ℎ𝑎) − 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐴𝑙𝑝ℎ𝑎))

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐴𝑙𝑝ℎ𝑎)
 

𝐹𝑖𝑛𝑎𝑙_𝑣4(𝐵𝑒𝑡𝑎) ℎ4(𝐵𝑒𝑡𝑎) − 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐵𝑒𝑡𝑎) 
ℎ4(𝐵𝑒𝑡𝑎)

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐵𝑒𝑡𝑎)
 

(ℎ4(𝐵𝑒𝑡𝑎) − 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐵𝑒𝑡𝑎))

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐵𝑒𝑡𝑎)
 

𝐹𝑖𝑛𝑎𝑙_𝑣63(𝐵𝑒𝑡𝑎) ℎ63(𝐵𝑒𝑡𝑎) − 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐵𝑒𝑡𝑎) 
ℎ63(𝐵𝑒𝑡𝑎)

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐵𝑒𝑡𝑎)
 

(ℎ63(𝐵𝑒𝑡𝑎) − 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐵𝑒𝑡𝑎))

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐵𝑒𝑡𝑎)
 

𝐹𝑖𝑛𝑎𝑙_𝑣4(𝐺𝑎𝑚𝑚𝑎) ℎ4(𝐺𝑎𝑚𝑚𝑎) − 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐺𝑎𝑚𝑚𝑎) 
ℎ4(𝐺𝑎𝑚𝑚𝑎)

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐺𝑎𝑚𝑚𝑎)
 

(ℎ4(𝐺𝑎𝑚𝑚𝑎) − 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐺𝑎𝑚𝑚𝑎))

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐺𝑎𝑚𝑚𝑎)
 

𝐹𝑖𝑛𝑎𝑙_𝑣63(𝐺𝑎𝑚𝑚𝑎) ℎ63(𝐺𝑎𝑚𝑚𝑎) − 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐺𝑎𝑚𝑚𝑎) 
ℎ63(𝐺𝑎𝑚𝑚𝑎)

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐺𝑎𝑚𝑚𝑎)
 

(ℎ63(𝐺𝑎𝑚𝑚𝑎) − 𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐺𝑎𝑚𝑚𝑎))

𝐵𝑎𝑠𝑒𝑀𝑒𝑎𝑛_𝑣(𝐺𝑎𝑚𝑚𝑎)
 

Based on Table. 7, 60 DE features (𝐹𝑖𝑛𝑎𝑙_𝑣4 - 𝐹𝑖𝑛𝑎𝑙_𝑣63) were generated for one channel (Fp1), frequency band, 

trial, participant, and baseline reduction method on the DEAP dataset. 

3-2-3- Representation Features 

After the baseline reduction process for all frequency bands, EEG channels, and trials for one participant was 

completed (as shown in Table 7), the feature representation procedure was performed. These were represented based on 

the International System 10-20 standard. The reduced DE feature of the experiment EEG signal (𝐹𝑖𝑛𝑎𝑙_𝑣𝑗
𝑖) was mapped 

onto 9 × 9 matrices for each frequency band. This matrix describes the placement position of all channels on the head. 

A combination of each frequency band was represented using the 3D Cube method. Figure 7 shows the feature 

representation process for all channels in the DEAP dataset (32 channels). 

The first 3D Cube data represents the value of the first DE feature of the experiment EEG signal 

(𝐹𝑖𝑛𝑎𝑙_𝑣4(𝑇ℎ𝑒𝑡𝑎), 𝐹𝑖𝑛𝑎𝑙_𝑣4(𝐴𝑙𝑝ℎ𝑎), 𝐹𝑖𝑛𝑎𝑙_𝑣4(𝐵𝑒𝑡𝑎), and 𝐹𝑖𝑛𝑎𝑙_𝑣4(𝐺𝑎𝑚𝑚𝑎)) for all the channels. 
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Figure 7. Illustration of the feature representation for each 32 channels in the DEAP dataset using a 3D Cube [3, 4, 38] 

3-3- Classification 

The DE features of the experiment EEG signal represented in the 3D Cube are used as the input data in the 

classification process. This study employed the Convolutional Neural Network (CNN) method for this procedure. It 

involves adopting a CNN architecture based on Yang et al. (2018) that designed two or four emotional categories, as 

shown in Figure 1. However, the two emotional categories were high and low for arousal and valence emotions. By 

contrast, the four emotional categories include high arousal and positive valence (HAPV), high arousal and negative 

valence (HANV), low arousal and negative valence (LANV), and low arousal and positive valence (LAPV). This study 

uses the L2 regularization and Adam Optimizer methods to calculate and update the loss value. Several parameters were 

determined, including the learning rate (1e-4), epoch (50), and batch size (128). 

3-4- Assessment Model 

There were two assessment models, namely evaluation and performance parameters. The evaluation model used in 

this research was a K-fold cross-validation method, with a value of 10. This was carried out on each participant using 

three public datasets. The evaluation process results were measured using the following parameters, namely accuracy, 

precision, recall, and F1 rate. 

4- Results and Discussion 

Based on the tests carried out on the DEAP, DREAMER, and AMIGOS datasets, the smoothing process performed 

using the Modified Weighted Mean Filter method tends to reduce the interference and the amplitude of the EEG baseline 

signal. The aim was to represent the neutral condition of the participants. Figure 8 shows the baseline EEG signal patterns 

before and after smoothing using the MWMF method. 

 

Figure 8. Baseline EEG signal patterns before and after smoothing using the MWMF method 
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The application of the MWMF method was used to prove that the baseline EEG signal can represent a neutral 

condition. Furthermore, its smoothed features were used to reduce the experiment EEG signals. This process aims to 

characterize emotional reactions according to the different signal patterns. The validation process was carried out using 

four scenarios for each dataset. The essence was to evaluate the ability of the MWMF method to represent neutral 

conditions on the EEG signal and assess its impact on optimizing the baseline reduction approach. 

 The first test scenario involves using a three-second smoothed baseline EEG feature for the DEAP dataset (with 

MWMF). The DREAMER and AMIGOS datasets use a five-second smoothed baseline EEG feature (with 

MWMF). Furthermore, this baseline signal feature was used for its reduction. Three basic methods were employed, 

namely Difference, Relative, and Fraction Differences. In addition, this scenario examined the baseline reduction 

process utilizing an unsmoothed EEG feature (without MWMF). 

 In the second scenario, the smoothing process used the first three seconds of the experiment EEG signal contained 

in the DEAP dataset (with MWMF). It adopted the first five seconds contained in the DREAMER and AMIGOS 

datasets (with MWMF). Furthermore, this experiment signal feature was used for baseline reduction. Three basic 

methods were used: Difference, Relative, and Fraction Differences. In addition, this scenario examined the baseline 

reduction process utilizing an unsmoothed experiment EEG feature (without MWMF). 

 In the third scenario, the smoothing process used the last three seconds of the EEG experiment signal in the DEAP 

dataset (with MWMF). It also used the last five seconds in the DREAMER and AMIGOS datasets (with MWMF). 

This experiment signal feature was used for baseline reduction. Three basic methods, namely Difference, Relative, 

and Fraction Differences, were also adopted. In addition, this scenario examined the baseline reduction process 

utilizing an unsmoothed experiment EEG feature (without MWMF). 

 In the fourth scenario, the smoothing process uses three seconds in the middle of the experiment EEG signal 

contained in the DEAP dataset (with MWMF). It also employed five seconds in the middle of the signal contained 

in the DREAMER and AMIGOS datasets (with MWMF). This feature was used for baseline reduction, as well as 

three basic methods, namely Difference, Relative, and Fraction Differences. In addition, this scenario examined 

this procedure by utilizing an unsmoothed experiment EEG feature (without MWMF). 

The total number of validation processes is twenty-four for each dataset. Figure 9 shows the validation process of the 

proposed method on the DEAP dataset. 

 

Figure 9. Twenty-four validation procedures were performed for each dataset 
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Each test results are the average accuracies value for the four emotional classes. Additionally, statistical analysis was 

carried out using the Wilcoxon test to ascertain the twenty-four validation processes on each dataset. It was also used to 

determine the significant increase or decrease of the four emotional classes for the three-baseline reduction approach 

with or without the MWMF method. This led to the development of two hypotheses. 

 Ho: There is an insignificant difference in the accuracy of the baseline reduction methods with and without the 

MWMF approach. This condition is true if the 2-tailed value is greater than or equal to the degree of significance 

(α = 0.05), expressed as 2-tailed ≥ α. 

 Ha: There is a significant difference in the accuracy of the baseline reduction methods with and without the MWMF 

approach. This condition is true if the 2-tailed value is smaller than the degree of significance (α = 0.05), expressed 

as 2-tailed < α. 

Table 8 shows the average accuracy and Wilcoxon test results for the baseline reduction method, with and without 

the MWMF approach for the three datasets. 

Table 8. Average accuracy and statistical test for each validation process on the DEAP, DREAMER, and AMIGOS datasets 

No Scenarios 
Baseline 

Reduction 

Average Accuracy Wilcoxon Test 

Without 

MWMF 

With 

MWMF 

Positive 

Ranks 

Negative 

Ranks 
Ties 

2-

tailed 
Hypotheses 

1 1st scenario on DEAP Difference 77,69% 73,37% 4 28 0 0,000 Ha accepted 

2 1st scenario on DEAP Relative Difference 79,82% 97,14% 32 0 0 0,000 Ha accepted 

3 1st scenario on DEAP Fractional Difference 79,76% 97,13% 32 0 0 0,000 Ha accepted 

4 2nd scenario on DEAP Difference 74,27% 70,19% 3 29 0 0,000 Ha accepted 

5 2nd scenario on DEAP Relative Difference 76,75% 96,54% 32 0 0 0,000 Ha accepted 

6 2nd scenario on DEAP Fractional Difference 76,70% 96,55% 32 0 0 0,000 Ha accepted 

7 3rd scenario on DEAP Difference 73,28% 70,30% 5 27 0 0,000 Ha accepted 

8 3rd scenario on DEAP Relative Difference 76,18% 96,85% 32 0 0 0,000 Ha accepted 

9 3rd scenario on DEAP Fractional Difference 76,08% 96,85% 32 0 0 0,000 Ha accepted 

10 4th scenario on DEAP Difference 71,08% 67,84% 7 25 0 0,000 Ha accepted 

11 4th scenario on DEAP Relative Difference 74,37% 96,44% 32 0 0 0,000 Ha accepted 

12 4th scenario on DEAP Fractional Difference 74,43% 96,42% 32 0 0 0,000 Ha accepted 

13 1st scenario on DREAMER Difference 82,89% 80,24% 3 20 0 0,001 Ha accepted 

14 1st scenario on DREAMER Relative Difference 76,25% 89,71% 22 1 0 0,000 Ha accepted 

15 1st scenario on DREAMER Fractional Difference 76,24% 89,73% 22 1 0 0,000 Ha accepted 

16 2nd scenario on DREAMER Difference 81,67% 79,65% 1 22 0 0,000 Ha accepted 

17 2nd scenario on DREAMER Relative Difference 75,10% 88,78% 22 1 0 0,000 Ha accepted 

18 2nd scenario on DREAMER Fractional Difference 75,08% 88,77% 22 1 0 0,000 Ha accepted 

19 3rd scenario on DREAMER Difference 82,22% 79,43% 1 22 0 0,000 Ha accepted 

20 3rd scenario on DREAMER Relative Difference 75,52% 88,99% 22 1 0 0,000 Ha accepted 

21 3rd scenario on DREAMER Fractional Difference 75,42% 89,03% 22 1 0 0,000 Ha accepted 

22 4th scenario on DREAMER Difference 82,82% 80,07% 2 21 0 0,000 Ha accepted 

23 4th scenario on DREAMER Relative Difference 76,14% 89,26% 23 0 0 0,000 Ha accepted 

24 4th scenario on DREAMER Fractional Difference 76,27% 89,19% 23 0 0 0,000 Ha accepted 

25 1st scenario on AMIGOS Difference 78,60% 74,71% 0 31 0 0,000 Ha accepted 

26 1st scenario on AMIGOS Relative Difference 75,64% 99,59% 31 0 0 0,000 Ha accepted 

27 1st scenario on AMIGOS Fractional Difference 75,69% 99,59% 31 0 0 0,000 Ha accepted 

28 2nd scenario on AMIGOS Difference 79,18% 75,95% 0 31 0 0,000 Ha accepted 

29 2nd scenario on AMIGOS Relative Difference 77,44% 99,88% 31 0 0 0,000 Ha accepted 

30 2nd scenario on AMIGOS Fractional Difference 77,52% 99,85% 31 0 0 0,000 Ha accepted 

31 3rd scenario on AMIGOS Difference 85,56% 80,19% 0 31 0 0,000 Ha accepted 

32 3rd scenario on AMIGOS Relative Difference 84,60% 99,48% 31 0 0 0,000 Ha accepted 

33 3rd scenario on AMIGOS Fractional Difference 84,39% 99,50% 31 0 0 0,000 Ha accepted 

34 4th scenario on AMIGOS Difference 83,23% 79,66% 0 31 0 0,000 Ha accepted 

35 4th scenario on AMIGOS Relative Difference 81,98% 99,74% 31 0 0 0,000 Ha accepted 

36 4th scenario on AMIGOS Fractional Difference 82,04% 99,75% 31 0 0 0,000 Ha accepted 

The validation process was carried out on the DEAP, DREAMER, and AMIGOS datasets to determine the average 

emotional recognition accuracy of the four classes with and without the MWMF method. These were validated using the 
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Wilcoxon test, with and without the MWMF method. This analysis has several values supporting the significance test 

hypothesis, including Positive, Negative Ranks, Ties, and 2-tailed. A Positive Rank indicated the extent of data that 

experienced absolute accuracy when the baseline reduction method was compared with and without MWMF (with 

MWMF > without MWMF). A Negative Rank depicts the extent of data that experienced a significant decrease in 

accuracy when the baseline reduction method was compared with and without MWMF (with MWMF < without 

MWMF). Ties represent the extent of data that does not accurately change when the baseline reduction method is 

compared with and without MWMF (with MWMF = without MWMF). The 2-tailed (Asymp. sig.) is the significance 

value obtained from the baseline reduction method with and without MWMF. Furthermore, it was also used to test the 

hypotheses. Ha was accepted if the 2-tailed value was < 0.05; otherwise, Ho was accepted. 

Based on the validation of the DEAP, DREAMER, and AMIGOS datasets, the Relative and Fractional Difference 

methods tend to produce higher accuracy when combined with the MWMF method for the four-class emotional 

recognition. In all scenarios, Ha was accepted because the 2-tailed value is less than 0.05 at 0.000. All participants 

experienced an increased accuracy in the DEAP and AMIGOS datasets. The Positive Rank values for the DEAP dataset 

were 32, whereas that of AMIGOS was 31. On the contrary, in the DREAMER dataset, only 1 participant out of 23 

others experienced a decrease in accuracy (Negative Rank). However, the majority, namely 22 participants, experienced 

increased accuracy. Statistical tests concluded that there is a significant increase in accuracy when using a combination 

of Relative or Fraction Difference and MWMF methods. 

The MWMF method tends to reduce the interference and amplitude of the baseline EEG signal. This represents the 

neutral condition of the participants [6, 7]. Additionally, this approach, as well as a smoothing process, can also eliminate 

interference and decrease the amplitude of the experiment EEG signal. Both smoothed features resulted in a significant 

increase in accuracy, as shown in Table 8. The baseline reduction approach can use all EEG signal features to represent 

emotional reactions in different patterns. The feature values from smoothed signals significantly increased the accuracy 

of emotional recognition when used in the Relative and Fractional Difference methods. The raw EEG signal does not 

represent emotional reactions in different patterns when using the Difference method. This is caused by the smoothed 

features yielding a low value. The adoption of the Difference method did not affect the raw EEG signal pattern, as stated 

in Equation 2. As shown in Figures 10-A and 10-B, there was no change in the raw EEG signal both before and after the 

baseline reduction employed this method. The formed pattern was still rough even though this signal has been the 

baseline reduction and smoothing processes. Compared to the Difference method, applying the MWMF approach to the 

Relative and Fractional Difference techniques yielded a raw EEG signal with a stable pattern. Figures 10-C and 10-D 

show the reduced pattern using both methods, producing a more stable signal than before its reduction, as indicated in 

Figure 10-A. 

  

  

Figure 10. Visualization of experiment EEG signals before and after baseline reduction. (Graph A) Before baseline reduction. 

(Graph B) After baseline reduction using the Difference method. (Graph C) After baseline reduction using the Relative 

Difference method. (Chart D) After baseline reduction using the Fraction Difference. 
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Nevertheless, the Fraction Difference method combines the Difference (subtraction) and Relative Difference 

(division) approaches. Irrespective of the fact that when combined with the MWMF method, it increases the emotional 

recognition accuracy, an effective baseline reduction is performed through the division process (as shown in Equation 

9) [12]. Therefore, the Relative Difference approach is more appropriate for baseline reduction. The findings of this 

study are compared with the average accuracy of previous studies, particularly those concerning the recognition of the 

four emotional categories, as shown in Table 9. 

Table 9. Compares the average accuracy of the combined MWMF and Relative Difference methods (in the first scenario) 

with previous studies to recognize the four classes of emotions 

No Purposed methods Research DEAP DREAMER AMIGOS 

1 
Extraction feature using ResNets dan LFCC; Classification using 

kNN. 
Liu et al. (2018) [39] 90.21% - - 

2 
Extraction feature using Angle Space; Classification using 

MSVM. 
Zangeneh et al. (2019) [40] 81.67%. - - 

3 
Extraction feature: compare PSD, DE, DASM, RASM, DCAU; 

Classification using GELM. 
Zheng et al. (2016) [41] 69.67% - - 

4 
Baseline reduction using Difference; Extraction feature and 

Classification using CNN. 
Zhao et al. (2020) [11] 93.53% - 95.95% 

5 

Smoothing EEG signal using MWMF; Extraction feature using 

DE; Representation features using 3D Cube; Baseline reduction 

using Relative Difference; Classification using CNN. 

Present Study 97.14% 89.71% 99.59% 

Based on the comparison of accuracy in Table 9, the proposed method tends to produce the highest accuracy for the 

recognition of the four emotional classes than that of Liu et al. (2018), Soroush et al. (2019), and Zheng et al. (2016) 

[39–41]. Although Zhao et al. (2020) applied a baseline reduction approach and a CNN method, the result obtained was 

less accurate than the one obtained in the present study [11]. Additionally, this research also examined the recognition 

of two emotional classes, namely high and low for arousal and valence, respectively. The results obtained from the 

average accuracy were then compared with previous research, particularly those that applied the baseline reduction 

approach, as shown in Table 10. 

Table 10. Compares the average accuracy of the combined MWMF and Relative Difference methods in the first scenario 

with previous studies to identify the two classes of emotions (high and low) 

No Purposed methods Research 
DEAP DREAMER AMIGOS 

Arousal Valence Arousal Valence Arousal Valence 

1 
Extraction feature using DE; Representation features 
using 3D Cube; Baseline reduction using Difference; 

Classification using CNN. 

Yang et al. 

(2018) [4] 
86.05% 89.45%     

2 
Baseline reduction using Difference; Extraction features 

and Classification using CNN + LSTM. 

Yang et al. 

(2018) [8] 
91.03% 90.80%.     

3 

Baseline reduction using Difference; 

Extraction features and Classification using multi-

Grained Cascade Forest (gcForest). 

Cheng et al. 

(2020) [9] 
97.53%, 97.69% 90.41% 89.03%   

4 
Baseline reduction using Difference; 
Extraction features and Classification using Multi-level 

Features guided Capsule Network. 

Liu et al. 

(2020) [10] 
98.31%, 97.97% 95.26% 94.59%   

5 

Extraction feature using DE; Representation features 

using 3D Cube; Baseline reduction compare Difference, 

Relative Difference, and Fractional Difference; 
Classification using CNN. 

Wirawan et al. 

(2021) [12] 
82.10% 81.47%     

6 

Smoothing EEG signal using MWMF; Extraction feature 

using DE; Representation features using 3D Cube; 

Baseline reduction using Relative Difference; 
Classification using CNN. 

Present Study 99.70% 96.70% 97.63% 96.58% 98.20% 99.96% 

Based on Table 10, the proposed baseline reduction method tends to produce higher accuracy than the ones designed 

by Yang et al. (2018) and Wirawan et al. (2021) [8, 12]. Although this study referenced the feature extraction, 

representation, and classification methods from Yang et al. (2018), applying the MWMF method increases the accuracy 

of emotional recognition [4]. Irrespective of the fact that this method is highly accurate, based on testing the DEAP 

dataset, it gave a precise, slight result for emotion valence compared to the research carried out by Cheng et al. (2020) 

and Liu et al. (2020). Both proposed the gcForest and the Capsule Network methods for emotional classification. These 

techniques can monitor deep learning processes and tend to consider the spatial information in the EEG signal. Future 
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research needs to design a classification method to address this issue. The CNN method is unable to process spatial 

information from EEG signals and requires innumerable training sessions [3, 10, 42]. Considering that the three public 

datasets used had an imbalanced distribution, this study also measures the proposed method's accuracy, precision, recall, 

and F1 values, as shown in Table 11. 

Table 11. Accuracy, precision, recall, and F1 values of the proposed method in Present Study 

Datasets Emotion Accuracy Precision Recall F1 

DEAP 

high and low for arousal 99,70% 99,70% 99,67% 99,67% 

high and low for valence 96,70% 96,72% 96,69% 96,40% 

four emotion categories 97,14% 97,40% 96,38% 96,60% 

DREAMER 

high and low for arousal 97,63% 96,67% 94,53% 95,40% 

high and low for valence 96,58% 96,48% 95,88% 96,13% 

four emotion categories 89,71% 89,16% 87,53% 88,16% 

AMIGOS 

high and low for arousal 98,20% 97,04% 96,22% 96,49% 

high and low for valence 99,96% 99,95% 99,95% 99,95% 

four emotion categories 99,59% 99,44% 99,53% 99,46% 

Despite being applied to unbalanced datasets, the accuracy, precision, recall, and F1 had the same high values. 

Therefore, the proposed method for emotional recognition based on EEG signals is robust. 

5- Conclusion 

The baseline EEG signals used in the reduction approach were disturbed both internally and externally. This 

disturbance led to its inability to represent each participant's neutral conditions. These tend to be achieved if the 

amplitude of the baseline EEG signal is less than that of the experiment. This research examined a Modified Weighted 

Mean Filter method for smoothing baseline EEG signals. In addition, this approach can smooth the amplitude of 

experimental EEG signals. It is aimed at reducing noise and amplitude. Smoothed EEG signals represent neutral states, 

and their features are used for baseline reduction. This process aims to characterize emotional reactions according to 

different signal patterns. Among the three methods, Relative Difference is the most appropriate for executing this 

process. A combination of the Modified Weighted Mean Filter and Relative Difference methods significantly increases 

the accuracy of the emotional recognition based on the validation and statistical tests carried out on the DEAP, 

DREAMER, and AMIGOS datasets. Therefore, it was concluded that applying the Modified Weighted Mean Filter 

method can optimize the baseline reduction process, mainly when the Relative Difference approach is used. 

Although the overall emotional recognition accuracy improved significantly, some issues led to its low accuracy in 

the DEAP and DREAMER datasets. Considering that the use of the CNN method was unable to represent spatial 

information between parts of an object and its whole in the classification process, it decreased the accuracy of emotional 

recognition. Therefore, it is crucial to examine the classification method to overcome these problems in future research. 
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