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Abstract 

The electronic structure, a special quality of an atomic or molecular system, is the major factor for 

further realization of physical results. However, in this paper, we present the topical issue of 

normalized electron density in position and momentum spaces, Shannon, Rényi, and Tsallis 
entropies to quantify the reach of electron delocalization for several atomic systems. Hartree-Fock-

Roothaan (HFR) wave function is performed and considered for He-like ions using single-Zeta 𝛽-

type orbital (𝛽𝑇𝑂𝑠) basis set to investigate the affecting of electron density and information 
entropies. The electron density maxima in position space are raised, and their positions move toward 

the nucleus as Z increases, in accordance with the increasing attractive force of the nucleus, and vice 

versa in momentum space. Shannon’s entropy has impacted the delocalization of the electron in 
different atomic systems. In the limit γ→1, both Rényi and Tsallis entropy results recover Shannon’s 

entropy value. Rényi and Tsallis entropies decrease by increasing γ. Indeed, the estimated results 

have been calculated via the Wolfram Mathematica program and have good agreement with the 
literature results. The obtained results may be a useful reference for future studies on theoretical 

information quantities. 
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1- Introduction 

The Shannon, Rényi, and Tsallis entropies have described an enormous and interesting field in atomic and molecular 

structures, whereas their applications paved the way for extensive studies of a wide range in various quantum mechanical 

systems [1-11]. Shannon’s entropy reveals changes in the radial density function and has focused on quantifying the 

uncertainty of random variables as well as the localization or delocalization of electronic systems. Rényi’s entropy 

discussed quantum entanglement [12–15]. Tsallis’ statistics are demonstrated in ultra-cold quantum gases [16, 17]. 

Furthermore, Shannon’s entropy in both position and momentum spaces has been presented with the Schrödinger 

equation and the Kratzer potential [18, 19]. Shannon’s entropy for helium atoms has been calculated numerically by 

considering the Kinoshita type wave function [20, 21]. The Shannon entropy in position space has investigated the 

electron correlation effects using correlated Hylleraas wave functions [22–24]. 

Indeed, Shannon entropy in position and momentum eigenstates was accounted for by a simple density functional 

theory (DFT) method and radial Kohn-Sham equation for He-like ions and showed excellent agreement with the Hartree-

Fock framework [25]. The values of entropy were extended for ground [26] and excited [27] states using the correlated 

Hylleraas wave function. The information entropies have been studied numerically and analytically by considering the 

Rydberg quantum hydrogenic states [28, 29]. In addition, these entropies were investigated for neutral atoms and 

molecules within the density functional reactivity theory framework [30]. Shannon and Rényi entropies were 

investigated for helium atoms in both ground and excited states using correlated and uncorrelated wave functions [22, 

27, 31]. These entropies were modified for H-atom [32] in terms of Fisher-Rényi’s product and generalized statistical 

complexity. The discontinuity of entropies is shown and calculated in Shi & Kais (2004, 2005) [33, 34] by solving 
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Hyllerase-type wave functions for He-like ions. By using different wave functions, the entropies can be well described 

by the exponential Coulomb-potential [35–37], the combination of Yukawa and exponential-Coulomb potentials [38], 

or concerning Morse potential [39]. This paper studies the information entropies of 1s2-state atomic systems in position 

and momentum spaces. It is illustrated that HFR is based on single-Zeta 𝛽TOs [40]. The paper is arranged as follows: 

Typically, it discusses the theoretical background of the wave function and information entropies in Section two. Section 

three discusses the findings obtained using the radial density function basis set and accurately compares them to the 

literature. Finally, Section four summarizes and concludes the findings. 

2- Research Methodology 

Figure 1 shows the flowchart of the research methodology through which the objectives of this study were achieved. 

 

Figure 1. Flow chart of research methodology 

2-1- Wave Function 

The nonrelativistic Hamiltonian of 1s2-state is: 
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𝑟1 and 𝑟2 are the electrons-nucleus distance, 𝑟12is the interelectronic separation, ∇2
1,2 corresponds to the kinetic energy 

of each electron, 𝑍/𝑟12 denote the potential attraction energy with 𝑍 is the nuclear charge, and 1/𝑟12 represents the 

interelectronic repulsion energy. Equation 1 includes a boundary that denotes the repulsion between electrons, however, 

Schrödinger equation cannot be solved exactly. Hence, Slater determinant is mentioned to describe the wave function 

of independent particles [41] and solve Equation 1: 

𝛹𝐻𝐹 = |𝜓1(𝑥1)𝜓2(𝑥2). . . 𝜓𝑁(𝑥𝑁)⟩  (2) 

with 𝜓1(𝑥⃗𝑖) is the components of spin-radial and angular co-ordinate wave function in position space and 

defined as some set of analytic basis functions: 

𝜓1(𝑥⃗𝑖) = ∑ 𝐶𝑛𝑙𝑚
𝑖 𝜒𝑛𝑙𝑚  𝑠(𝛿)

𝑗
𝑖=1   (3) 

The constant-coefficient 𝐶𝑖𝑛𝑙𝑚 is determined by minimizing the energy, while the basis function 𝜒𝑛𝑙𝑚 corresponds to 

the normalized 𝛽TOs which is the picture of a linear combination of STOs [40, 42–45]: 
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𝜒𝑞,𝑙
𝑚 (𝛼; 𝑟, 𝜃, 𝜑) = 𝑁𝑟𝑙𝑌𝑙

𝑚(𝜃, 𝜑)ℛ(𝛼𝑟)  (4) 

The factor 𝑁 represents the normalization of the radial part: 

𝑁 =
2𝑙+𝑞𝛼𝑙+1

(𝑙+𝑞)!
√

𝛼 𝛤(2𝑙+2𝑞+2) 𝑙! 𝛤(𝑙+2𝑞)

𝛤(2𝑙+4𝑞)𝛤(2𝑙+1)
  (5) 

𝛤(𝑥) is he gamma function. 𝑌𝑙
𝑚(𝜃, 𝜑) is the wave function angular part: 

𝑌𝑙
𝑚(𝜃, 𝜑) = 𝑃𝑙|𝑚|Θ𝑚(𝜑)  (6) 

Here 𝑃𝑙|𝑚|is the associated Legendre function. Furthermore, if spherical harmonics are complex [46], then Θ𝑚(𝜑) has 

the form as: 

Θ𝑚(𝜑) =
𝑒𝑖𝑚𝜑

√2 𝜋
  (7) 

On the other hand, for real spherical harmonics, Θ𝑚(𝜑) has written as follow as: 

Θ𝑚(𝜑) =
1

√𝜋(1+𝛿𝑚0)
{
cos|𝑚|φ, for m ≥ 0

sin|𝑚|φ, for 𝑚 < 0
  (8) 

The radial part of the wave function R(r) is described via reduced Bessel function [40, 42] with an integer 𝑞 ≥ 1, 

yielding; 

ℛ(𝛼𝑟) = 𝑒−𝛼𝑟 ∑
Γ(𝑞+𝑖)(𝛼𝑟)𝑞−𝑖−1

Γ(𝑞−𝑖) 𝑖!2𝑖

𝑞−1
𝑖=0   (9) 

It is shown that 𝛽TOs have the form of a linear combination of STOs [40, 42] "due to the simplicity of their Fourier 

transforms enables to approximate two-center distributions by a sum of one-center distributions placed at the line 

connecting the original two-centers" [40, 47]. The momentum-space wave function is calculated by a Fourier transform. 

It is the radial part of the momentum space wave function which is related to the radial part of the position space wave 

function by a spherical Bessel transform of Equation 3. 

2-2- Shannon, Rényi, and Tsallis Entropies 

In this work, Shannon 𝑆, Rényi 𝑅𝛾, and Tsallis 𝑇𝛾 entropies of order 𝛾 were studied. The quantities emerged from 

information theory and probability in position and momentum spaces, extended by considering normalized electron 

density 𝜌(𝑟) of wave function 𝜓(𝑟, 𝑥⃗2, . . . , 𝑥⃗𝑁, yielding; 

𝜌(𝑟) = |𝜓(𝑟, 𝑥⃗2, . . . , 𝑥⃗𝑁|2𝑑𝑠1 𝑑𝜃1𝑑𝜑1𝑑𝑥⃗2, . . . , 𝑥⃗𝑁  (11-a) 

Π(𝑝) = |𝜓(𝑝, 𝑥⃗2, . . . , 𝑥⃗𝑁|2𝑑𝑠1 𝑑𝜃1𝑑𝜑1𝑑𝑥⃗2, . . . , 𝑥⃗𝑁  (11-b) 

Where 𝑥⃗𝑖 is the spin 𝑠𝑖 and space-coordinate of the 𝑖th electron, 𝑟 = (𝑟𝑖 , 𝜃𝑖 , 𝜑𝑖). For position and momentum spaces, 

Shannon’s entropy for the N-electron system is realized [1, 48]: 

𝑆𝜌 = − ∫ 𝜌(𝑟) 𝑙𝑛 
∞

0
𝜌(𝑟) 4𝜋𝑟2𝑑𝑟  (12-a) 

𝑆𝛱 = − ∫ 𝛱(𝑝) 𝑙𝑛 
∞

0
𝛱(𝑝) 4𝜋𝑝2𝑑𝑝  (12-b) 

The electron density of momentum-space 𝛱(𝑝) is described by Equation 10. For any 3-dimensional system, the 

Bialynicki-Birula and Mycielski (BBM) uncertainty relation or localization is given by [49]: 

𝑆𝜌 + 𝑆𝛱 ≥ 3(1 + 𝑙𝑛 𝜋)  (13) 

Smaller (larger) values of the entropies are related to the underlying densities of localization (delocalization), 

respectively. 

Rényi entropy is written as: 

𝑅𝜌(𝛾) =
1

1−𝛾
 𝑙𝑛(∫ 𝜌(𝑟)𝛾∞

0
4𝜋𝑟2𝑑𝑟)  (14) 

The index 𝛾≠1. Generally, Equation 12 is the limit of Equation 14 for 𝛾 → 1. However, Equations 12 and 14 

are alternative. Indeed, at 𝛾 → 1, Equation 14 can be calculated analytically by using the L'Hôpital's rule or calculated 

numerically by considering γ close to 1. 
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Tsallis entropy has formed as follow: 

𝑇𝜌(𝛾) =
1

𝛾−1
(1 − ∫ 𝜌(𝑟)𝛾∞

0
4𝜋𝑟2𝑑𝑟)  (15) 

The constrains, 𝛾 is a real number and it is utilized as an appropriate variable in the status of systems that 

are not realized sufficiently [50]. In the limit 𝛾 → 1, Equation 15 turns out collective and reduces to Equation 12 

that recovers the Boltzmann Gibbs statistics [1]. 

3- Results and Discussion 

The electron density, information entropies in the case of some atomic system (2 ≤ 𝑍 ≤ 10) (different solid color 

curves) was examined. HFR wave function was discussed and was tested by a single Zeta 𝛽TOs basis set. The HFR 

wave function issues reasonable values for the physical quantities at high 𝑍. Figure 2-a illustrated the electron probability 

in position space at distance 𝑟 from the atom center for (2 ≤ 𝑍 ≤ 10) atomic system. The electron density maxima are 

raised, and their positions move toward the nucleus as 𝑍 increases, in terms of increasing the attractive force of the 

nucleus. Indeed, Figure 2-b mentions the positions of the maxima in the radial electron probability density in momentum 

space shift to larger p with increasing 𝑍, paralleling the rise in the electron’s kinetic energy. This was evident when one 

realizes that nearest to the nucleus the electron possesses small potential energy and large kinetic energy, while far away 

the status is reversed [51]. 

 

 

Figure 2. Electron density function; (a) Position and, (b) Momentum spaces Equation 11 of 1s2 state of Helium-isoelectronic series 

Figure 3 shows 𝑆𝜌 Equation 12-a derive from core and valence areas in the system, respectively, for (2 ≤ 𝑍 ≤ 10) 

atomic system. In Figure 3-a (red curve), it was noticed that tiny peak for He atom (red curve) close 𝑟=0 according to 

localization of the density distribution urged by the Coulomb potential. On the other hand, in Figures 3-b and 3-c, for 

large 𝑍, a clear positive peak is increasing as well as the regions under the curves over 𝑟-axis are largest than under 𝑟-

axis. The impact of charge influences and leads to focus the charge density distribution on the core region. Indeed, the 
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repulsion between electrons in the valence region makes the electron density delocalized. The interchange of 𝑆𝜌 

concerning the size of the basis set is demonstrated. 𝑆𝜌 of He and Li+ accumulate preferably due to the extra dense 

distribution of the wave functions. The finding results have been compared to those in Saha et al. [52] and agreed for 

higher Z than for smaller Z values. 

 

 

 

Figure 3. (a), (b), and (c) show Shannon entropy Sρ in position space Equation 12-a versus r for 1s2 state of Helium-

isoelectronic series 
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In momentum space, 𝑆Π in Figure 4 is negative for all 𝑝 values and the curve is a bit compressed due to the interaction 

between electrons progressively reducing and attractive interaction between electron and nucleus is increased at high 𝑍 

atoms. Our Shannon entropy results have good agreement above to 3-digit 𝑍=2 and rise to 4 digits at high atomic 

numbers in comparison to the literature [7, 33, 35, 52]. 

 

Figure 4. Shannon entropy SΠ in momentum space versus pfor 1s2 state of Helium-isoelectronic series 

Liu et al. [30] has been shown the sub-additivity of N-electron 𝑆𝜌 has the form as 

𝑆[|𝜓(𝑟, 𝑥⃗2, . . . , 𝑥⃗𝑁|2] ≤ 2𝑆𝜌(𝑟)  (16) 

The inequality turns on to a Hartree-Fock wave function result, which means the electrons are uncorrelated and 

independent [30, 53]. Equation 16 is practical by comparing 𝑆𝜌 in terms of different densities. Indeed, Figure 3 shows 

that 𝑆𝜌 charge density is quite negative with a maximum value of 𝑆𝜌 = 5.1410 which obtained by the subadditivity of 

𝑆𝜌 Equation 16 which look likes to be acceptable according to 2 × 2.57499 = 5.1410, and density is delocalized. In 

the case of 𝑍 = 4, the charge density of 𝑆𝜌 is positive and has a large area and density localizes with 𝑆𝜌=0.5140, whereas 

for 𝑍 = 5, the charge density of 𝑆𝜌 is positive and further localized but the sign of 𝑆𝜌 is changed which is linked to the 

overturn charge density of 𝑆𝜌. In general, the flipping values have acceptable for realizing the charge density localization, 

i.e., the distribution 𝜌(𝑟) is further localized which refers to a small value of 𝑆𝜌, and vice versa. BBM formula Equation 

16 has been discussed in Table 1. 𝑆𝜌 calculates the uncertainty localization of the particle in space. The entropy in 

position space decreases via increasing 𝑍 while the entropy in momentum space increases. Thus, as the attractive nuclear 

interaction increases, the position space density localizes while the momentum space density delocalizes, as the kinetic 

energy increases. The uncertainty has tiny and the localization accuracy of the particle is higher in position space 

predicting. Similarly, 𝑆Π determines the uncertainty of the particle in momentum. The entropies obtained individually 

decrease without restriction when the identical probability density is being more and more concentrated, i.e., when 𝑆𝜌 is 

increasing. The restriction from the sum of two entropies denotes that the overall uncertainty in position and momentum 

cannot be less than Equation 16. 

Table 1. Position and momentum spaces entropies of 1s2 state of Helium-isoelectronic series 

Atom 𝑆𝜌 SΠ 𝑆𝜌 +SΠ 

He 2.57499 3.99161 6.56659 

Li+1 1.19351 5.37526 6.56877 

Be+2 0.257001 6.31096 6.56796 

B+3 -0.45937 7.02719 6.56782 

C+4 -1.03407 7.60182 6.56775 

N+5 -1.52047 8.08819 6.56771 

O+6 -1.93701 8.50468 6.56767 

F+7 -2.30256 8.87021 6.56765 

Ne+8 -2.62828 9.19591 6.56763 
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Figure 5 shows (𝛾) and (𝛾) versus the parameter 𝛾 for He-like atomic system in HFR based on single zeta 𝛽TOs 

position space, while dotted points show the result of Farid et al. [35]. Equations 14 and 15, recover Equation 12-a as 

order 𝛾 → 1. It is considered that 𝑅𝜌1 and 𝑇𝜌1 to the value of 𝑆𝜌 due to undefined 𝑅𝜌1 and 𝑇𝜌1 at 𝛾=1 due to the quantifies 

distribution of electron spreading of the system. Our results have good agreement with Ref. [35] (colored points). 

Furthermore, both 𝑅𝜌 and 𝑇𝜌 entropies decrease as increase in 𝛾 [28, 54–56]. Moreover, for 𝛾>1, 𝑅𝜌 is greater than 𝑇𝜌 

and possesses similar slopes, while for 𝛾<1, 𝑇𝜌 is higher and increases drastically than 𝑅𝜌. The sign is changing as 

mentioned in Figure 5-a 𝑅𝜌 for rises 𝑍 due to the reverse charge density of the Shannon entropy. For instance, at 𝑍 = 5, 

the sign of both 𝑅𝜌1 and 𝑅𝜌2 vary and our results agree with Farid et al. [33]. In Figure 5-b (𝛾) decreases for increasing 

𝑍. For 𝑍 = 2 and 3, 𝑆𝜌 begins a huge positive value and reduces to zero gradually and changes the sign for various 

values of 𝛾, whereas 𝑇𝜌 has negative values at 𝑍 ≥ 5. 

 

 

Figure 5. (a) Rρ (γ) and, (b) Tρ (γ) versus the parameter γ of 1s2 state for Helium-isoelectronic series in position space. 

Thepointed are the result of Farid et al. [35] 

4- Conclusion 

Electron density and information entropies have been studied within the 𝐻𝐹𝑅 wave function obtained on single Zeta 

𝛽𝑇𝑂𝑠 for (2 ≤ 𝑍 ≤ 10) atomic system atomic systems, where 𝛽𝑇𝑂𝑠 have the simple form of a linear combination of 

𝑆𝑇𝑂𝑠 [40, 42]. The positions of maxima in radial electron probability density in position (momentum) space shift to 

smaller (larger) locations with increasing Z. The distribution of Shannon's entropy led to a significant effect on the 

distribution of the electron propagation in the system. The system of Shannon’s entropy delocalization decreased with 

increasing Z. We have noticed the variation of 𝑆𝜌 and 𝑆Π for (2 ≤ 𝑍 ≤ 10) atomic systems, which deal with the 

interactions of the atom’s nucleus and valence regions and thereby include a spatial understanding of the variation. In 

the limit 𝛾 → 1, both R and T entropies tend to 𝑆𝜌. We have shown how the 𝑅, and T entropies decrease with increasing 

Z, whereas 𝛾 delocalizes as it reaches the ionization limit. Furthermore, since information entropies remain a subject of 

enormous research, our next suggestion is to propose information entropies for the ground and excited states of some 

atomic systems using correlated wave functions. 
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