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Abstract 

Among the many statistical process control charts, the modified exponentially weighted moving 
average (EWMA) control chart has been designed to swiftly detect a small shift in a process 

parameter. Herein, we propose two explicit formulas for the average run length (ARL) for integrated 

moving average (IMA) and fractional integrated moving average (FIMA) models combined with the 
modified EWMA control chart for time series prediction. The application of the suggested control 

chart procedures depends on the residuals of the IMA and FIMA models. The performance of the 

control chart with both models is evaluated by using the ARL. Explicit formulas for the ARL for the 
two models with the modified EWMA statistic are derived and their precision is compared with the 

numerical integral equation method. The explicit formulas could accurately predict the true ARL 

while markedly decreasing the computational processing time compared to the numerical integration 
method. The capabilities of the IMA and FIMA models with the modified EWMA control chart 

were studied by varying g times the last term and exponential smoothing parameter λ, with the 

relative mean index being used to evaluate these situations. The results show that the modified 
EWMA control chart with either model performed better than the original EWMA control chart. 

Furthermore, the modified EWMA control chart with either model was highly efficient when g 

increased and λ was small. Two applications involving energy commodity prices are used to 
illustrate the efficacies of the proposed approaches, the results of which were in accordance with the 

experimental study. 
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1- Introduction 

Control charts are key statistical process control tools used to monitor processes and verify product quality. In 1931, 

Shewhart [1] first proposed a control chart capable of detecting large changes in process parameters. Later, the 

cumulative sum (CUSUM) [2] and exponentially weighted moving average (EWMA) [3] monitoring charts were 

developed to detect small-to-moderate shifts in process parameters. The EWMA control chart is susceptible to small 

changes in process parameters and can be used to estimate observations in the next time period. Since then, the EWMA 

scheme has been updated to enhance its detection capability. Patel and Divecha (2011) [4] improved the EWMA statistic 

by expanding a different term based on previous observations and called it the modified EWMA control chart. After 

that, Khan et al. [5] developed a better approach for adjusting g multiplied by the last term of the modified EWMA 

statistic, thereby enabling it to quickly detect parameter changes in auto-correlated data series. 

Autocorrelation in time series has been studied over a long period of time, and time series models have been used for 

forecasting in various situations, such as the COVID-19 pandemic [6], stock trends [7], and the weather [8]. Depending 
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on the data trend, they are classified as autoregressive (AR) [9], moving average (MA) [10], autoregressive moving 

average (ARMA) [11], autoregressive integrated moving average (ARIMA) [12], and autoregressive fractional 

integrated moving average (ARFIMA) [13]. Moreover, integrated moving average (IMA) [14] and fractionally integrated 

moving average (FIMA) [15] models are special cases of ARIMA and ARFIMA processes, respectively. In some 

situations, IMA and FIMA models can be used to predict observations appropriately. An IMA model is a MA model 

added to the level of differencing d times, where d is an integer, while in the FIMA model, d is the fractional differencing 

parameter. IMA and FIMA models have been applied in various areas, such as industry [16], engineering [17], 

transportation [18], and biomedical science [19]. Most modeling of time series involves white noise [20], which is an 

uncorrelated stationary time series or random process following a normal distribution. In reality, it is frequently found 

that the residuals are exponentially distributed (i.e., exponential white noise). 

The average run length (ARL) [21] is a statistical measure used extensively to test the performance of a control chart. 

It is the average number of observations needed until a signal occurs. Common techniques to estimate the ARL are 

Monte Carlo simulation [22, 23] and the numerical integral equation (NIE) [24, 25]. On the other hand, the exact ARL 

can be computed by using an explicit formula, albeit that it is not easy to define. However, the advantage is that they can 

be processed immediately and produce an accurate value. In this paper, explicit formulas for the ARL on the modified 

EWMA control charts with IMA and FIMA models and exponential white noise are proposed. 

This article is organized as follows. Previous studies on explicit formulas for the ARL on control charts are reviewed 

in Section 2. The modified EWMA control chart and derivations of the explicit formulas and the NIE method for the 

ARL for the IMA and FIMA models with the modified EWMA control chart are introduced in Section 3. The research 

process is provided in Section 4. A comparison of the ARL solutions using the two techniques experimentally and with 

real data along with a performance comparison on the original and modified EWMA control charts for various situations 

are presented in Section 5. Finally, conclusions are given in Section 6. 

2- Literature Review 

Many researchers have proposed explicit formulas for the ARL on control charts with time series models. Petcharat 

et al. [26] presented explicit formulas for the ARL of random observations from a MA process with exponential white 

noise running on a CUSUM control chart; they compared the computational times of the explicit formulas and the NIE 

method and found that using the former was much faster. Sunthornwat et al. [27] proposed explicit formulas for the 

analytical ARL on an EWMA control chart with a long-memory ARFIMA model by using a solution for the integral 

equation and compared them with the NIE method; once again, the computational time for the former was much lower. 

Sunthornwat and Areepong [28] derived explicit formulas for the ARL for seasonal and non-seasonal MA processes 

with exogenous variables running on a CUSUM control chart and found their optimal parameters. When comparing the 

solution for a CUSUM control chart with that for an EWMA control chart, the former detected small process shifts better 

but moderate-to-large process shifts worse than the latter.  

Phanthuna et al. [29] introduced process shift detection for the modified EWMA control chart with an AR(1) process 

and exponential white noise. Explicit formulas for the ARL were derived and checked with the NIE method in terms of 

accuracy and computational time. Although both produced ARLs similar to the exact ARL, the explicit formulas method 

was much faster than the NIE method in obtaining an accurate value. Moreover, the authors reported an efficiency 

comparison of the CUSUM, EWMA, and modified EWMA control charts; their proposed control chart provided the best 

performance for small-to-intermediate shifts in the process parameter. Later, Phanthuna et al. [30] improved the explicit 

formulas for computing ARL solutions for the modified EWMA scheme in that they could be used for any order p of an 

AR(p) model, where p is a positive integer. Supharakonsakun et al. [31] studied a detection procedure for the EWMA 

and modified EWMA control charts with an ARMA(1,1) process and exponential white noise. Explicit formulas for the 

exact ARL were provided and their accuracy was compared with the NIE method. Supharakonsakun et al. [32] suggested 

explicit formulas for the ARL with observations from a MA model on the modified EWMA control chart and compared 

their capability with the same process on the standard EWMA scheme for monitoring PM2.5 and carbon monoxide air 

pollution data; their results show that the modified EWMA control chart was much better at detecting shifts in the process 

parameter than the standard EWMA control chart. Supharakonsakun [33] designed the modified EWMA control chart 

for a seasonal MA model and evaluated its efficacy by using the ARL calculated via explicit formulas and the NIE 

method. The efficiencies of the method for the EWMA, CUSUM, and modified EWMA control charts for a seasonal 

MA process with exponential white noise support the superiority of the latter. 

3- Control Chart for Time Series Models and Solving the ARL 

3-1- The Modified EWMA Control Chart 

The modified EWMA control chart can quickly detect a small shift in the process mean. In the EWMA statistic, the 

term g(Xt - Xt-1) from the modified EWMA control chart has been assigned to g = 0, and thus the modified EWMA 

statistic can be defined as: 



Emerging Science Journal | Vol. 6, No. 5 

Page | 1136 

   1 11 ,t t t t tY Y X g X X        (1) 

where 𝜆 is an exponential smoothing parameter where 0 < 𝜆 < 1, Xt is the data sequence at t = 1, 2, 3,... with mean 𝜇 and 

variance 𝜎2, and g is a suitable constant. The initial values of sequences Yt and Xt (t = 0) are determined for 𝜇 and the 

asymptotic variance of Yt as (𝜆 + 2𝜆𝑔 + 2𝑔2)𝜎2 (2 − 𝜆)⁄ . Thus, the bounds of the control limits of the modified EWMA 

control chart can be constructed for 𝜇, 𝜎, and suitable control width limit C as follows: 

𝜇 ± 𝐶𝜎√
𝜆+2𝜆𝑔+2𝑔2

2−𝜆
  

3-2- The IMA-Modified EWMA Control Chart 

For time series, the ARIMA (p, d, q) model, where p is the order of the autoregressive process, d is the order of 

differencing, and q is the order of the MA process, is widely applied to real data from many fields. When there is no 

autoregression in the time series, the IMA model is equivalent to the ARIMA (0, d, q) model. The IMA (d, q) model, 

denoted as Mt, can be defined by using backward shift operator B as follows: 

   2

0 1 21 1 ... ,
d q

t q tB M B B B            (2) 

where, (1 − 𝐵)𝑑 = ∑ (
𝑑
𝑘

) (−𝐵)𝑘𝑑
𝑘=0  is defined by using the Binomial Theorem [34]. Therefore, the IMA model can be 

rewritten as: 

  1

0 1 1 2 2 1 2 3

( 1) ( 1)( 2)
... ... ( 1) ,

2! 3!

d

t t t t q t q t t t t d

d d d d d
M dM M M M        

      

   
            

 
 (3) 

where, θ0 is the process average, θi (i = 1,2,…,q) are the coefficients of the IMA model (-1< θi <1) and εt-i is exponential 

white noise at time t. 

3-2-1- The Explicit Formula for the ARL on the Modified EWMA Control Chart with the IMA Model 

The ARL, which is the average number of observations before an alarm occurs, is a commonly used measure for the 

sensitivity of a control chart. In this section, the explicit formula for the ARL on the modified EWMA control chart with 

the IMA model is solved. From Equations 1 and 3, the modified EWMA statistic for the IMA model can be derived as: 

     1 1 0 1 1 2 2

1

1 2 3

1 ( ) ...

( 1) ( 1)( 2)
( ) ... ( 1) .

2! 3!

t t t t t t q t q

d

t t t t d

Y Y gM g g

d d d d d
g dM M M M

          



    



   

          

   
       

 

 

The lower and upper bounds of the control limits are l and h, respectively. For the in-control process, the interval of 

Yt can be written as: 

     1 0 1 1 2 2

1

1 2 3

1 ( ) ...

.( 1) ( 1)( 2)
( ) ... ( 1)

2! 3!

t t t t t q t q

d

t t t t d

Y gM g g

l hd d d d d
g dM M M M
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

   



   

          
 

     
        

  

 

This interval can be rearranged on variable 𝜀𝑡  to provide: 

 

 

 

 

 

 

1 1

0 1 1 2 2 0 1 1 2 2

1 2 1

1

3
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... ( 1)

3!
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d
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d d d
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 

 
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 
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  



 

 
 
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 
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The integral equation for the ARL on the modified EWMA control chart with an IMA (d, q) process and initial value 

Y0 = u is derived by using the Fredholm integral equation [35] as follows: 

 
     1 0 1 1 2 2

1

1 2 3

1 ( ) ...

1 ( ) .( 1) ( 1)( 2)
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  

  

By solving the integral equation, the integral variable can be adjusted by setting 𝑥 = (𝜆 + 𝑔)𝑦 + (1 − 𝜆)𝑢 −

𝑔𝑀𝑡−1 + (𝜆 + 𝑔)(𝜃0 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞 + (𝜆 + 𝑔)(𝑑𝑀𝑡−1 −
𝑑(𝑑−1)

2!
𝑀𝑡−2 +

𝑑(𝑑−1)(𝑑−2)

3!
𝑀𝑡−3 − ⋯ +

(−1)𝑑+1𝑀𝑡−𝑑. Thus, TARL can be reworked as: 
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t

h

ARL ARL t t q t q

l

d
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g
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

   

   
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 
 

       
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  (4) 

Since the function of 𝜀𝑡 is exponential, then TARL(u) can be rewritten as: 
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(5) 

After checking the uniqueness of the ARL solution by using Banach’s fixed point theorem [36], the explicit formula 

for the ARL of the IMA model on the modified EWMA control chart is derived by setting 𝑃 = ∫ 𝑒
− 𝑥

𝛽(𝜆+𝑔)
ℎ

𝑙
∙ 𝑇𝐴𝑅𝐿(𝑥)𝑑𝑥 

and substituting P in Equation 5 as follows: 
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(7) 

Afterward, integral equation P can be obtained as: 
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By using the solution for P to solve the integral equation for TARL(u) in Equation 6, we attain the explicit formula for 

the ARL on the modified EWMA control chart with the IMA model as: 
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3-2-2- The NIE Method for the ARL on the Modified EWMA Control Chart with the IMA Model 

The NIE method is a technique for accurately approximating the ARL that can be used to determine the efficacy of 

explicit formula derivations. In this section, NTARL(u) is defined by using the NIE method with Simpson’s quadrature 

rule [37] to estimate the ARL on the modified EWMA control chart with the IMA model and exponential white noise. 

The integral equation in Equation 4 is solved by using a 2m +1 linear equation system on interval [l, h] with length 2m. 

After that, the weight of each point is determined as follows: the start and end points (wj = vj/3) and the even and odd 

points within the interval (wj = 4vj/3 and wj = 2vj/3, respectively) such that vj = (h – l)/2m; j = 0, 1, 2, …, 2m. and xj+1 = 

jwj+1 + l. Finally, the NIE method provides: 
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3-3- The FIMA-Modified EWMA Control Chart 

For some cases, parameter d of the IMA model must be expressed as a fraction (where −
1

2
≤ 𝑑 ≤

1

2
) rather than an 

integer, thereby providing the fractional integrated MA (FIMA) model. For the pattern of backward shift operator B, the 

FIMA (a/b, q) model or Ft is defined as: 
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where, a and b are constants (𝑎 < 𝑏). By applying the generalized Newton binomial theorem [38],(1 − 𝐵)𝑎 𝑏⁄ =

∑ (
𝑎 𝑏⁄

𝑘
) (−𝐵)𝑘∞

𝑘=0 , the FIMA model can be solved as: 
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 (10) 

where, θ0 is the process average, θi (i = 1,2,…,q) are the coefficients of the FIMA model (-1< θi <1) and εt-i is exponential 

white noise at time t. 

3-3-1- The Explicit Formula for the ARL on the Modified EWMA Control Chart with the FIMA Model 

For the FIMA model, the modified EWMA statistic created by combining Equations 1 and 10 can be rewritten as: 
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The interval for modified EWMA statistic Yt is defined under the lower (r) and upper (s) bounds before an observation 

that is out-of-control occurs as follows: 
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The interval of 𝜀𝑡  can be derived as: 
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.tR S   

The integral equation of the second kind is used to find the explicit formula for the ARL on a modified EWMA control 

chart with the FIMA model given initial value Y0 = u as follows: 
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For solving the integral equation for EARL(u), 𝑥 = (𝜆 + 𝑔)𝑦 + (1 − 𝜆)𝑢 − 𝑔𝐹𝑡−1 + (𝜆 + 𝑔)(𝜃0 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 −
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𝐹𝑡−3 + ⋯ is applied as follows: 
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Moreover, EARL(u) can be rearranged by using the exponential distribution of the error term 𝜀𝑡 as: 
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The uniqueness of the ARL formula was verified by using Banach’s fixed point theorem. Equation 12 is solved by 

determining 𝑄 = ∫ 𝑒
− 𝑥

𝛽(𝜆+𝑔)
𝑠

𝑟
∙ 𝐸𝐴𝑅𝐿(𝑥)𝑑𝑥. Subsequently, EARL(u) can be rewritten as: 
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(13) 

Since 𝑄 = ∫ 𝑒
− 𝑥

𝛽(𝜆+𝑔)
𝑠

𝑟
∙ 𝐸𝐴𝑅𝐿(𝑥)𝑑𝑥, then EARL(u) in Equation 13 is put into Q as follows: 
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After Q has been obtained and substituted into 13, then the explicit formula for ARL on the modified EWMA control 

chart with the FIMA (a/b, q) model called EARL(u) can be defined as: 
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 (14) 

3-3-2- The NIE Method for the ARL on the Modified EWMA Control Chart with the FIMA Model 

NEARL(u) is the NIE technique with the Simpson’s quadrature rule to approximate the ARL on the modified EWMA 

control chart with the FIMA model and exponential white noise. Similar to Equation 11, the 2m +1 linear equation 

system is derived for the integral equation of interval [r, s]. If the distance of this interval is 2m, then xj+1 = jwj+1 + l; j = 

0, 1, 2, …, 2m are various points within it, where the weight of the start and end points is wj = vj/3 and the even and odd 

points within the interval are wj = 4vj/3 and wj = 2vj/3, respectively, and vj = (s – r)/2m. Finally, NEARL(u) can be derived 

as: 
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4- Research Methodology 

In this research, the explicit formulas used to calculate the ARL on the modified EWMA control chart with either the 

IMA or FIMA model are obtained from Equations 7 and 14, respectively, while the ARLs for the NIE method are 

obtained from Equations 8 and 15, respectively. Meanwhile, m = 500. The bound control limits are studied on exponential 

distribution 𝜀𝑡 with interval [0, ∞), where the lower control limit is 0 and the upper control limit is discovered for ARL0 

= 370; the latter is assigned by using exponential parameter 𝛽0 for the in-control process and process mean u = 𝛽0, 

𝜀𝑡−1, 𝜀𝑡−2, … , 𝜀𝑡−𝑞= 𝛽0, Mt-1, Mt-2,..., Mt-d = 𝛽0, Ft-1, Ft-2, Ft-3,...= 𝛽0. After a change in the process mean, 𝛽1 = (1 + 𝛿)𝛽0 

becomes the exponential parameter for ARL1 (the out-of-control process), where 𝛿 is the mean shift size. In the two 

models, 𝛽1 is assigned with 𝛿 as 0.01, 0.02, 0.05, 0.10, 0.20, 0.50, 1.00, 1.50, or 2.00. The most efficient control chart 

achieves the lowest value of ARL1. 

The difference between the ARLs using the two techniques can be expressed as the absolute percentage relative 

change (APRC) [39] as follows: 

.A 0PRC(  10 %%)
Explicit NIE

Explicit

ARL ARL

ARL


   (16) 

In addition, the relative mean index (RMI) [40] can also be used and is computed as: 

1

( ) ( )1
RMI  ,

( )

n
i i

i i

ARL x ARL min

n ARL min

 
  

 
  (17) 

where ARLi(x) is the ARL of a control chart for order i and ARLi(min) is the minimum ARL of all of the control charts 

for order i. The control chart obtaining the smallest RMI is the best at detecting a shift in the process mean 

The procedure shown in Figure 1 can be used to find solutions. 

 

Figure 1. The diagram of the research process 

Start 

Determine the initial 

value ARL0 = 370 for 

computing the UCL 

Compare the ARL of the 

explicit formula and the 

NIE method 

Compare the performance of 

the modified EWMA chart at 

various situations  

End 

Input parameters 

  

Print Results 



Emerging Science Journal | Vol. 6, No. 5 

Page | 1142 

5- Results 

The solutions were tested both experimentally and with real data. Experimentally, the explicit formulas were used to 

compute the ARL on the modified EWMA control chart with either an IMA or FIMA model. The ARL results from the 

NIE method were used to confirm the results attained by using the explicit formulas. After that, the explicit formulas 

were used to compute the ARL under various sets of conditions. Afterward, the proposed control chart with an IMA or 

FIMA model was used to detect shifts in the mean of real datasets. 

5-1- Experimental Study 

In Table 1, the results for the explicit formula and the NIE methods for the ARL on the modified EWMA control 

chart with various IMA and FIMA models for g = 1 are reported for 𝜆 = 0.05, 0.10, or 0.20, various 𝜃𝑖 (𝑖 = 1,2, … , 𝑞), 

and ARL0 = 370. Since all of the APRC results for both methods are almost 0, their accuracies are almost identical. In 

addition, the explicit formulas were suddenly calculated. Meanwhile, the computation time for calculating the ARL by 

using the NIE method was 13-15 seconds with the IMA model and 32-40 seconds with the FIMA model. Therefore, the 

explicit formulas can be used to effectively and speedily detect a shift in the process mean on the modified EWMA 

control chart with either the IMA or FIMA model and exponential while noise. 

Table 1. Compare the explicit formula and the NIE method with the initial ARL on various situations 

Model 𝝀 𝜽i (i =1, 2, …, q) UCL ARLExplicit ARLNIE APRC (%) 

IMA (1,1) 

0.05 
0.1 0.408730497 370.0000489348190 370.0000489348737 1.45949 × 10-11 

-0.1 0.333987011 370.0000881280786 370.0000881278731 5.53993 × 10-11 

0.10 
0.2 0.458429543 370.0001369929011 370.0001369929075 1.62849 × 10-12 

-0.2 0.305078073 370.0000353347598 370.0000353346450 3.0803 × 10-11 

0.20 
0.5 0.64713764 370.0004513315197 370.0004513314839 9.72482 × 10-12 

-0.5 0.229894994 370.0002675275411 370.0002675274683 1.97262 × 10-11 

IMA (2,2) 

0.05 
0.1, -0.3 0.301950105 370.0000281650370 370.0000281650863 1.3243 × 10-11 

-0.1, -0.3 0.246857848 370.0002464590301 370.0002464591249 2.54105 × 10-11 

0.10 
0.2, 0.5 0.7668112894 370.0000077240967 370.0000077240489 1.29818 × 10-11 

-0.2. 0.5 0.507821086 370.0001344921493 370.0001344921877 1.02625 × 10-11 

0.20 
0.5, -0.1 0.58240916 370.0002235870479 370.0002235870109 1.00014 × 10-11 

-0.5. -0.1 0.20762702 370.0003278588000 370.0003278588756 2.02639 × 10-11 

FIMA (1/4,1) 

0.05 
0.1 0.648009914 370.0000207749287 370.0000207750297 2.73002 × 10-11 

-0.1 0.528917341 370.0000422134455 370.0000422134522 1.88966 × 10-12 

0.10 
0.2 0.731614662 370.0000267918486 370.0000267918102 1.02625 × 10-11 

-0.2 0.4847819 370.0002577550853 370.0002577551394 1.45949 × 10-11 

0.20 
0.5 1.054507842 370.0000603866825 370.0000603867113 7.85054 × 10-12 

-0.5 0.366414073 370.0000362107346 370.0000362107134 5.66898 × 10-12 

FIMA (1/2,2) 

0.05 
0.1, -0.3 0.360682496 370.0000246901593 370.0000246902048 1.21522 × 10-11 

-0.1, -0.3 0.294792246 370.0000942930957 370.0000942928763 5.9194 × 10-11 

0.10 
0.2, 0.5 0.9211324 370.0004824173434 370.0004824173442 2.76535 × 10-13 

-0.2. 0.5 0.60853175 370.0002149586467 370.0002149586450 2.61172 × 10-13 

0.20 
0.5, -0.1 0.701536454 370.0000783111505 370.0000783111312 5.13127 × 10-12 

-0.5. -0.1 0.24848627 370.0001283338770 370.0001283338820 1.35195 × 10-12 

The performance of the modified EWMA control chart with the IMA or FIMA model was studied with various values 

of g and 𝜆 (Tables 2 and 3, respectively). ARL1 was calculated for each shift size 𝛿. Note that for g = 0, the modified 

EWMA control chart is the same as the original EWMA scheme. The ARL results for the two models in one direction 

show that as the value of g was increased, the performance of the control chart improved. Moreover, for each value of 

g, the modified EWMA control chart was more effective than the original EWMA scheme for a small shift size. When 

𝜆 was increased, the modified EWMA control chart produced a smaller ARL. The original EWMA scheme at 𝜆 = 0.20 

provided a good performance when 𝛿 was small and, for intermediate-to-large shift sizes, it was more efficacious at 𝜆 = 

0.05. 



Emerging Science Journal | Vol. 6, No. 5 

Page | 1143 

Table 2. Compare the modified EWMA chart on the IMA (2,1) model at various λ and g given 𝜽 = 0.05 and l = 0 

𝝀 𝜹 g = 0 (EWMA) g = 0.2 g = 0.5 g = 1 g = 2 g = 5 

  h = 1.471 × 10-8 h = 0.07209 h = 0.193428 h = 0.388592 h = 0.778267 h = 1.947165 

0.05 

0.00 370 370 370 370 370 370 

0.01 297.967 291.663 141.174 81.541 57.930 46.253 

0.02 240.945 237.846 86.361 45.827 31.698 25.050 

0.05 130.617 146.166 38.882 19.841 13.739 10.943 

0.10 50.956 81.103 19.528 10.272 7.335 5.985 

0.20 10.365 36.035 9.300 5.358 4.067 3.461 

0.50 1.228 9.062 3.480 2.486 2.125 1.945 

1.00 1.005 3.142 1.912 1.628 1.512 1.451 

1.50 1.001 1.965 1.504 1.377 1.322 1.292 

2.00 1.000 1.555 1.333 1.264 1.233 1.215 

  h = 0.0006215 h = 0.080363 h = 0.197595 h = 0.393366 h = 0.786195 h = 1.96623 

0.10 

0.00 370 370 370 370 370 370 

0.01 328.375 241.112 121.417 76.133 56.498 46.173 

0.02 292.121 176.189 72.032 42.493 30.868 25.004 

0.05 208.405 92.8609 31.801 18.363 13.383 10.924 

0.10 123.663 47.668 16.011 9.548 7.160 5.976 

0.20 49.713 20.906 7.776 5.031 3.986 3.457 

0.50 7.215 5.872 3.078 2.386 2.098 1.944 

1.00 1.747 2.428 1.786 1.591 1.501 1.451 

1.50 1.199 1.686 1.442 1.357 1.316 1.292 

2.00 1.080 1.412 1.296 1.251 1.228 1.215 

  h = 0.02526 h = 0.094336 h = 0.207968 h = 0.404355 h = 0.80287 h = 2.0053 

0.20 

0.00 370 370 370 370 370 370 

0.01 287.262 154.532 93.577 67.375 53.938 46.037 

0.02 231.403 96.337 53.334 37.206 29.393 24.928 

0.05 138.240 43.632 23.077 16.052 12.752 10.892 

0.10 74.047 21.585 11.745 8.417 6.849 5.960 

0.20 31.189 9.914 5.920 4.519 3.841 3.450 

0.50 7.148 3.447 2.574 2.229 2.050 1.942 

1.00 2.438 1.822 1.622 1.532 1.482 1.450 

1.50 1.598 1.430 1.359 1.325 1.305 1.291 

2.00 1.326 1.273 1.245 1.230 1.220 1.214 

Table 3. Compare the modified EWMA chart on the FIMA (1/2,2) model at various λ and g given 𝜽𝟏 = 0.05, 𝜽𝟐 = 0.10, r = 0 

𝝀 𝜹 g = 0 (EWMA) g = 0.2 g = 0.5 g = 1 g = 2 g = 5 

  s = 1.939 × 10-8 s = 0.09562 s = 0.255841 s = 0.513878 s = 1.029165 s = 2.574904 

0.05 

0.00 370 370 370 370 370 370 

0.01 298.790 296.949 149.884 88.048 62.979 50.452 

0.02 242.256 245.398 93.131 49.999 34.716 27.477 

0.05 132.338 154.635 42.590 21.831 15.121 12.037 

0.10 52.228 87.724 21.585 11.347 8.081 6.577 

0.20 10.807 39.876 10.359 5.928 4.472 3.788 

0.50 1.250 10.291 3.879 2.728 2.309 2.100 

1.00 1.006 3.554 2.091 1.752 1.614 1.541 

1.50 1.001 2.174 1.615 1.460 1.393 1.357 

2.00 1.000 1.685 1.412 1.326 1.287 1.265 
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  s = 0.00082 s = 0.106567 s = 0.261963 s = 0.521639 s = 1.042775 s = 2.608302 

0.10 

0.00 370 370 370 370 370 370 

0.01 329.320 248.799 129.701 82.501 61.629 50.544 

0.02 293.781 184.902 78.057 46.506 33.920 27.531 

0.05 211.274 99.847 34.928 20.254 14.775 12.060 

0.10 126.905 52.143 17.718 10.565 7.909 6.590 

0.20 52.082 23.242 8.653 5.570 4.391 3.794 

0.50 7.827 6.626 3.416 2.616 2.282 2.103 

1.00 1.859 2.703 1.942 1.709 1.603 1.542 

1.50 1.236 1.834 1.539 1.437 1.387 1.358 

2.00 1.096 1.508 1.365 1.311 1.283 1.266 

  s = 0.0335 s = 0.125369 s = 0.27688 s = 0.53902 s = 1.071231 s = 2.677395 

0.20 

0.00 370 370 370 370 370 370 

0.01 292.150 163.169 100.945 73.488 59.228 50.769 

0.02 238.110 103.364 58.228 40.957 32.513 27.660 

0.05 145.389 47.602 25.452 17.789 14.166 12.117 

0.10 79.401 23.783 13.017 9.344 7.607 6.619 

0.20 34.133 11.015 6.576 5.009 4.249 3.809 

0.50 8.001 3.832 2.835 2.440 2.234 2.109 

1.00 2.696 1.981 1.748 1.642 1.583 1.545 

1.50 1.721 1.523 1.440 1.399 1.375 1.360 

2.00 1.399 1.337 1.303 1.286 1.275 1.268 

Tables 4 and 5 provide the RMI computations using the results from Tables 2 and 3, respectively. The RMI solutions 

in Table 4 when varying g while 𝜆 was fixed show that the modified EWMA control chart for the largest value of g 

attained the smallest RMI at each value of 𝜆 for both models, thereby signifying its excellent efficiency in both cases. In 

addition, for all values of g, the modified EWMA control chart performed better than the original EWMA scheme except 

for when g = 0.2 and 𝜆 = 0.05. In Table 5, when varying 𝜆 while g is fixed, the RMI for the original EWMA scheme was 

the lowest at 𝜆 = 0.05 and is thus the most suitable under these conditions, which is in accordance with previous research 

[41] for the EWMA control chart with an IMA (1,1) model. The modified EWMA control chart with g = 0.2, 0.5, 1, or 

2 produced lower RMI values when 𝜆 was higher. However, the RMI for a high value of g (5) was similar for all values 

of 𝜆. Therefore, the modified EWMA control chart can be recommended when g is large and with any value of 𝜆. The 

RMI results are graphically displayed in Figure 2. 

Table 4. Compare the RMI of two models at various g 

Model 𝝀 g = 0 (EWMA) g = 0.2 g = 0.5 g = 1 g = 2 g = 5 

IMA (2,1) 

 0.05 3.451 5.814 1.457 0.595 0.296 0.153 

0.10 7.086 3.320 0.957 0.370 0.138 0.020 

0.20 4.837 1.391 0.550 0.240 0.088 0.000 

FIMA (1/2,2) 

0.05 3.153 5.815 1.512 0.638 0.331 0.183 

0.10 6.562 3.272 0.964 0.378 0.145 0.025 

0.20 4.623 1.364 0.545 0.239 0.088 0.000 

Table 5. Compare the RMI of two models at various λ 

Model g 𝝀 = 0.05 𝝀 = 0.10 𝝀 = 0.20 

IMA (2,1) 

0 0.008 1.212 0.969 

0.2 1.305 0.616 0.000 

0.5 0.375 0.210 0.000 

1 0.133 0.081 0.000 

2 0.044 0.028 0.000 

5 0.003 0.002 0.000 
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FIMA (1/2,2) 

0 0.004 1.265 1.098 

0.2 1.292 0.614 0.000 

0.5 0.376 0.211 0.000 

1 0.130 0.080 0.000 

2 0.039 0.025 0.000 

5 0.000 0.001 0.004 

  

(a) The RMI of the IMA (2,1) model at various g (b) The RMI of the FIMA (1/2,2) model at various g. 

  

(c) The RMI of the IMA (2,1) model at various λ (d) The RMI of the FIMA (1/2,2) model at various λ 

Figure 2. The RMI of two models at various situations 

5-2- Real Data Study 

Oil and natural gas affect people in countless ways across the globe. They are used to fuel cars, heat homes, cook 

food, and generate electricity. Meanwhile, fuel consumption is steadily increasing while production is not. The price of 

oil and natural gas is influenced by the global stock market. For this research, the natural gas and WTI crude oil prices 

were used to analyze the IMA and FIMA models on the modified EWMA control chart: Dataset 1 is appropriate for the 

IMA model (the natural gas price from 1 March 2021 to 30 April 2021 [42]) while Dataset 2 is suitable for the FIMA 

model (the price of WTI crude oil from 1 Jan 2021 to 31 March 2021 [43]). For Dataset 1, the fitted equation for the 

IMA (2,1) model was 𝑀𝑡 = 0.0496 + 𝜀𝑡 − 0.925𝜀𝑡−1 + 2𝑀𝑡−1 − 𝑀𝑡−2 and for Dataset 2, the approximated FIMA 

(1/2,2) model was 𝐹𝑡 = 1.248 + 𝜀𝑡 + 0.304𝜀𝑡−1 + 0.342𝜀𝑡−2 + 0.5𝐹𝑡−1 + 0.125𝐹𝑡−2 + 0.0625𝐹𝑡−3 + ⋯. After that, 

the residuals of two observations were tested by using a statistical hypothesis for an exponential distribution. The results 

show that Datasets 1 and 2 attained 𝜀𝑡~𝐸𝑥𝑝(0.0496) and 𝜀𝑡~𝐸𝑥𝑝(1.248), respectively. 

The ARLs on the modified EWMA control charts for the natural gas price dataset using the IMA (2,1) model with 

various values of 𝜆 and g are given in Table 6 while those for the WTI crude oil price dataset using the FIMA (1/2,2) 

model are provided in Table 7. The results using the two datasets are in the same direction (Figure 3). For a small shift, 

the modified EWMA control chart for both models and datasets was more effective than the original EWMA scheme 

for all g except for 𝜆 = 0.05 and g = 0.2. In addition, the modified EWMA control chart preformed the best when g was 

large for all 𝜆. 
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Table 6. Compare the modified EWMA charts on the IMA (2,1) model of the natural gas price at various λ and g 

𝝀 𝜹 g = 0 (EWMA) g = 0.2 g = 0.5 g = 1 g = 2 g = 5 

  h = 1.75 × 10-9 h = 0.00881 h = 0.0233634 h = 0.0469033 h = 0.0939322 h = 0.235021 

0.05 

0.00 370 370 370 370 370 370 

0.01 300.506 309.799 173.854 107.448 78.571 63.683 

0.02 245.061 264.111 112.827 62.921 44.306 35.305 

0.05 136.112 176.928 53.913 28.156 19.588 15.605 

0.10 55.084 106.124 27.983 14.783 10.497 8.510 

0.20 11.834 51.057 13.676 7.748 5.779 4.848 

0.50 1.305 14.041 5.139 3.500 2.901 2.602 

1.00 1.008 4.849 2.663 2.151 1.942 1.832 

1.50 1.001 2.843 1.971 1.730 1.625 1.567 

2.00 1.000 2.105 1.666 1.530 1.467 1.432 

  h = 0.0000743 h = 0.009817 h = 0.024122 h = 0.0480804 h = 0.0961863 h = 0.240722 

0.10 

0.00 370 370 370 370 370 370 

0.01 331.549 267.315 152.987 101.796 77.820 64.701 

0.02 297.568 207.091 95.890 59.138 43.842 35.915 

0.05 217.755 119.041 44.584 26.359 19.380 15.878 

0.10 134.321 65.005 23.067 13.868 10.393 8.651 

0.20 57.671 30.171 11.423 7.318 5.730 4.920 

0.50 9.380 8.935 4.490 3.361 2.885 2.630 

1.00 2.165 3.566 2.443 2.096 1.936 1.845 

1.50 1.339 2.308 1.857 1.699 1.622 1.576 

2.00 1.144 1.819 1.595 1.509 1.465 1.439 

  h = 0.0030872 h = 0.0116452 h = 0.025889 h = 0.0506356 h = 0.1009743 h = 0.25302 

0.20 

0.00 370 370 370 370 370 370 

0.01 302.713 185.824 122.500 92.667 76.658 66.966 

0.02 253.436 122.827 73.196 53.164 43.127 37.274 

0.05 163.017 59.191 32.962 23.567 19.061 16.489 

0.10 93.348 30.352 17.086 12.451 10.235 8.967 

0.20 42.171 14.357 8.686 6.651 5.657 5.080 

0.50 10.457 5.025 3.681 3.143 2.863 2.693 

1.00 3.471 2.486 2.158 2.011 1.928 1.877 

1.50 2.099 1.824 1.707 1.651 1.618 1.597 

2.00 1.627 1.546 1.500 1.477 1.463 1.454 

Table 7. Compare the modified EWMA charts on the FIMA (1/2,2) model of the price of WTI crude oil at various λ and g 

𝝀 𝜹 g = 0 (EWMA) g = 0.2 g = 0.5 g = 1 g = 2 g = 5 

  s = 3.973 × 10-8 s = 0.19915 s = 0.5291 s = 1.0623 s = 2.12745 s = 5.32288 

0.05 

0.00 370 370 370 370 370 370 

0.01 300.198 307.344 168.950 103.296 75.165 60.754 

0.02 244.566 260.534 108.681 60.097 42.177 33.549 

0.05 135.451 172.549 51.470 26.756 18.588 14.801 

0.10 54.580 102.410 26.593 14.022 9.958 8.076 

0.20 11.650 48.748 12.956 7.347 5.489 4.612 

0.50 1.295 13.252 4.867 3.332 2.772 2.492 

1.00 1.008 4.573 2.540 2.064 1.871 1.768 

1.50 1.001 2.700 1.894 1.672 1.575 1.522 

2.00 1.000 2.015 1.611 1.486 1.428 1.396 
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  s = 0.001685 s = 0.22191 s = 0.545273 s = 1.0866 s = 2.1734 s = 5.43863 

0.10 

0.00 370 370 370 370 370 370 

0.01 331.063 264.050 148.219 97.649 74.235 61.521 

0.02 296.822 202.943 92.125 56.360 41.609 34.004 

0.05 216.560 115.237 42.496 24.998 18.335 15.003 

0.10 132.974 62.380 21.903 13.131 9.831 8.180 

0.20 56.650 28.732 10.821 6.930 5.429 4.665 

0.50 9.087 8.449 4.257 3.197 2.752 2.513 

1.00 2.105 3.382 2.334 2.0119 1.863 1.779 

1.50 1.319 2.207 1.788 1.642 1.570 1.528 

2.00 1.134 1.752 1.545 1.466 1.425 1.401 

  s = 0.06977 s = 0.262723 s = 0.583194 s = 1.13944 s = 2.27043 s = 5.68584 

0.20 

0.00 370 370 370 370 370 370 

0.01 300.742 181.427 117.973 88.457 72.711 63.202 

0.02 250.601 118.924 69.977 50.428 40.678 35.003 

0.05 159.694 56.795 31.319 22.255 17.921 15.449 

0.10 90.657 28.976 16.192 11.746 9.623 8.410 

0.20 40.585 13.653 8.223 6.280 5.332 4.781 

0.50 9.959 4.772 3.496 2.986 2.720 2.559 

1.00 3.311 2.379 2.069 1.929 1.851 1.801 

1.50 2.020 1.759 1.649 1.595 1.564 1.543 

2.00 1.579 1.501 1.457 1.434 1.421 1.412 

 

  

(a) The ARL for the natural gas price on the IMA(2,1) model at λ = 

0.05. 

(b) The ARL for the natural gas price on the IMA(2,1) model at λ = 

0.10 

  

(c) The ARL for the natural gas price on the IMA(2,1) model at λ = 
0.20 

(d) The ARL for the price of WTI crude oil on the FIMA (1/2,2) model 
at λ = 0.05 
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(e) The ARL for the price of WTI crude oil on the FIMA (1/2,2) model 

at λ = 0.10 

(f) The ARL for the price of WTI crude oil on the FIMA (1/2,2) model 

at λ = 0.20 

Figure 3. The ARL of two datasets on the modified EWMA chart at various λ 

The RMIs for the results in Tables 6 and 7 are reported in Tables 8 and 9, respectively, with a summary for both 

datasets being shown in Figure 4. In the first case, the modified EWMA control chart with the IMA or FIMA model for 

stable λ maintained their efficiency when g was enlarged. Moreover, the modified EWMA control chart could detect a 

shift in the process mean more quickly than the original EWMA scheme in most situations. Meanwhile, the modified 

EWMA control chart with the IMA or FIMA model produced better performances when λ was increased. However, for 

g = 5, the proposed chart and the original EWMA scheme attained the best efficacy at λ = 0.05. These results confirm 

those from the experimental study. 

Table 8. Compare the RMI of two datasets at various g 

Dataset 𝝀 g = 0 (EWMA) g = 0.2 g = 0.5 g = 1 g = 2 g = 5 

Natural gas 

IMA (2,1) 

0.05 2.430 5.820 1.670 0.768 0.441 0.281 

0.10 5.211 3.069 0.964 0.397 0.165 0.043 

0.20 3.908 1.227 0.502 0.223 0.082 0.000 

WTI Crude oil 

FIMA (1/2,2) 

0.05 2.567 5.822 1.638 0.741 0.417 0.259 

0.10 5.474 3.121 0.967 0.394 0.161 0.039 

0.20 4.068 1.263 0.515 0.228 0.084 0.000 

Table 9. Compare the RMI of two datasets at various λ 

Dataset g 𝝀 = 0.05 𝝀 = 0.10 𝝀 = 0.20 

Natural gas 

IMA (2,1) 

0 0.000 1.405 1.468 

0.2 1.252 0.603 0.000 

0.5 0.370 0.208 0.000 

1 0.116 0.071 0.000 

2 0.015 0.009 0.000 

5 0.000 0.011 0.036 

WTI Crude oil 

FIMA (1/2,2) 

0 0.000 1.377 1.392 

0.2 1.260 0.606 0.000 

0.5 0.372 0.209 0.000 

1 0.120 0.073 0.000 

2 0.021 0.013 0.000 

5 0.000 0.009 0.028 

 

0

50

100

150

200

250

300

350

400

0 0.01 0.02 0.05 0.1 0.2 0.5 1 1.5 2

A
R

L δ

g = 0

g = 0.2

g = 0.5

g = 1

g = 2

g = 5

0

50

100

150

200

250

300

350

400

0 0.01 0.02 0.05 0.1 0.2 0.5 1 1.5 2

A
R

L δ

g = 0

g = 0.2

g = 0.5

g = 1

g = 2

g = 5



Emerging Science Journal | Vol. 6, No. 5 

Page | 1149 

  

(a) The RMI of the natural gas price on the IMA (2,1) model at 

various g 

(b) The RMI of the WTI crude oil price on the FIMA (1/2,2) model at 

various g 

  

(c) The RMI of the natural gas price on the IMA (2,1) model at 
various λ 

(d) The RMI of the WTI crude oil price on the FIMA (1/2,2) model at 
various λ 

Figure 4. The RMI of two datasets at various situations 

6- Conclusion 

Herein, we present the modified EWMA control chart with IMA or FIMA models and exponential white noise and 

evaluate its performance by using the ARL. The equations for the IMA and FIMA models were rearranged by using a 

backward shift operator, after which they were merged with the modified EWMA statistic. The NIE method of the ARL 

for both models was derived under the control limits of the residuals to estimate the ARL, while explicit formulas for 

the two models were derived to solve the exact ARL. Afterward, the results obtained by using both techniques were 

compared to check their accuracy and computational speed. The original and modified EWMA control charts with the 

IMA or FIMA model were compared in terms of efficiency by using the results of ARL and RMI calculations. The 

modified EWMA control chart with either model was studied while varying the values of g and λ, and it was found that 

its efficacy improved as g was increased. Besides, increasing the value of λ enabled faster detection of process mean 

shifts on the modified EWMA control chart. Last, natural gas and WTI crude oil price datasets were used for the IMA 

and FIMA models, respectively. The results confirmed those obtained experimentally. These formulas could be applied 

to other real-life data following IMA and FIMA models, albeit the explicit formulas are limited to the residuals of an 

exponential distribution. Future studies will be conducted on explicit formulas for the ARL on modern control charts to 

improve their efficiency for parameter shift detection. 

7- Declarations  

7-1- Author Contributions 

Conceptualization, P.P. and Y.A.; methodology, P.P.; software, P.P.; validation, P.P. and Y.A.; formal analysis, P.P.; 

investigation, Y.A.; resources, P.P.; data curation, Y.A.; writing—original draft preparation, P.P.; writing—review and 

editing, P.P.; visualization, P.P.; supervision, P.P.; project administration, P.P.; funding acquisition, P.P. All authors 

have read and agreed to the published version of the manuscript. 

7-2- Data Availability Statement 

These dataset to be oil and natural gas prices can be found here: https://investing.com/commodities/natural-gas-

historical-data and https://investing.com/commodities/crude-oil-historical-data. 

0

1

2

3

4

5

6

7

0 0.2 0.5 1 2 5

R
M

I

g

λ = 0.05

λ = 0.10

λ = 0.20

0

1

2

3

4

5

6

7

0 0.2 0.5 1 2 5

R
M

I

g

λ = 0.05

λ = 0.10

λ = 0.20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.05 0.1 0.2

R
M

I

λ

g = 0 g = 0.2 g = 0.5
g = 1 g = 2 g = 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.05 0.1 0.2

R
M

I

λ

g = 0 g = 0.2 g = 0.5
g = 1 g = 2 g = 5



Emerging Science Journal | Vol. 6, No. 5 

Page | 1150 

7-3- Funding and Acknowledgements 

This research was supported by Rajamangala University of Technology Phra Nakhon (RMUTP). 

7-4- Institutional Review Board Statement 

Not applicable. 

7-5- Informed Consent Statement 

Not applicable. 

7-6- Conflicts of Interest 

The authors declare that there is no conflict of interest regarding the publication of this manuscript. In addition, the 

ethical issues, including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double 

publication and/or submission, and redundancies have been completely observed by the authors. 

8- References  

[1] Shewhart, W. A. (1931). Economic control of quality of manufactured product. Macmillan And Co Ltd, London, United Kingdom. 

[2] Page, E. S. (1954). Continuous Inspection Schemes. Biometrika, 41(1/2), 100. doi:10.2307/2333009. 

[3] Roberts, S. W. (2000). Control chart tests based on geometric moving averages. Technometrics, 42(1), 97–101. 

doi:10.1080/00401706.2000.10485986. 

[4] Patel, A. K., & Divecha, J. (2011). Modified exponentially weighted moving average (EWMA) control chart for an analytical 

process data. Journal of Chemical Engineering and Materials Science, 2(1), 12–20. doi:10.5897/JCEMS.9000014. 

[5] Khan, N., Aslam, M., & Jun, C. H. (2017). Design of a Control Chart Using a Modified EWMA Statistic. Quality and Reliability 

Engineering International, 33(5), 1095–1104. doi:10.1002/qre.2102. 

[6] Sunthornwat, R., & Areepong, Y. (2021). Reproduction number, discrete forecasting model, and chaos analytics for Coronavirus 

Disease 2019 outbreak in India, Bangladesh, and Myanmar. Biostatistics & Epidemiology, 6(1), 31–47. 

doi:10.1080/24709360.2021.1960122. 

[7] Tatarkanov, A. A., Alexandrov, I. A., Chervjakov, L. M., & Karlova, T. V. (2022). A Fuzzy Approach to the Synthesis of 

Cognitive Maps for Modeling Decision Making in Complex Systems. Emerging Science Journal, 6(2), 368-381. doi: 

10.28991/ESJ-2022-06-02-012. 

[8] Karevan, Z., & Suykens, J. A. K. (2020). Transductive LSTM for time-series prediction: An application to weather forecasting. 

Neural Networks, 125, 1–9. doi:10.1016/j.neunet.2019.12.030. 

[9] Jiang, Z., Tahmasebi, P., & Mao, Z. (2021). Deep residual U-net convolution neural networks with autoregressive strategy for 

fluid flow predictions in large-scale geosystems. Advances in Water Resources, 150, 103878. 

doi:10.1016/j.advwatres.2021.103878. 

[10] Khozani, Z. S., Banadkooki, F. B., Ehteram, M., Ahmed, A. N., & El-Shafie, A. (2022). Combining autoregressive integrated 

moving average with Long Short-Term Memory neural network and optimisation algorithms for predicting ground water level. 

Journal of Cleaner Production, 348, 131224. doi: 10.1016/j.jclepro.2022.131224. 

[11] Yang, Y., Yang, L., & Yao, G. (2021). Post-processing of high formwork monitoring data based on the back propagation neural 

networks model and the autoregressive—moving-average model. Symmetry, 13(8), 1543. doi:10.3390/sym13081543. 

[12] Schaffer, A. L., Dobbins, T. A., & Pearson, S. A. (2021). Interrupted time series analysis using autoregressive integrated moving 

average (ARIMA) models: a guide for evaluating large-scale health interventions. BMC Medical Research Methodology, 21(1). 

doi:10.1186/s12874-021-01235-8. 

[13] Yuan, X., Tan, Q., Lei, X., Yuan, Y., & Wu, X. (2017). Wind power prediction using hybrid autoregressive fractionally integrated 

moving average and least square support vector machine. Energy, 129, 122–137. doi:10.1016/j.energy.2017.04.094. 

[14] Franses, P. H. (2020). IMA(1,1) as a new benchmark for forecast evaluation. Applied Economics Letters, 27(17), 1419–1423. 

doi:10.1080/13504851.2019.1686115. 

[15] Burnecki, K., Kepten, E., Garini, Y., Sikora, G., & Weron, A. (2015). Estimating the anomalous diffusion exponent for single 

particle tracking data with measurement errors-An alternative approach. Scientific Reports, 5, 11306. doi:10.1038/srep11306. 

[16] Kacker, R., & Zhang, N. F. (2002). Online control using integrated moving average model for manufacturing errors. International 

Journal of Production Research, 40(16), 4131–4146. doi:10.1080/00207540210155800. 

https://doi.org/10.28991/ESJ-2022-06-02-012


Emerging Science Journal | Vol. 6, No. 5 

Page | 1151 

[17] Luceno, A. (1995). Choosing the EWMA parameter in engineering process control. Journal of Quality Technology, 27(2), 162–

168. doi:10.1080/00224065.1995.11979579. 

[18] Lee, S., Ahn, W. Y., & Kang, H. C. (2010). A Study on Forecasting Traffic Congestion Using IMA (Integrated Moving Average) 

of Speed Sequence Array. KSCE Journal of Civil and Environmental Engineering Research, 30(2D), 113-118. (In Korean).  

[19] Burnecki, K., Sikora, G., Weron, A., Tamkun, M. M., & Krapf, D. (2019). Identifying diffusive motions in single-particle 

trajectories on the plasma membrane via fractional time-series models. Physical Review E, 99(1), 12101. 

doi:10.1103/PhysRevE.99.012101. 

[20] Moffat, I. U., & Akpan, E. A. (2019). White Noise Analysis: A Measure of Time Series Model Adequacy. Applied Mathematics, 

10(11), 989–1003. doi:10.4236/am.2019.1011069. 

[21] Knoth, S. (2021). Steady-state average run length(s): Methodology, formulas, and numerics. Sequential Analysis, 40(3), 405–

426. doi:10.1080/07474946.2021.1940501. 

[22] Khan, M., Aslam, M., Anwar, S. M., & Zaman, B. (2022). A robust hybrid exponentially weighted moving average chart for 

monitoring time between events. Quality and Reliability Engineering International, 38(2), 895–923. doi:10.1002/qre.3021. 

[23] Zaman, B., Lee, M. H., Riaz, M., & Abujiya, M. R. (2020). An improved process monitoring by mixed multivariate memory 

control charts: An application in wind turbine field. Computers and Industrial Engineering, 142, 106343. 

doi:10.1016/j.cie.2020.106343. 

[24] Petcharat, K. (2022). The Effectiveness of CUSUM Control Chart for Trend Stationary Seasonal Autocorrelated Data. Thailand 

Statistician, 20(2), 475–488. 

[25] Peerajit, W. (2022). Cumulative Sum Control Chart Applied to Monitor Shifts in the Mean of a Long-memory ARFIMAX(p, d*, 

q, r) Process with Exponential White Noise. Thailand Statistician, 20(1), 144–161. 

[26] Petcharat, K., Sukparungsee, S., & Areepong, Y. (2015). Exact solution of the average run length for the cumulative sum chart 

for a moving average process of order q. ScienceAsia, 41(2), 141–147. doi:10.2306/scienceasia1513-1874.2015.41.141. 

[27] Sunthornwat, R., Areepong, Y., & Sukparungsee, S. (2017). Average run length of the long-memory autoregressive fractionally 

integrated moving average process of the exponential weighted moving average control chart. Cogent Mathematics, 4(1), 

1358536. doi:10.1080/23311835.2017.1358536. 

[28] Sunthornwat, R., & Areepong, Y. (2020). Average run length on CUSUM control chart for seasonal and non-seasonal moving 

average processes with exogenous variables. Symmetry, 12(1), 173. doi:10.3390/SYM12010173. 

[29] Phanthuna, P., Areepong, Y., & Sukparungsee, S. (2021). Exact run length evaluation on a two-sided modified exponentially 

weighted moving average chart for monitoring process mean. CMES - Computer Modeling in Engineering and Sciences, 127(1), 

23–41. doi:10.32604/cmes.2021.013810. 

[30] Phanthuna, P., Areepong, Y., & Sukparungsee, S. (2021). Run length distribution for a modified EWMA scheme fitted with a 

stationary AR(p) model. Communications in Statistics - Simulation and Computation, 1–20. doi:10.1080/03610918.2021.1958847. 

[31] Supharakonsakun, Y., Areepong, Y., & Sukparungsee, S. (2020). Monitoring the Process Mean of a Modified EWMA Chart for 

Arma(1,1) Process and Its Application. Suranaree Journal of Science and Technology, 27(4), 1–11. 

[32] Supharakonsakun, Y., Areepong, Y., & Sukparungsee, S. (2020). The performance of a modified EWMA control chart for 

monitoring autocorrelated PM2.5 and carbon monoxide air pollution data. PeerJ, 8, e10467. doi:10.7717/peerj.10467. 

[33] Supharakonsakun, Y. (2021). Comparing the effectiveness of statistical control charts for monitoring a change in process mean. 

Engineering Letters, 29(3), 1108–1114. 

[34] Spivey, M. Z. (2019). The art of proving binomial identities (1st Ed.). CRC Press, boca raton, United States. 

doi:10.1201/9781351215824. 

[35] Avazzadeh, Z., Heydari, M., & Loghmani, G. B. (2011). Numerical solution of Fredholm integral equations of the second kind 

by using integral mean value theorem. Applied Mathematical Modelling, 35(5), 2374–2383. doi:10.1016/j.apm.2010.11.056. 

[36] Shukla, S., Balasubramanian, S., & Pavlović, M. (2016). A Generalized Banach Fixed Point Theorem. Bulletin of the Malaysian 

Mathematical Sciences Society, 39(4), 1529–1539. doi:10.1007/s40840-015-0255-5. 

[37] Karoon, K., Areepong, Y., & Sukparungsee, S. (2021). Numerical Integral Equation Methods of Average Run Length on 

Extended EWMA Control Chart for Autoregressive Process. Proceedings of the World Congress on Engineering (WCE 2021), 

July 7-9, 2021, London, United Kingdom. 

[38] Liu, C. (2010). The essence of the generalized Newton binomial theorem. Communications in Nonlinear Science and Numerical 

Simulation, 15(10), 2766–2768. doi:10.1016/j.cnsns.2009.11.004. 



Emerging Science Journal | Vol. 6, No. 5 

Page | 1152 

[39] Areepong, Y., & Peerajit, W. (2022). Integral equation solutions for the average run length for monitoring shifts in the mean of 

a generalized seasonal ARFIMAX(P, D, Q, r)s process running on a CUSUM control chart. PLOS ONE, 17(2), e0264283. 

doi:10.1371/journal.pone.0264283. 

[40] Phanthuna, P., & Areepong, Y. (2021). Analytical solutions of ARL for SAR(P)l model on a modified EWMA chart. 

Mathematics and Statistics, 9(5), 685–696. doi:10.13189/ms.2021.090508. 

[41] Suriyakat, W. (2020). On sensitivity of control chart for monitoring serially correlated data. Interdisciplinary Research 

Review, 15(3), 44-47. 

[42] Fusion Media (2022). Natural gas futures historical data. Available online: https://www.investing.com/commodities/natural-gas-

historical-data (accessed on June 2022). 

[43] Fusion Media (2022). Crude oil WTI Futures historical prices 2018-2021. Available online: 

https://www.investing.com/commodities/crude-oil-historical-data (accessed on May 2022). 




